ECOLOGICAL ASSESSMENT OF LIQUID ENERGY CARRIERS

Power-to-Methanol and Oxymethylene Ethers

Christoph Hank

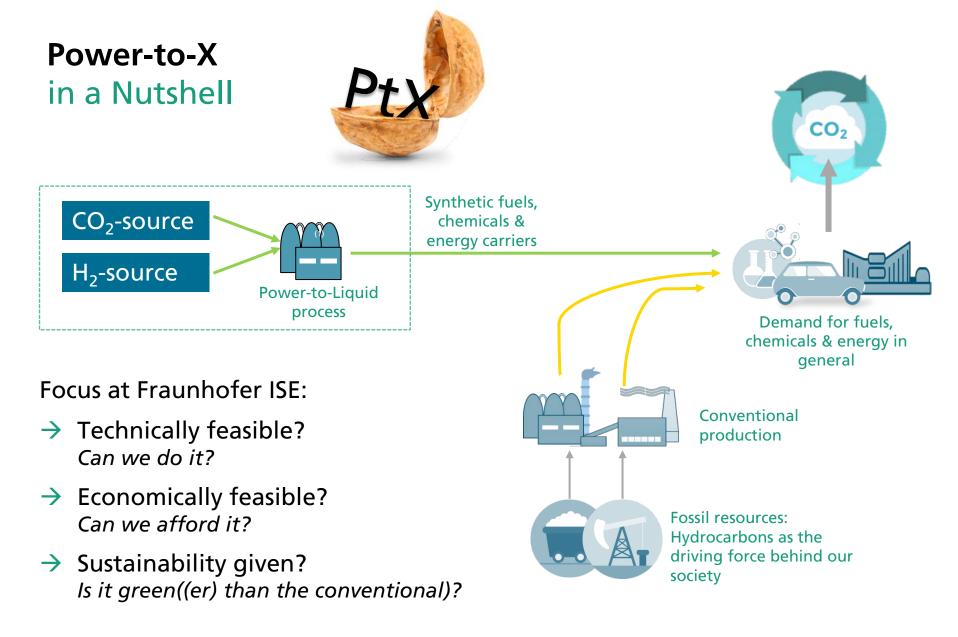
Lukas Lazar, Achim Schaadt, Robin J. White

Fraunhofer Institute for Solar Energy Systems ISE

ProcessNet 2018, Aachen

Introduction Hydrogen Technologies at Fraunhofer ISE, Freiburg

- H₂-generation by means of PEM water-electrolysis (1MW PEMEL)
- Energy storage in H₂-Systems and Redox-Flow-Batteries
- Interconnection of electricity and gas grid, Power-to-H₂

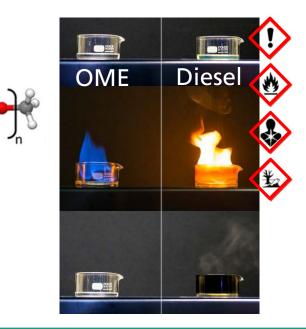


- PEM Fuel Cell research and development for mobile applications
 Degradation research (load profile, various climates)
- Customer specific, turn-key ready FC systems to like 20 kW

- Synthesis of H₂ and CO₂ to liquid energy carriers/fuels (Methanol, DME, OME); Methanol Miniplant for Carbon2Chem
- Thermochemical H₂-generation from hydrocarbons
- Clean catalytic evaporation process of liquid hydrocarbons (CatVap® e.g. for Diesel fuel)

(1): https://www.convertwithcontent.com

3


Power-to-Liquid

On the way to economic competiveness

- CCU & Power-to-X as key elements towards a *defossilised* economy
- Cheap *renewable electricity* as game changer for feasible PtX-processes
- Power-to-Liquid essential for energy-intensive mobility applications...
 - ...but also for the downstream production of *renewable chemicals*

Polyoxymethylene Dimethyl Ethers – *OME:* $H_3CO-(CH_2O)_n-CH_3$ as interesting downstream derivate of methanol

- → Drop-in substitute for diesel fuel
- → Green and (potentially) non-toxic solvent
- \rightarrow Liquid at RT for n = 3 5

