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1 Fraunhofer IAIS, Schloss Birlinghoven, Sankt Augustin, Germany
2 Dept. of Computer Science, University of Bonn, Germany

{mario.boley,tamas.horvath,axel.poigne,stefan.wrobel}@iais.fraunhofer.de

Abstract. Many problems in data mining can be viewed as a special
case of the problem of enumerating the closed elements of an indepen-
dence system with respect to some specific closure operator. Motivated
by real-world applications, e.g., in track mining, we consider a general-
ization of this problem to strongly accessible set systems and arbitrary
closure operators. For this more general problem setting, the closed sets
can be enumerated with polynomial delay if deciding membership in the
set system and computing the closure operator can be solved in polyno-
mial time. We discuss potential applications in graph mining.

1 Introduction

Over the past years, a large body of research has been devoted to finding efficient
algorithms for the frequent itemset enumeration problem, and it has turned out
that by looking at closed frequent itemsets, important gains can be made in
the design of efficient algorithms (see, e.g., [6]). A closed frequent itemset is a
frequent itemset that cannot be further enlarged without changing its support
in the database. Unfortunately, similar results do not yet exist for (closed) pat-
tern enumeration tasks in many of the more complex representations that are
becoming increasingly popular due to applications in highly structured domains.
Consider for example the task of finding closed frequent connected subgraphs of
movements of people or cars in a street network given a database of GPS-based
recordings of spatio-temporal movements (so called tracks) [5]. In mining such
tracks instead of itemsets, some important properties that are true for the fre-
quent itemset mining problem no longer hold. In particular, it is not true that
all subpatterns of a frequent connected pattern must necessarily also be frequent
connected, since subpatterns need not be connected.

Technically, for problems like the track mining problem mentioned above, we
note that unlike for the simple frequent itemset case, where the underlying set
system is an independence system, here we are dealing with a weaker property of
set systems which is only strongly accessible. In this paper, we show that for this
generalized problem, it is possible to design an algorithm that enumerates all



closed frequent patterns, for arbitrary closure operators, with polynomial delay
(provided deciding membership in the set system and computing the closure
operator can be done in polynomial time). To our knowledge, this result gives
the first efficient closed pattern enumeration algorithm for this generalized and
practically important task.

2 Preliminaries

In this section we define the notions and notations used in this paper. We will
sometimes denote a set {a1, . . . , an} by the string a1 . . . an.

Set Systems A set system is an ordered pair (E,F), where E is the ground set
and F ⊆ 2E . A set system is called finite if its ground set is finite. An element
X of F is called maximal if there is no Y ∈ F such that X is a proper subset of
Y . A set system (E,F) with ∅ ∈ F is called

– accessible if for all X ∈ F \ {∅} there is an e ∈ X such that X \ {e} ∈ F ,
– strongly accessible if for every X,Y ∈ F satisfying X ( Y , there is an
e ∈ Y \X such that X ∪ {e} ∈ F , and

– an independence system if Y ∈ F and X ⊆ Y implies X ∈ F .

The definitions imply that (i) every independence system is strongly accessible
and (ii) every finite strongly accessible set system is accessible. However, the
converse of (i) and (ii) does not hold.

Closure Operators We now recall some notions related to closure operators.
Let (E,F) be a set system. A mapping ρ : F → F is called a closure operator
if (i) X ⊆ ρ(X) (extensitivity), (ii) X ⊆ Y ⇒ ρ(X) ⊆ ρ(Y ) (monotonicity),
and (iii) ρ(X) = ρ(ρ(X)) (idempotence) hold for all X,Y ∈ F . A set F ∈ F
satisfying ρ(F ) = F is called ρ-closed. The family of ρ-closed sets of a set system
(E,F) with respect to a closure operator ρ is denoted by ρ(F). For a ρ-closed
set C ∈ ρ(F), the family of all ρ-closed proper subsets of C is denoted by λ(C).
Let (E,F) be a set system with ∅ ∈ F . Then, because of the monotonicity, for
every C ∈ ρ(F) it holds that λ(C) = ∅ if and only if C = ρ(∅). A set F ∈ F is a
generator of a ρ-closed set C ∈ ρ(F) if ρ(F ) = C.

