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Abstract

Monte-Carlo Tree Search (MCTS) techniques are state-of-the-art for online plan-
ning in Partially Observable Markov Decision Problems (POMDP). The recently
proposed Factored-Value Multiagent POMCP (FV-MPOMCP) algorithm improves
on the scalability of MCTS in Multiagent POMDP (MPOMDP) environments
by estimating several Q-values, each considering a subset of the actions and ob-
servations, and combining these Q-values via Variable Elimination. However, in
MPOMDP, only the cumulated reward for each step is known, with no insight
on the reward structure. In this work, we additionally exploit the structure of
reward that decomposes into local reward terms. The proposed Graphical Partially
Observable Monte-Carlo Planning (GPOMCP) algorithm combines Monte-Carlo
Tree Search with a variation of the message passing algorithm (Max-Sum) known
from Graphical Probabilistic Models and Distributed Constraint Optimization.

1 Introduction

Partially Observable Markov Decision Processes (POMDP, [10]) are models for sequential decision
making under uncertainty where the latent world state can only be estimated from observations. The
Partially Observable Monte-Carlo Planning (POMCP, [20]) algorithm is based on Monte-Carlo Tree
Search (MCTS, [16]) and currently state-of-the-art for online POMDP planning. However, POMCP
still suffers from the curse of dimensionality, especially prevalent in large multiagent settings, as
the cardinality of the action- and observation-space grows exponentially in the number of agents.
The recently proposed FV-MPOMCP algorithm [3] adapts POMCP for the Multiagent POMDP
(MPOMDP, [15]) setting. Instead of estimating the Q-value for the joint history and actions, so-called
experts each estimate a separate Q-value with a limited scope for observations and actions. Actions
are selected by combining the experts Q-values. The so-called locality of interaction between agents
[18] is usually associated with a reward function that decomposes into local reward terms, each
depending only on a subset of the state and action variables. But in MPOMDP, only the cumulated
reward of each step becomes known. This makes it difficult to infer the causal effect of actions, as the
resulting local reward is merged with the reward “noise” generated by actions that are out of scope
for the local Q-value that is to be estimated.

2 Background

2.1 POMDP and Distributed POMDP

POMDP can be represented as tuples (S, A, O, R, IP’S,IP’O,IP%,W, where the set S contains all

possible world states and the initial state s° is drawn from the distribution ]P’g«. In every step, an action
a € Ais chosen, leading to a new state s’ according to the state transition distribution Pg(s’| s, a).
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The latent world state can only be observed indirectly. Observations o € O are made according to
the distribution Po (0| s’, a). An immediate reward r = R (s, a) is generated from the initial state in
the current step and the chosen action. Future rewards may be discounted with a factor v € [0, 1).
Otherwise, a finite number of steps is considered. A policy 7 : Hfi O(A X (9) — A maps the history
of actions and observations after ¢ episodes h! = (a®,0°,...,a’~1,0'~1) to the next action. The
expected value of a policy is V™ (h) = E[R(s,a) + ’yV“(hao) | h,a = w(h)] where hao denotes
the concatenation of the selected action and resulting observation to the history h. The value of the
optimal policy is given by Bellman’s equation V*(h) = max, E [R(s, a) + vV *(hao) | h, a]. The
Q-value of action a after history h is Q(h,a) = E[R(s,a) + vV *(hao) | h, a].

A general distributed POMDP is represented as (I, {S, }, {Aa}, {Ou}, {R,}, Ps, Po, PY, 7). The
state space factors into state variables o € S so that S = X,S,. Similarly, the actions and
observations factor into variables « € A and w € O. The reward decomposes into reward terms
p € R with the domain R, : S, x A, = Rfor S, C S, A4, C A. The global reward function is
vector-valued R : S x A — RIZ| with the reward terms as components. The sum of reward terms
R’ C Ris written as Rr/(s,a) = }_ c g R(s,a),. The distributions Pg, Po and PY are defined
over the joint variables similarly to standard POMDP. Furthermore, let © € I denote the decision-
making agents. Every agent has unique control over a (pairwise disjoint) set of action variables
A; C A. Agents each make observations O; C O and are notified about the reward generated in
R; C R. Itis assumed that agents can exchange messages over noiseless communication channels
with infinite bandwith to coordinate their actions. Agents also have perfect memory to store historical
observations, received messages, policies, and so on. Based on this very permissive definition,
additional limiting assumptions yield the different distributed POMDP models from the literature
[15, 17, 18] with their respective complexity classes for computing policies with maximizum expected
joint reward [6, 2].

