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Abstract 

The sorting of used plastics is an ever-growing market field which is further pushed by new 

EU regulations in, e.g., car recycling. Modern recycling techniques require pure or almost 

pure fractions of polymers. These pure fractions can be generated from waste using 

modern sorting technologies based on specific mechanical, electrical and chemical 

material properties such as density, conductivity and melting point. 

The thermal recycling of plastics is no longer seasonable. More modern recycling 

techniques require pure fractions containing only a single variety of polymer. A large 

portion of the plastic waste contains black or multilayer materials that are not sortable with 

todays’ sorting technologies.  

To overcome this challenge, three Fraunhofer institutes are working together to develop a 

new type of sorting system. As a first step, we have developed a frequency domain line-

scan camera working in the terahertz range with frequencies below 300 GHz. 

Since the entropy in terahertz signals below 300 GHz is not as high as needed for simple 

classification, more complex statistical pattern recognition methods are needed. The 

application of those methods to the problem of sorting black plastics as the second step in 

this joint project is presented in this paper. These methods have to be integrated into a 

real sorting system, which is the third part of our joint project. The modular approach gives 

the ability to integrate our sensors and algorithms into existing sorting systems. 
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Related Work 

Recycling of polymers is of special interest. While many polymers and additives are 

transparent to THz waves [1,2], it has been shown, that separating polymers is possible 

using full-spectrum terahertz time-domain data. 

Common approaches [1] try to build a physical model using the refractive index of the 

material or its absorption curves for classifying a small number of polymer samples. It has 

been shown [1] that separation of black polymers is possible using the refractive index in 

case the object geometry (especially its thickness) is identical or at least similar. 

In [3] we have shown that the separation of plastics with different geometries is possible 

using Gaussian Mixture Models on the Hilbert envelope of the THz time-domain impulse 

response. Because using full-spectrum time-domain spectroscopy is not feasible for our 

use-case of inline sensors in sorting applications, we use a small-band frequency-domain 

THz line-scan camera, which consists of eight bistatic 90 GHz channels operating in a 

frequency stepped, time multiplexed fashion. 

Since the materials in question do not exhibit characteristic absorption lines below 2 THz 

[4], amplitude analysis does not provide sufficient entropy for a meaningful analysis, hence 

preservation of accurate phase information is essential. This is accomplished by phase-

synchronizing transmitter and receiver, resulting in a constant reference phase for each 

sampled frequency point across all measurement cycles. 

Baseband signals for transmitter and receiver are generated using Direct Digital Synthesis 

(DDS) followed by an upconverter and a frequency multiplier stage, resulting in a signal 

with a center frequency of 30 GHz with 4 GHz bandwidth. These signals are again 

frequency tripled to reach the intended working band at around 90GHz (W-band) with a 

total bandwidth of 12 GHz. Earlier measurements [4,5] have shown this to be the lowest 

frequency band where signal entropy is high enough to perform expedient analysis 

relevant to our use-case. 

The line scan camera is realized in a transmission geometry, i.e. the transmitter illuminates 

the samples from one side of the belt and the receiver detects the signal on the opposite 

side. In the receiver, the signal is downconverted to a predetermined intermediate 

frequency. The downconversion mixer outputs an in-phase (I) and a quadrature (Q) signal, 

making it possible to recover the phase information of the received high frequency signal. 

Both I and Q are then filtered and sampled for each of the 128 frequency steps yielding a 

data vector that is passed to the classification step. 

In literature there are many methods for separating non-trivial separable data vectors into 

classes. Starting with simple vector space transformation as PCA and ICA and their 

classification using linear approaches, recently support vector machines with radial basis 

kernels have been replaced by approaches using deep learning. Especially neural 
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networks as simple feed-forward multi-layer perceptrons and their extension using 

convolutional kernels show improvements in classification performance although models 

can get very large. These methods have become more popular since computing power for 

training is getting cheaper. 