Graphs An undirected graph is a pair (V,E), where V 6= ∅ is a finite set of
vertices and E ⊆ {e ⊆ V : |e| = 2} is a set of edges. Unless otherwise stated, in
this paper by graphs we always mean undirected graphs and denote the set of
vertices and the set of edges of a graph G by V (G) and E(G), respectively. Let
G and G′ be graphs. G′ is a subgraph of G, if V (G′) ⊆ V (G) and E(G′) ⊆ E(G).
Let X ⊆ E(G) for some graph G. Then the graph induced by X, denoted G[X],
is the subgraph G′ of G such that V (G′) is the set of vertices occurring in X and
E(G′) = X. A graph G is connected if for every u, v ∈ V (G), there is a sequence
w0, w1, . . . , w` of vertices such that w0 = u, w` = v, and {wi, wi+1} ∈ E(G)
for every i (0 ≤ i < `). A connected component of G is a maximal subgraph of
G that is connected. For the sets Y ⊆ X ⊆ E(G) of edges such that G[Y ] is
connected, ConnX(Y ) denotes the connected component of G[Y ] in G[X].



Frequent Pattern Mining We recall some notions from frequent pattern min-
ing. Let D be a transaction database over a set I, i.e., D is a multiset of subsets
of I. For a set X ⊆ I, the support of X with respect to D, denoted D [X], is
the multiset of transactions of D containing X. The support count of X, de-
noted σ(X), is defined by |D [X] |. For an integer frequency threshold t > 0, a
subset X ⊆ I is t-frequent if σ(X) ≥ t. The proof of the following proposition is
immediate from the definitions.

Proposition 1 Let D be a transaction database over a set I and X ⊆ Y ⊆ I.
Then X ⊆ Y ⇒ D [X] ⊇ D [Y ]⇒

⋂
D [X] ⊆

⋂
D [Y ].

A subset X ⊆ I is closed if for every X ( Y ⊆ I it holds that D [Y ] ( D [X].
We note that this notion of “closeness” does not relate necessarily to that used
in the definition of closure operators. In Section 4 we present an example, where
there is no closure operator defining the above notion of closeness.

For some enumeration problems, the size of the set to be enumerated can
be exponential in the size of the input. In such cases, the algorithm cannot
enumerate the output in time polynomial only in the size of the input. We
consider enumeration with polynomial delay (see, e.g., [4]), i.e., the number of
steps between the output of two successive elements is bounded by a polynomial
in the input size.

3 The General Problem

Many problems in data mining (e.g., closed frequent itemset mining) can be
considered as a special case of the following enumeration problem:

The Closed Set Mining (CSM) Problem: Given a finite set E, a mem-
bership oracle MF : 2E → {0, 1} defining a family F ⊆ 2E satisfying ∅ ∈ F ,
and a closure operator ρ : F → F , compute ρ(F).

As an instance of this problem, consider the closed frequent itemset mining
problem. For this problem, E and F correspond to the set of items and the
family of frequent itemsets, respectively. Notice that F is given implicitly by a
frequency testing procedure denoted by MF in the problem definition.

Usually, F can be enumerated efficiently. Even then the näıve algorithm enu-
merating each set S ∈ F and testing whether S is ρ-closed is inefficient because
|F| can be exponential in |ρ(F)|. There are several results on efficient enumera-
tion of ρ-closed sets for the case that the underlying set system is finite and closed
under intersection (see, e.g., [2, 3]). Among others, formal concept analysis [7]
and closed frequent itemset mining (see, e.g., [6]) provide some representative
applications of this case.