2.2 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS, [16]) is a technique for sequential decision making under uncer-
tainty. During the search phase, MCTS uses trial rollouts to iteratively improve an estimation of the

Q-value @. The current estimation is used to guide the actions selected during later rollouts. Here, a
tradeoff needs to be made between exploration, searching in scenario branches from which only few
samples have been taken so far, and exploitation, refining the strategy in a scenario branch with a
good expected performance. The Upper-Confidence Bound (UCB) principle, originally developed
for bandit-games [4], has become a popular choice to resolve the trade-off and its application to
MCTS is known as UCT (Upper ! Conﬁdence bounds applied to Trees) in the literature. In MDP,

actions are selected as arg max, Q sa) c\/ log(n[s] + 1)/n[sa]. The counter n returns how often
a scenario tree branch has been sampled in the past. The exploration/exploitation trade-off is tuned
by the weighting parameter c. Lower c lead to an exploration strategy that takes only few samples
from less promising branches. But all branches are sampled eventually, once they have been visited
comparatively less often. UCT has led to huge performance increases in game-playing Als, in
particular for games with large branching factors, such as Go [8].

2.3 (Factored-Value) Partially Observable Monte-Carlo Planning

Partially Observable Monte-Carlo Planning (POMCP) is the application of UCT to POMDP settings

[20]. The Q-value estimate )(ha) is simply the average of the total rewards received in the scenario
tree branch ha, where rewards in later steps may be discounted. POMCP decreased the search time
compared to existing POMDP planning algorithms over several orders of magnitude on the relevant
benchmarks. Still, in multiagent settings, the cardinality of the joint actions and observations grows
exponentially in the number of agents. So using communication to centrally solve the planning
problem based on all actions and observations suffers from the curse of dimensionality. The Factored-
Value Multiagent POMCP algorithm (FV-MPOMCEP, [3]) improves the scalability of POMCP in
multiagent settings. The underlying model is the Multiagent POMDP (MPOMDP, [19]), a variant of
distributed POMDP where agents can communicate and the total reward (sum of reward terms) is
made available to the agents in every step.



Definition 1. Given a subset of actions and observations B C A, P C O, the marginal Q-value
for the partial action assignment ap € Ag after the partial history hgp € [[,°, (Ap x Op)t
s Q(th, CLB) = E [maxaeA:aB Q(h, a) | th]

The set {a € A : ap} contains the joint actions a agreeing with the partial assignment a g for
actions a € B. The definition assumes that, given a partial assignment a s, the full history is
available for choosing the remaining actions and the optimal joint policy is used for the remaining
steps. Note that two kinds of marginalization are performed: Computing the expectation over
joint histories compatible with the partial history and max-marginalization over the unassigned
action variables.

FV-MPOMCEP clusters agents into agents e C [ so that e € E. It is assumed that the true Q-value
decomposes to Q(h,a) = ) .5 Qc(h,a.) where a, is the set of actions controlled by the agents
that partake in expert e. This locality of interaction between agents [18] is then used to reduce the
complexity of learning an estimation marginal Q-values for the global reward as @e. The authors
propose two versions of FV-MPOMCP. In Factored-Statistics FV-MPOMCRP, the experts estimate
Q.(h, a.). In Factored-Tree FV-MPOMCEP, the experts estimate Q. (h,, a.) with a reduced history
based on the visibility of actions and observations of the agents in e. In both versions, actions are
selected as arg max,c 4 Y .cp Qo(-,a0) + cy/log(n[-] +1)/n[- a.] (the dot represents either the
global or expert history) with the additional Upper Confidence Bound bias for exploration. Variable
Elimination [9] is used to compute the best joint actions. The Q-value estimations are updated
similarly to standard POMCP based on the visibility of actions and observations of the experts.