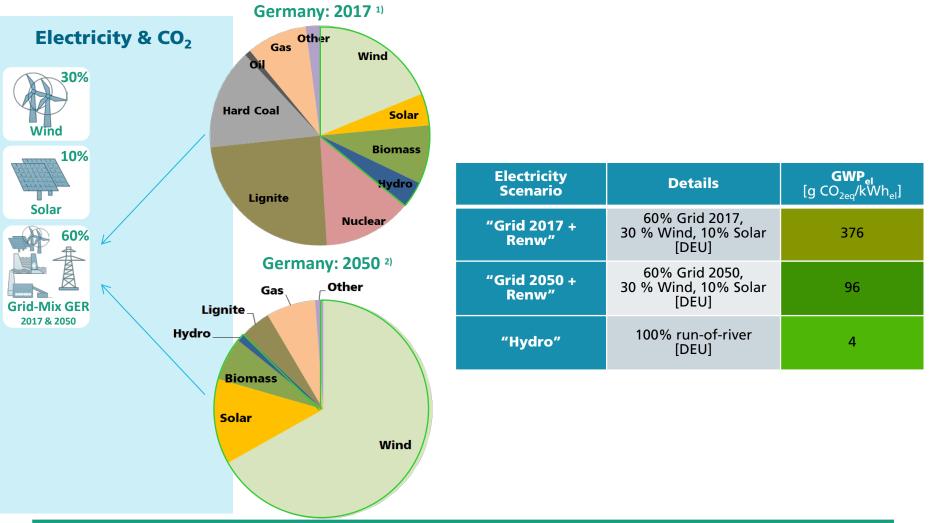
Power-to-Liquid

Framework of the presented study

- Comparative LCA of OME₃₋₅ when used as 100% diesel substitute
- OME₃₋₅ synthesis based on *direct synthesis* via methanol and anhydrous formaldehyde
- Electricity Scenarios: 2017 & 2050 & Hydro

- Well-to-Wheel system boundaries;
- Exemplify influence of avoided burden¹ approach and economic allocation

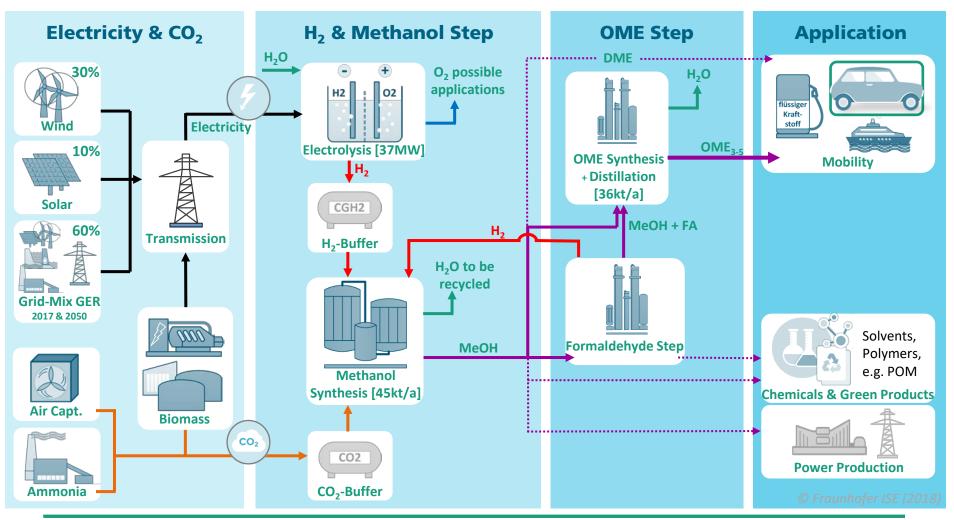
<i>Impact</i> <i>categories:</i>	Impact category ²⁾	Abbrev.	Indicator	Model	Classi- fication
	Climate change, GWP 100a	GWP _{100a}	kg CO _{2eq}	IPCC 2007	(I)
	Acidification, freshwater and terrestrial	AP	mol H+ _{eq}	ILCD 2016, method by [Seppälä et al.] ⁷⁵ and [Posch et al.] ⁷⁶	(11)
	Ozone layer depletion	ODP	kg CFC-11 _{eq}	ILCD 2016, method by [WMO] ⁷⁷	(I)