In contrast to these results, we do not require the set system to be closed
under intersection. Instead, we consider finite set systems (E,F) associated with
closure operators ρ : F → F satisfying the following property: for any ρ-closed
element of F , there exists an inductive generator. An inductive generator of a
ρ-closed element C ∈ ρ(F) is an element C ′ ∪ {e} ∈ F such that C ′ ∈ ρ(F),



e ∈ E \ C ′, and C = ρ(C ′ ∪ {e}). These inductive generators can then be used
to enumerate all ρ-closed sets with a DFS algorithm resulting in the following
positive result:

Lemma 2 The CSM problem can be solved with polynomial delay for instances
satisfying (i) the membership oracle MF and the closure operator ρ can be com-
puted in polynomial time and (ii) for every ρ-closed set except ρ(∅), there exists
an inductive generator.

Proof (sketch). The ρ-closed sets can be enumerated by traversing the graph
(ρ(F), X) with

X = {(C,C ′) : C ′ = ρ(C ∪ {e}) for some e ∈ E \ C satisfying C ∪ {e} ∈ F}

in a depth first manner. Using prefix trees for the storage of the enumerated
ρ-closed sets, one can decide in time linear in the size of a new ρ-closed set,
whether it has already been visited. Condition (ii) implies that every ρ-closed
set is reached when starting from ρ(∅). Since a new ρ-closed set is reached or the
algorithm terminates after at most |E|2 closure computations and membership
queries, condition (i) implies polynomial delay. 2

To formulate our main result, we first give a sufficient and necessary condition
for generators in arbitrary set systems and closure operators.

Proposition 3 Let (E,F) be a set system, ρ : F → F a closure operator, and
C ∈ ρ(F) a ρ-closed set. Then for every F ∈ F satisfying F ⊆ C it holds that
F is a generator of C if and only if there is no C ′ ∈ λ(C) satisfying F ⊆ C ′.

Proof. (“if”) Since ρ is a closure operator we have F ⊆ ρ(F ) ⊆ ρ(C) = C.
Now consider the case that ρ(F ) ( C. Then ρ(F ) ∈ λ(C) contradicting the
assumption. Hence, ρ(F ) = C must hold.

(“only if”) Let F ∈ F be a generator of C and suppose for contradiction
that F ⊆ C ′ for some C ′ ∈ λ(C). Then F ⊆ C ′, but ρ(F ) = C 6⊆ C ′ = ρ(C ′)
contradicting the monotonicity of ρ. 2

Thus, if C ′ is a maximal element of λ(C) for some ρ-closed set C then C ′

is not necessarily an inductive generator of C together with some element from
E \C ′. For strongly accessible set systems, however, we have a different situation
which allows us to state the main result of this section.

Theorem 4 For any finite strongly accessible set system (E,F) given by a poly-
nomial membership oracle and for any polynomially computable closure operator
ρ : F → F , the family ρ(F) of ρ-closed sets can be enumerated with polynomial
delay.

Proof. Let C = ρ(F ) be a ρ-closed set satisfying C 6= ρ(∅) (or equivalently,
λ(C) 6= ∅). Then there is a maximal ρ-closed set C ′ ∈ λ(C) because (E,F)
is finite. Since (E,F) is strongly accessible, there is an e ∈ C \ C ′ such that
C ′ ∪{e} ∈ F . The maximality of C ′ in λ(C) implies that there is no set in λ(C)
containing C ′ ∪ {e}. Thus, by Proposition 3, C ′ ∪ {e} is an inductive generator
of C and the statement follows from Lemma 2. 2
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Fig. 1. An accessible set system with the closure operator ρ(∅) = ∅, ρ(a) = ρ(ac) = ac,
and ρ(ab) = ρ(abd) = ρ(abcd) = abcd. The ρ-closed set abcd has no inductive generator.

We note that accessibility alone is not enough to guarantee the existence of
inductive generators. In Figure 1 we give such an example.

4 Applications

As a first application, we state a positive result on efficient mining of closed
frequent itemsets, which, although it is well-known (see, e.g., [1]), demonstrates
the power of Theorem 4.

Theorem 5 The family of closed frequent itemsets can be enumerated with poly-
nomial delay.