In settings with many agents, FV-MPOMCP shows drastic improvements in the speed of convergence
over POMCEP. This makes intuitive sense, as the large branching factor of the scenario tree forces
POMCTP to nearly always encounter a previously unvisited scenario branch. The Factored-Tree
version of FV-MPOMCEP scales to even larger scenarios as it avoids the curse of history. Factored-
Tree FV-MPOMCP has however converged to lower-quality solutions than its Factored-Statistics
counterpart on some benchmarks.

2.4 Advantage of knowing the reward structure

For MDP, it was shown that the sample complexity for learning the Q-value grows linearly in the
number of local reward terms |R| and in log | R| when the local rewards can be considered separately
[5]. The global reward can be seen as a noisy “noisy measurement” for the local reward causally
influenced by the individual actions. Fittingly, [7] uses a Kalman Filter to estimate the reward
generated by local actions from the global reward. They experimentally show an improvement in
the sample efficiency for Reinforcement Learning. Note that this approach is different from reward
shaping in Reinforcement Learning [14], where a reward that is achieved only after a number of steps
is decomposed into “progress indicators” to guide search.

3 Graphical Partially Observable Monte-Carlo Planning

Consider now a distributed POMDP model where observations and rewards may be visible to several
agents, so the O; and R; are not necessarily disjoint. Importantly, the agents receive a vector of
the rewards generated by R, instead of a single scalar with the sum of rewards. Furthermore, we
assume that actions may be visible to several agents, so the A; may overlap as well. This visibility
could be represented by an additional observation variable with no uncertainty. But we opted for a
lighter notation for reasons that will become apparent later on. Agents can communicate at runtime,
so the sharing of actions, observations and rewards can be enforced. We denote actions that both
agents 7 and j observe as A;; = A; N A;. Similarly, jointly observed rewards are R;; = R; N R;.
The neighborhood of 7 is defined as the agents with whom ¢ shares at least one observed action
N@) ={jeI\i:A;; # o} Agentscoordinate actions with their neighbors. It is not relevant
which agent is actually executing an action once its value has been decided.



lzeﬁnition 2. Given a subset (1f the reward terms R’ C R, the reduced Q-value for R’ is
Qr (h,a) =E [Rp (s, a) + vQr (hao, arg max,¢ 4 Q(hao,b)) | h|, the reward generated by
R’ assuming optimal action selection with regards to all reward terms R.

Even though only a subset of the reward terms is considered, actions are still chosen according
to the global Q-value. It is easy to show that Q(h,a) = > <y Qw (h, a) for a decomposition
of the reward terms into disjoint sets R = Jy, .y W.

Assume now that a policy 7 can be conditioned by pre-assigning partial actions a’ € A 4,. The
resulting policy is denoted as 7, .

Definition 3. For a fixed joint policy m and observed history h; of agent i, the marginal reduced
value for i is V" (h;) = E [R;i(s,a) + vV;" (hia;0;) |a = w(h), h;]. The marginal reduced
Q-value for a partial assignment a; is @f(hi, a;) =E [Ri(s, a) +maxg e, 'y@f(hiaioi, al) |
a = mq,(h), hi.

Graphical Partially Observable Monte-Carlo Planning (GPOMCP) estimates the ; for the agents
based on trial rollouts. However, no fixed policy 7 exists (see Definition 3) since all agents update
their policies after every rollout. The joint policy for action selection is recovered from the local
estimations using a variation of the message passing algorithm based on the Generalized Distributive
Law [1] for the Max-Plus semiring. Differently from inference in probabilistic models, the messages
represent reduced marginal Q-values instead of probability distributions. Besides [3], to the best of
our knowledge, previous work on planning and reinforcement learning in distributed POMDP has
considered either message-passing [24, 23] or action selection according to the Upper Confidence
Bound principle [11, 21], but not both.