Another approach needing less training data is the modelling of classes using Gaussian 

Mixture Models that is commonly used in speech recognition [6] and discussed in [1] for 

time-domain data, but can be used for any at least medium-large dataset of training and 

test data. 

System Overview 

The sorting system consists of a conveyor belt on which the plastic flakes are transported, 

a valve bar for pneumatic ejection, a THz sensor and also a RGB line scan camera. An 

overview of the overall system can be found in Figure 1.  

The purpose of the RGB camera is its high spatial resolution which cannot be achieved 

with the THz sensor because the wavelength is in the millimeter range. Both sensors are 

mounted in such a way that the scan lines of the RGB camera and the THz sensor 

coincides. The data of the RGB camera is not used to classify the material but to enhance 

the spatial resolution of the THz sensor and the robustness of the classification result. Two 

problems arise from the low spatial resolution of the THz sensor. One problem is that the 

shape of the sample determined by the THz sensor alone is too coarse to allow a precise 

ejection by the air valves. This problem is getting worse when the material flow is too 

compact. The second problem arises when the material is only partly visible at one pixel or 

when different materials contribute to the detected spectrum of one pixel. Ignoring this fact 

would add too much noise to the learning and the classification process. The data fusion of 

the THz and the RGB image provides the possibility to recover the shape of the objects 

with a high spatial resolution. This can be either used to improve the ejection of the 

material or to detect pixels with a spectrum composed by two different materials resulting 

from neighbored or overlapping flakes. Furthermore, the RGB image can be used to 

improve the performance by identifying the location of the flakes in the image and 

disregarding all pixels of the background in the following processing steps. 

Two sorting machines are planned to be build up with the THz sensor technology. The first 

is the integration in a small-scaled sorting system called TableSort (Figure. 2a). Its 

purpose is to test different hardware configurations of cameras or material transportation in 

a prototypical manner and already making an assessment of the achievable segregation of 

flakes of different types of polymers. TableSort already exhibits all relevant components of 

a sorting machine mentioned above. After the design phase of the hardware configuration 

is accomplished, the integration into FlexSort (Figure 2b) is realized. FlexSort is a modular 

large-scale sorting system in a container which can also be transported to recycling 

facilities to test the segregation on a big amount of plastic waste. 
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Algorithm 

Overview 

In contrast to very-deep learning methods using convolution models and pre-trained 

models like ImageNet [7] we have to deal with real-time requirements during the 

classification. In this paper we discuss three different methods of doing classification on 

our dataset. 

Our algorithm is divided in 3 major steps: Preprocessing, pixel-wise classification and 

object classification. As a first step a preprocessing as noise reduction and normalization 

of the antenna geometry is done. This step is comparable to the white-balance in optical 

systems. As we get complex-valued measurements of the absorption spectrum, we do a 

complex division by the recorded reference signal for normalizing. As we can update the 

reference value periodically, we can do normalization of basic belt pollution in this step, 

too. Therefore, reference measurements 𝐸𝑟(𝜔) are periodically taken in transmission 

when no sample is present, summarizing the effects of the frequency-dependent intensity 

of the emitted wave 𝐸0(𝜔) and the attenuation by the conveyor belt. As an approximation 

we get following 𝐸𝑑(𝜔) as the received wave when a sample is present.  

𝐸𝑑(𝜔) = 𝐸𝑟(𝜔) ⋅ exp (
−𝜔𝜅(𝜔)𝑑

𝑐0
) ⋅ exp (

−𝑖𝜔(𝑛(𝜔) − 1)𝑑

𝑐0
) 

The result of the complex division of 𝐸𝑑(𝜔) by 𝐸𝑟(𝜔) is independent of the intensity of the 

emmited wave. To reduce the computational time for the normalization which has to be 

computed for every pixel, this complex division is computed on the frame grabber in 

hardware. 

The second step is the pixel-wise classification of measurement data, this paper will focus 

on. Although there are many classification methods in literature, most of them have the 

disadvantage that the model size and classification runtime cannot be controlled easily. 