5

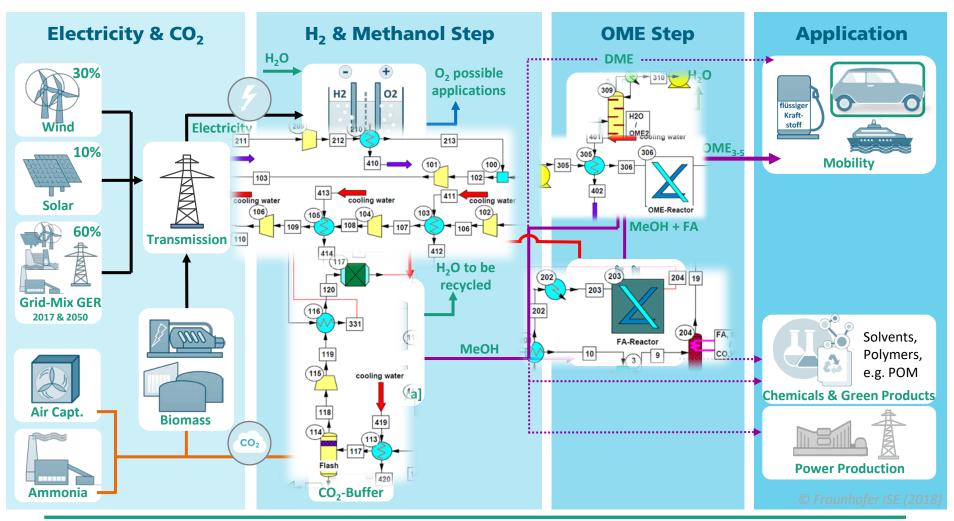
Christoph Hank, ProcessNet 2018 © Fraunhofer ISE FHG-SK: PUBLIC 1): Case Ammonia: Production of Urea is substituted; Case Biogas: Production of fossil-based natrual gas i substituted .

2): European Comission, ILCD, International Reference Life Cycle Data System, European plattform on Life Cycle As-sessment

Fraunhofer


OME via Power-to-Liquid The assessed PtL process scenarios

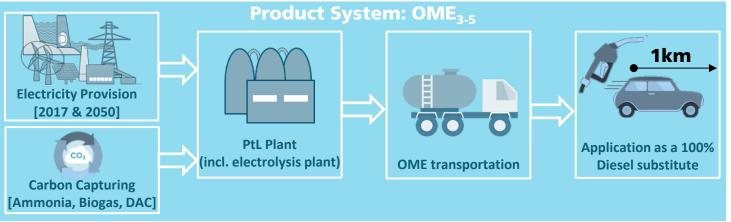
Christoph Hank, ProcessNet 2018 © Fraunhofer ISE FHG-SK: PUBLIC 1): ISE Energy Charts: Germany's Electricity Production 2017, 📑 subprocess ecoinvent, 2016 2): German Federal Ministry for Economic Affairs and Energy: Pfluger et al. 2017a, 2017b; 📑 subprocess ecoinvent, 2016



OME via Power-to-Liquid The assessed PtL process scenarios

7

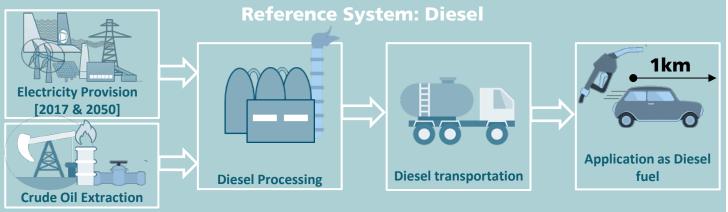
OME via Power-to-Liquid Background CHEMCAD Simulation