Proof. Let D be a transaction database over a set I of items and t > 0 be an
integer. Let FD,t denote the family of t-frequent itemsets and ρ : FD,t → FD,t

be the function ρ : F 7→
⋂
D[F ]. Clearly, ρ is a closure operator on FD,t.

Since any subset of a frequent itemset is also frequent, (I,FD,t) is an inde-
pendence system and thus, it is strongly accessible. It can be decided in time
polynomial in the size of D whether a subset of I is frequent. Finally, for all
F ∈ FD,t, ρ(F ) can be computed in time polynomial in the size of D. The
statement then follows by Theorem 4. 2

For the rest of this section, let G = (V,E) be an undirected graph and D
be a database of subgraphs of G. That is, for every graph G′ ∈ D we have that
G′ = G[E′] for some E′ ⊆ E. Notice that the graphs in D can be represented by
subsets of E. We make use of this fact and consider D as a transaction database
over E. Transaction datasets of this type occur e.g. in track mining applications.
Indeed, consider the application scenario, where we have a network represented
by an undirected graph G = (V,E) and points moving in the network within
a time interval T (e.g., the network and the points could represent a city and
persons moving in the city, respectively). For each point i, let Ei ⊆ E be the
set of edges of G visited by point i in T and let Gi = G[Ei] be the subgraph of
G induced by Ei. The collection of graphs Gi for every i forms the database D.
In contrast to other frequent subgraph mining problems defining the embedding
operator by subgraph isomorphism, we define it by the subset relation.

Given some frequency threshold t > 0, one can consider different types of t-
frequent patterns corresponding to appropriately chosen set systems and closure



operators defined by D and t. As an example, for the set system (E,FD,t) with

FD,t = {X ⊆ E : σ(X) ≥ t}

and closure operator ρ : F 7→
⋂
D [F ], ρ(FD,t) corresponds to the family of

closed t-frequent subgraphs of D. Notice that in this case, the underlying set
system (E,FD,t) is an independence system and the problem of enumerating
ρ(FD,t) is equivalent to the closed frequent itemset mining problem. Hence, by
Theorem 5, ρ(FD,t) can be enumerated with polynomial delay.

4.1 Mining Closed Frequent Connected Subgraphs

In the last example, we considered closed frequent subgraphs without any struc-
tural restriction, such as, for example, connectivity. Connectivity is perhaps the
most natural structural property of graphs. In track mining (see, e.g., [5]) for
instance, closed frequent connected subgraphs of a network can be considered
as homogeneous connected subnetworks. From an algorithmic point of view, we
consider the following problem:

Closed Frequent Connected Subgraph Mining Problem: Given an
undirected graph G = (V,E), a transaction database D of subgraphs of G,
and an integer t > 0, enumerate the family of closed t-frequent connected
subgraphs of D.

Applying Theorem 4, we show that the above problem can be solved with
polynomial delay. Let the set system (E,FD,t) and the function ρ : FD,t → FD,t

be defined by

FD,t = {X ⊆ E : σ(X) ≥ t ∧ G[X] is connected} (1)

and

ρ : X 7→

{
∅ if X = ∅
Conn⋂

D[X](X) otherwise .
(2)

That is, ρ maps a frequent connected subgraph X to the largest connected
supergraph Y of X such that Y is a subgraph of each supergraph of X in D.
We note that the set system (E,FD,t) is not an independence system because
a subgraph of a frequent connected graph is not necessarily connected. In fact,
it is not even closed under intersection. But, as we note without proof due to
space limitation, it is strongly accessible.

Lemma 6 Let G = (V,E) be an undirected graph, D be a transaction database
over E, and t > 0 be an integer. Let FD,t and ρ be defined as in Equations (1)
and (2), respectively. Then (E,FD,t) is a strongly accessible set system and ρ is
a closure operator.

One can easily see that deciding the membership in FD,t and computing ρ
can both be solved efficiently. Combining these properties with the results of
Lemma 6, we can apply Theorem 4 and state the main result of this subsection:

Theorem 7 The closed frequent connected subgraph mining problem can be solved
with polynomial delay.