For this reason we decide on comparing two methods whose model size can be controlled 

easily and is independent on the amount of data used for training. 

The third step is the aggregation of classification results for any pixels of an object as a 

decision input to the sorter. One can show that a simple addition of the classes’ probability 

is feasible for our first test set. The algorithm decides for the class with the major 

probability or rejects in hard cases. This step has to be refined during integration in the full 

sorter in future. 

Classification Task 

A multi-layer perceptron is a feed-forward artificial neuronal network that can represent a 

continuous function with only a single hidden layer. Thus in our case it can give a good 

indication for our material class. In our experiments we use 100 hidden neurons although 

the exact number of hidden neurons does not influence the results as long as it is large 
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enough to model the physical properties. As an activation function we use sigmoid 

functions in the hidden layers and softmax function in output layer for mapping the outputs 

to a probability distribution for each material class. As neural networks tend to overfit 

during training we additionally added a dropout layer with a dropout probability of 0.7 

between the two hidden layers to reduce overfitting. 

Although a multi-layer perceptron seem to be good enough, we have complex-valued 

measurements of our absorption spectrum. Those can be interpreted as a two-channel 

image vector. Convolutional Neural Networks with 3D-Convolution have been used for 

implicitly converting color channels in computer vision problems. In our case this gives the 

possibility of using a combination of amplitude and phase information by implicitly learning 

the relation between them. As a starting point for a network structure we use a convolution 

of input data using a 1x3x2 kernel that has two effects. It can learn a smoothing or 

differentiating in frequency direction in the same step. As subsampling layer we suggest a 

simple max-pooling using a 1x2x1 mask with a stride of 1 in frequency direction. This 

subsampling output is fed into a multi-layer perceptron of similar structure as mentioned 

before used for classification directly using this CNN. So in fact we suggest a extension of 

classifying directly on the measurement data with some self-learning feature extraction. 

In contrast to implicitly modeling the class probabilities we suggest another generative 

model by fitting the training data to a weighted sum of multivariate Gaussian distributions. 

This so called Gaussian Mixture Model leads to two advantages. On the one side the 

training data does not have to be uniformly distributed across the training classes. On the 

other side the number of needed training data is not as high as the iterative process of 

learning neural networks needs.  

All of those pixel-wise classifications give a score of fitness for each predicted class. This 

score is normalized to the range [0,1] to fit the probability-theoretic requirements and be 

comparable across multiple pixels using softmax normalization if this is not done in the 

classifier itself. 

Evaluation 

Measures 

We use the common measures precision and recall as a measure for our algorithm results. 

Precision and recall are commonly used in information retrieval. In our approach we 

restrict the classification to a two-class problem, that can be extended to a multi-class 

problem by cascading multiple classifiers. Let A and B be the classes of materials to be 

sorted, e.g. A is Polypropylene and B is ABS. 

Let 𝑡𝐴 be the number of samples that are truly sorted as material 𝐴 and 𝑡𝐵 the number of 

samples that are truly sorted as material 𝐵. Additionally let 𝑓𝐴 be the number of samples 
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that are sorted as material 𝐴 although they are material 𝐵 in ground truth and 𝑓𝐵 the 

analogue for material 𝐴 being sorted as 𝐵. We get the definition of RecA  and 𝑃𝑟𝑒𝑐𝐴 

𝑅𝑒𝑐𝐴 =
𝑡𝐴

𝑡𝐴 + 𝑓𝐵
 

𝑃𝑟𝑒𝑐𝐴 =
𝑡𝐴

𝑡𝐴 + 𝑓𝐴
 

In our application recall can be interpreted as the fraction of the material A in input stream being 

sorted as A. Precision can be interpreted as the purity of the material being sorted as A. This is 

same in analogy for material B. 

Dataset 

As mentioned in [3] before, we have used a small dataset of about 200 flat and 

homogeneous materials for first classification using the time-domain data. Since our 

limited frequency range gives less entropy in the absorption signal, we need much more 

data for training our data-driven classifiers. For this purpose we got about 25 different 

batches of material from different recyclers. Each batch consist of more than 100 flakes 

sized between 2 𝑐𝑚2 and 5 𝑐𝑚2. This set is split in a test- and training dataset in ratio 1:2. 