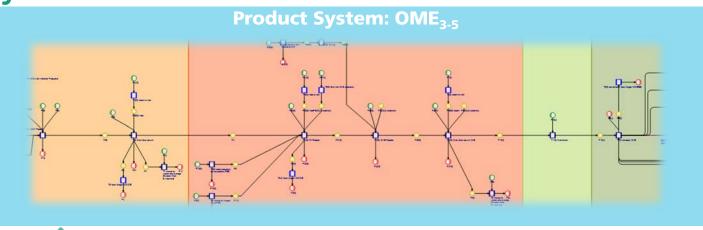
8

Christoph Hank, ProcessNet 2018 © Fraunhofer ISE FHG-SK: PUBLIC 🗾 Fraunhofer

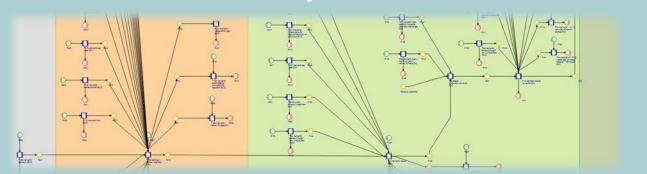
LCA of OME


System Boundaries and Functional Unit

Process energies: electricity, heat, steam, "cooling" from water, transportation


Equipment & materials: power plants, chemical facilities (approx.),

compressors, pumps, reactors, catalysts, diesel car, road



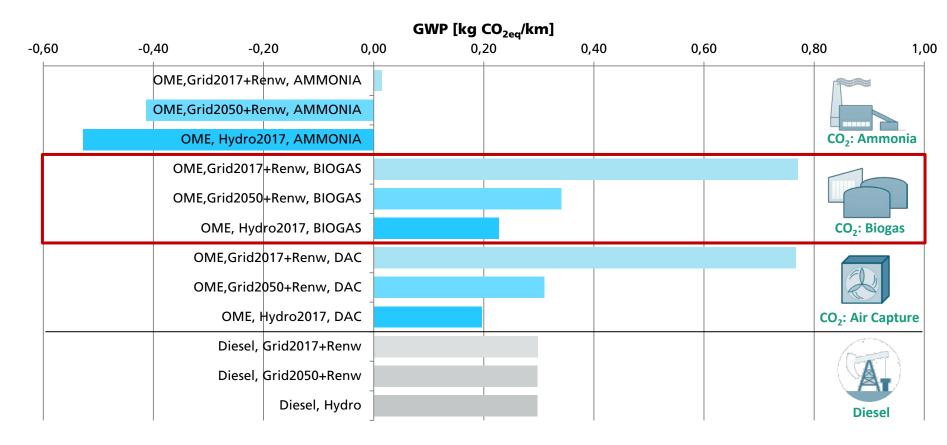
LCA of OME **System Boundaries and Functional Unit**

Transfer of the resulting Life-Cycle-Inventory -Data to the LCA-software Umberto NXT

Multifunctionality in Case of CCU Different methods lead to different Impacts

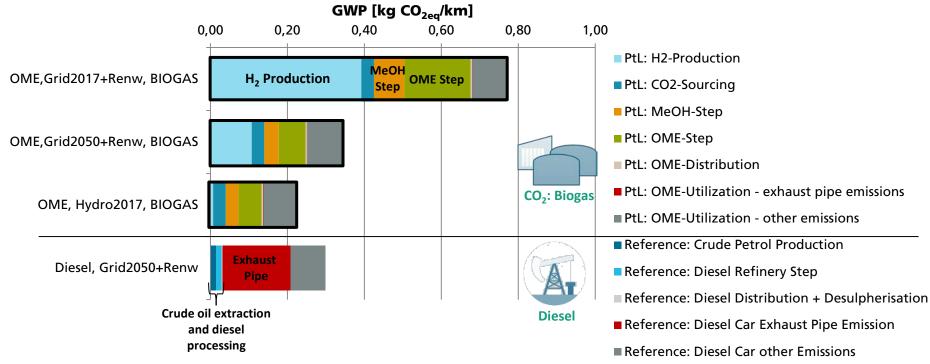
- Multifunctional Processes: Delivering more than one product
- In case of CCU: Waste CO₂ becomes a feedstock
- Different methods recommended (ISO14044, EU ILCD, other¹) in hierarchical order:
 - I.: Subdivision
 - II.: System Expansion [x kg CO_{2eq} / km driving distance & x kg urea]
 - III.: System Expansion and Avoided Burden