4.2 Closed Frequent Subpath Mining

The setting defined in this paper actually goes beyond the standard definition
of “closeness” usually employed in data mining, as it can be used to resolve an
anomaly with this notion described as follows. In the standard case as discussed
above, the design of a closure operator was straightforward. Since for all X ∈
FD,t, the family

max{X ′ ∈ FD,t : X ⊆ X ′ ⊆
⋂
D [X]}

of maximal sets had always exactly one element, the closure operator could just
assign this unique maximum element to X. However, it does not hold in general
that such a unique maximum element exists. In this subsection, as an illustrative
example of how to define a closure operator for such cases, we consider the
problem of mining closed frequent paths.

We again have a graph G = (V,E) and a database D of transactions con-
taining subsets of E. The set system of interest is now (E,FD,t) with

FD,t = {P ⊆ E : σ(P ) ≥ t ∧ P is a path} .

As in the previous case, FD,t is not an independence system and also not closed
under intersection, but it is strongly accessible. Notice that the membership
problem can be solved efficiently.

In data mining, a common definition for closed frequent subpaths is given
by “A path P is closed frequent if it is frequent and D [P ′] ( D [P ] for every
path P ′ containing P .” Using this definition, let CD,t denote the set of closed
frequent paths in D. However, there is a problem with this definition: CD,t is
not induced by a closure operator. In fact, there are cases, for which there is no
closure operator ρ : FD,t → FD,t with CD,t = ρ(FD,t). In the example below, we
give such a case.

Example 8 Let G = ({1, 2, 3, 4}, {12, 23, 24}), D = {{12, 23, 24}} (i.e., D is a
singleton consisting of G), and t = 1. Then CD,1 = {{12, 23}, {12, 24}, {23, 24}}.
Consider the set system ({12, 23, 24},FD,1}, where FD,1 denotes the set of fre-
quent paths, i.e., FD,1 = {∅, {12}, {23}, {24}, {12, 23}, {12, 24}, {23, 24}}. As-
sume that there is a closure operator ρ such that ρ(FD,1) = CD,1. Then ρ({12})
must be either {12, 23} or {12, 24}, say {12, 23}. But then ρ({12}) 6⊆ ρ({12, 24}
contradicting the monotonicity.

To resolve this anomaly, we consider another natural notion of “closeness”
which is induced by a closure operator. As stated above, we have the problem
that a path X can be contained in more than one maximal path in

⋂
D [X]. This

prevents a closure operator definition in a fashion similar to the connectivity case.
A canonical way to overcome this problem is to define it as the intersection of
all such maximal elements. For paths, in particular, this results in the definition

ρ : P 7→
⋂

max{M : M is a path in
⋂
D [P ] such that P ⊆M}

for every P ∈ FD,t.



One can show that ρ is a closure operator that can be computed efficiently
and thus, by Theorem 4, ρ(FD,t) can be enumerated with polynomial delay.
Although ρ(FD,t) is a superset of CD,t, it still can reduce the output significantly
and is a semantically more meaningful set of patterns than FD,t. As an example,
let G be a path of length n and D = {G}. For frequency threshold t = 1 we have
|FD,1| = (n+ 1)n/2 and |ρ(FD,1)| = 1.

5 Conclusion

In this paper, we have presented a positive result on efficient enumeration of the
family of closed sets of strongly accessible set systems with respect to arbitrary
closure operators. The significance of our result in the context of data mining is
that most of the closed frequent pattern mining algorithms are restricted to the
case that the underlying set system corresponding to the set of frequent patterns
is an independence system or at least closed under intersection. Strongly acces-
sible set systems, however, are not necessarily independence systems or closed
under intersection. We have presented graph mining applications motivated by
track mining, where the underlying set systems are strongly accessible, but not
closed under intersection.

Although the applications of this paper have resorted to strongly accessi-
ble set systems, we note that the algorithm works also for set systems satisfying
weaker requirements on accessibility. An interesting question is whether the pos-
itive result holds for accessible set systems as well.
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