We verified the given material class told by the recycling using a FT-IR spectrometer 

(Bruker ALPHA with Eco-ATR) for each batch. 

This groundtruth data is propagated to the whole batch. For each batch we repeated two 

measurements using our line-scan THz camera in combination with our RGB image for 

segmentation. As a result we get 6-10 measurement points per flake and more than 10 

thousand measured points in whole. Because the number of 25 batches is not as large as 

it is needed for clearly separating test- and training data, we expect little effects of 

overfitting in our results. According to the material our current dataset consists of, mainly 3 

cases of evaluation can be defined where a large-enough amount of training-data is 

present: 

 ABS vs. PP,HDPE,LDPE 

 Plastics vs. wood (use-case from automotive recycling) 

 PP vs. PE (although material in dataset is probably too homogenous) 

Results 

In this part we show the results of our experiments starting with a simple pure-plastics use-

cases of separating Polystyrenes and Polyolefines (Table 2). It can be shown that there is 

no significant difference in classification accuracy between the different classifiers as long 

as they use the same amount of training data and the basic requirements in the 

distribution of training data specific for this classifier are met. It is clear that the Gaussian 

Mixture Models outperform the cases, where only the amplitude of the signal is used for 

classification because the Gaussian Modelling needs less data for training and converges 
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faster. The Multi-layer-perceptron gets less precision in class PP,PE. The reason can be 

the limited number of hidden neurons. In contrast, the convolutional network gets a slightly 

better performance because it does multiple implicit filtering of the data using the 

convolutional kernels. Additionally we can show that the supervised separation of wood 

and plastics as our second use-cases is possible with our concept. Given an input of 89% 

plastics and 11% wooden flakes we can achieve a much higher precision and for both test 

classes doing our classification using Gaussian Mixture Models as shown in Table 3. The 

approaches using neural networks give much less accuracy because they implicitly learn 

the a-priori distribution in the training data set. This leads to the requirement of using 

uniformly-distributed classes in training process, which might not be possible in all use 

cases. 

Conclusion and Outlook 

We have shown that the separation of black plastics is possible using small-band terahertz 

time-domain data and data-driven classification methods. While some classification have 

disadvantages by design, e.g. the need of uniformly distributed training data, both 

Gaussian Mixture Models and Feed-Forward Neural networks seem sufficient for our 

classification tasks. By using the next improved sensor generation with a higher dynamic 

range and the use of more different data for training and testing we expect a much better 

performance in harder separation tasks. Especially a more diverse set of different object 

geometries and materials is an interesting challenge. 
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Figure 1: Overview of full sorting system 

 

 

      
                                     (a)                                                                                  (b) 
Figure 2: Two different realizations for the integration of the THz sensor in TableSort (a) and FlexSort (b) 
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Table 1: Distribution of materials in our recycling flake dataset 

Material Different batches Approx. number of flakes 

ABS 5 1000 

HDPE 3 600 

LDPE 1 200 

PP 7 1400 

PVC 1 150 

Wood 2 300 

 

Table 2: Precision and recall for separating between equally distributed test set of ABS and PE,PE using 
amplitude feature and 582 flakes for training for the different classifiers 

Classifier Precision ABS Recall ABS Precision PP,PE Recall PP,PE 

GMM 93 % 97 % 96 % 92 % 

MLP 96 % 96 % 85 % 95 % 

ConvNN 91 % 92 % 91 % 90 % 

 

Table 3: Precision and recall for separating between wood and plastics using amplitude feature and 642 
flakes for training for the different classifiers 

Classifier Precision plastics Recall plastics Precision Wood Recall Wood 

GMM 100 % 99 % 94 % 97 % 

MLP 95 % 36 % 100 % 35 % 

ConvNN 98 % 100 % 100 % 71 % 
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