 $Impact_{Product\ specific} = Impact_{combined\ production} - Impact_{substituted\ conventional\ production}$

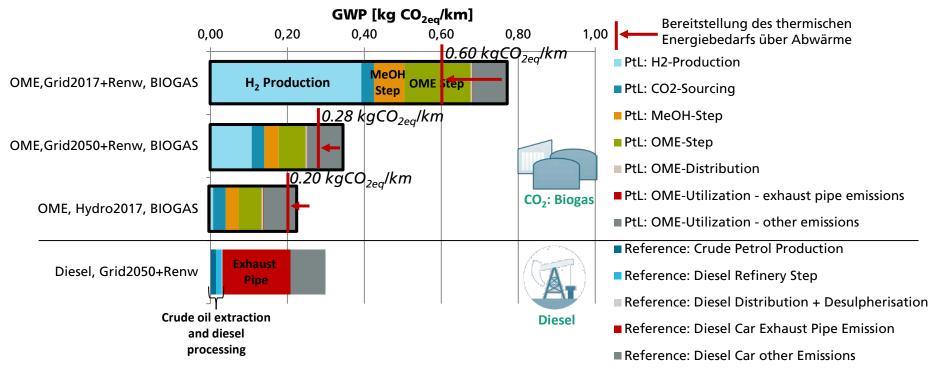

IV.: Allocation with physical / economical relationship of products

Following slides: Exemplified influence of

system expansion and av. burden & allocation on LCIA results.

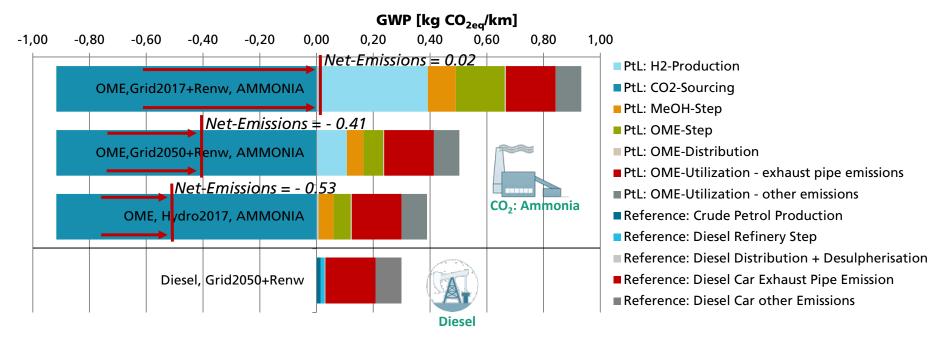


Global Warming Potential for a driving distance of 1km:


Contribution of Life Cycle Phases: Case CO₂ from Biogas

Electrolytic H₂ production and thermal intensity of the OME step as the main drivers for the OME's overall GWP.

Contribution of Life Cycle Phases: Case CO₂ from Biogas


Electrolytic H₂ production and thermal intensity of the OME step as the main drivers for the OME's overall GWP.

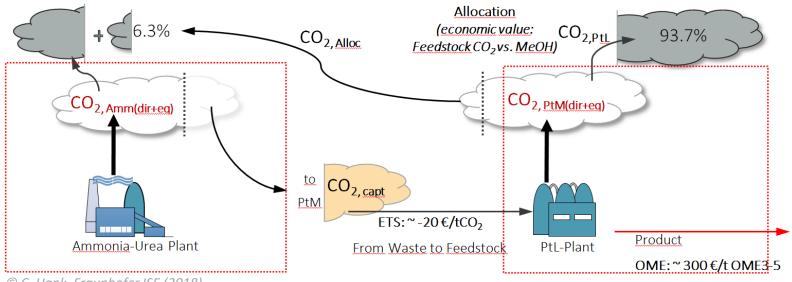
Christoph Hank, ProcessNet 2018 © Fraunhofer ISE FHG-SK: PUBLIC

14

Contribution of Life Cycle Phases: Case CO₂ from Ammonia

- Avoided Burden Approach leads to very low overall GWP
- Ecologic efficiency of most CCU reduction pathways are strongly dependent on the way of solving multi-functionality

Life Cycle Impact Assessment Results Global Warming Potential – *Economic Allocation*

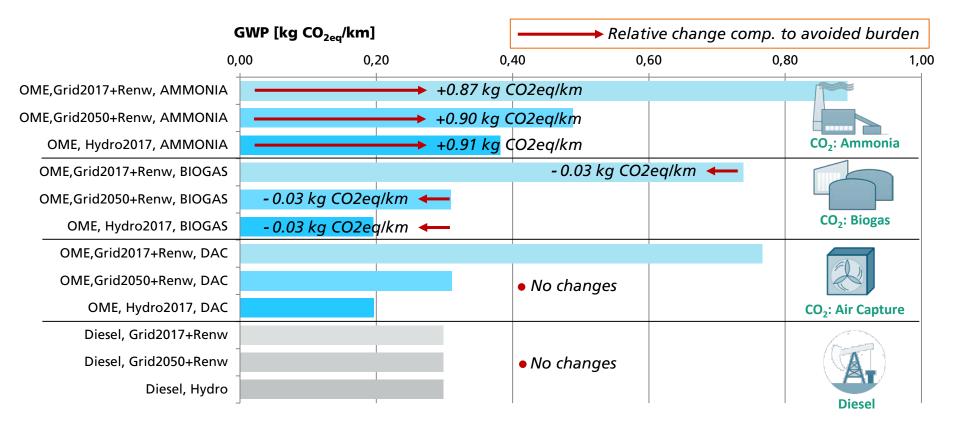

- Economic Allocation:
 - Case Biogas:
 - Biogenic CO₂: $5 \notin t$ CO₂ (incl. Desulphurisation) $^{1} \rightarrow 0.5\%$
 - Biomethane: 1078 €/t BioCH₄² → 99.5%

FHG-SK: PUBLIC

Life Cycle Impact Assessment Results Global Warming Potential – *Economic Allocation*

- Economic Allocation:
 - Case Ammonia:
 - Captured CO₂: -20 €/t CO₂
 (ETS-Certificate negative market price rates captured CO₂ as "waste" → CCU-process becomes multi-functional
 - \rightarrow partial allocation of CCU-impact to emitting process

© C. Hank, Fraunhofer ISE (2018)


17

Christoph Hank, ProcessNet 2018 © Fraunhofer ISE FHG-SK: PUBLIC Runte, 2017, Master-Thesis: Technoökonomische Bewertung von auf Wasserstoff basierenden Erneuerbaren kraftstoffen, Fraunhofer ISE
 Deutsche Energie-Agentur GmbH (dena), 2013: Branchenkompass Biomethan

Life Cycle Impact Assessment Results Global Warming Potential – *Economic Allocation*

Global Warming Potential for a driving distance of 1km:

Christoph Hank, ProcessNet 2018 © Fraunhofer ISE FHG-SK: PUBLIC

18

Summary & Outlook

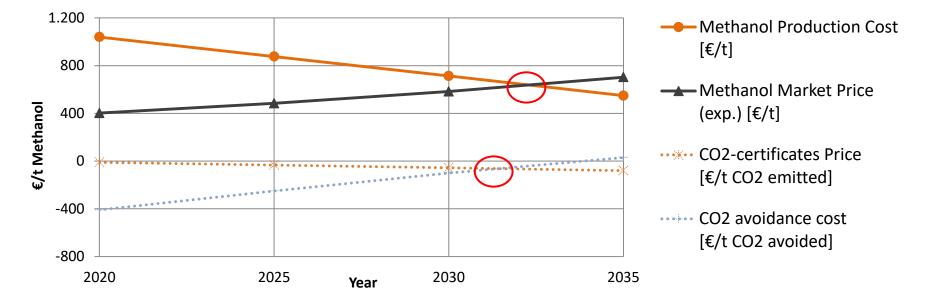
- CO₂-based fuels can offer a reduction in GWP when sourced from mainly renewable energies (H₂-content / upstream electricity critical component)
- OME and other synthetic fuels with promising cost reduction potential: regions with low RE cost (e.g. Chile, South Africa, Maghreb states)
- Integration of HT-excess heat (e.g. steel mills) with great potential; consideration of side products beneficial for TEA & LCA
- OME synthesis process development towards less energy intensive pathways and selective catalysts for further improvements
- Results for ecologic efficiency of OME₃₋₅ production (and other CCU processes) are highly dependent on solving of multi-functionality
- If possible: apply ISO 14044 hierarchy for solving of multi-functionality (otherwise, as shown, results can be distorted)
- Further Impact Categories remain critically and depend on intensive defossilisation of upstream manufacturing processes¹

Thank you for your attention

christoph.hank@ise.fraunhofer.de

Hydrogen Technologies at the Fraunhofer Institute for Solar Energy Systeme ISE

Special thanks to: "the group" & L. Lazar, F. Mantei, M. Ouda & the German Federal Ministry of Education and Research Icon used made by vectors market from www.flaticon.com



and Forschung

The city of Freiburg from the ,Schauinsland [©] Joscha Feuerstein

Starting Point¹⁾ LCA & CO₂ Avoidance Cost of Power-to-*Methanol*

- Power-to-Methanol (PtM) can be environmentally advantageous compared to fossil based methanol production for specific cases
- But as yet not economically competitive (high capital expenditures & cheap fossil competitors)

Christoph Hank, ProcessNet 2018 © Fraunhofer ISE FHG-SK: PUBLIC

1): Hank, 2017: The power-to-methanol process chain - a life cycle assessment and CO2 avoidance cost analysis, 15th International Conference on Carbon Dioxide Utilization, Shanghai, China, July, 17th-21st, 2017
 Hank et al., 2018: Economics & carbon dioxide avoidance cost of methanol production based on renewable hydrogen and recycled carbon dioxide – power-tomethanol 3

Fraunhofer

CO₂ Avoidance Cost For the assessed OME pathway

- Interlinkage of economic and ecologic efficiency
- Cost comparison between two systems, both delivering the same product (or service), for the reduction of CO_{2 (Equivalents)}

 $CO_{2} Avoidance Cost = \frac{Production Cost_{CCU product} - Production Cost_{fossil product}}{CWP}$ $GWP_{fossil\ product,C2G} - GWP_{CCU\ product,C2G}$

Applicable to other impact categories ("impact avoidance cost")

CO₂ Avoidance Cost For the assessed OME pathway

- Cost calculations for the production of "green OME" based on:
 - CO₂: Ammonia-Urea plant, Electricity: Renewables-Grid-Mix
 - CAPEX, OPEX (incl. maintenance & replacements) considered
 - Steady-state process; ~36 kt OME₃₋₅/a (pilot plant scale)
- Costs calculation:

CO2 Avoidance Cost ¹⁾	Green OME 2017	Diesel	Green OME 2050?
Fuel Production Cost [€/t]	1045	291	620
Specific Cost [€/km]	0.13	0.02	0.08
Global Warming Potential [kgCO _{2eq} /km]	0.06	0.30	- 0.36
CO _{2eq} Avoidance Cost	458 €/t CO _{2eq}		90 €/t CO _{2eq}

→ Future: Power-to-Liquids for countries with very low RE-generation cost? (Price bids for PV already @2.5ct€/kWhel and below²)

23

Christoph Hank, ProcessNet 2018 © Fraunhofer ISE FHG-SK: PUBLIC

 Lazar, 2018, Master-Thesis: Environmental performance of liquid energy carriers and fuels based on renewable hydrogen and recycled carbon dioxide (Power-to-Liquid), Fraunhofer ISE
 2) https://www.bloomberg.com/news/articles/2016-05-03/solardevelopers-undercut-coal-with-another-recordset-in-dubai, last accessed March 2018. & https://economictimes.indiatimes.com/industry/energy/power/chile-

breaks-dubais-record-of-solar-power-output-at-low-cost/articleshow/53932595.cms