Assume now that the agent neighborhood relations form a tree H = (I, E') with agents as vertices
and neighborhood relations as edges £ = {(i,j) € I? : j € N(i)} and that agents only share
access to a reward variable if they are neighbors j ¢ N (i) = R;; = @. These assumptions will
be relaxed later on. On a tree, there exists an ordering of the agents o : I — {1,...,|I|}, where
every agent has at most one neighbor with a lower index number. The ordering is used to construct a
forward/backward message passing schedule I'. An agent ¢ can only send a message to a neighbor
j € N (i) when it has received a messages from all other neighbors N (4) \ j. This schedule starts at
the leaf nodes and propagates throughout the tree until a message has been sent over every (directed)
edge (i, 7). If the scenario induces a tree-structure of the agents, the CONSTRUCTTREESCHEDULE
procedure returns a valid forward/backward schedule. Other possible schedules are discussed after
introducing the main algorithm.

The procedure GPOMCP takes the initial joint history h° as input. Similar to POMCP, GPOMCP
performs a serious of rollouts to iteratively improve the Q-value estimations. For this GPOMCP
needs access to a generative model that lets it draw states s according to a belief distribution for
the history B(h). The belief for the empty history & is B(@) = PY. In POMCP, the number of
considered steps 7 is taken such that 47 < ¢ for convergence to an e-solution. While we have no
proof of convergence for GPOMCRP, taking a similar history length is advised.

The UPDATE procedure takes the history of a complete rollout (including rewards) as input. First,
we increase a counter how often a certain history hf was visited by each agent . Furthermore, the
generated reward is abbreviated as r = R (s, a). The sum of rewards visible to agent i is r; and the
sum of rewards visible to both agents 7 and j is r;;. The reward from the current and later steps is
aggregated in p;. This is in turn aggregated in (); as the average reward that has been observed for
choosing a! after an observed prior history hf. Similar statistics are kept for reward observed by both
i and j.

Procedure SELECTACTION takes as input the current history and the exploration weight c. The latter
is set to zero for the final action selection. First, the agents update the message sent to their neighbors
according to the schedule I'. The message m;; sent from agent ¢ to j can be seen as a tabular
representation of a function m;; : A;; — R. On a tree-structure H, m,; represents the expected
reward in the current and future steps within the sub-tree behind the edge (¢, j) conditioned on the
jointly visible action a;;. To compute the messages in lines 5 and 6, the agents first select the best



Algorithm 1 The GPOMCP algorithm

1: procedure GPOMCP(R®, ¢) 1: procedure SELECTACTION(h!, c)
2 I’ + CONSTRUCTSCHEDULE 2 foric 1,5 € N(i)do
3 fori e Ido 3: mij[-]+ 0
;" QZ[}EO» nl[v] %]8 ) 4: for (i,j)GF, [¢27] G.Aij do
.Qin - (.)7 je NG 5: b; + arg max [Qi[hﬁdi} +> mji[dij}:|
6: while enouogh time do d;€EA;:a:5 JEN(4)
T: h«h 6: mizlais] « Qilhtbi] — Qis[hibi] + Y miyi[bir]
8 s~ B(h°) Y T el
9 fort € {1,...,T}do 7. a+— ol A o
10. a < SELECTACTION(h, (/;) 3: fori c I do
1L s'~Ps(s,a), o~Po(s',a), if 3d; € {A; : ax},n[hld;] = 0 then
r ¢ R(s,a), h ¢ haor 10: ai ~ U({d; € {A; : ax},nlhid;] = 0})
lzf 5 Sh 11: else
13: UPDATE(h) 0 12: a; < argmax [Qz[hidz} + > myi[dij]
14: return SELECTACTION(h’, 0) di€Aia FEN(3)
log(n[h!]+1)
tec nlhid;] ]
13: A +— A UA,;
14: return a
1: procedure CONSTRUCTTREESCHEDULE 1: procedure UpDATE(hT)
2 '@ 2: pi 0, Viel
3 foric {c7'(1),...,0 *(|1))} 33 py+ 0, Viel, jeN()
4 for j € N(@) : 0(j) > o(i) 4: forte {T'—1,...,0} do
5 '« TU(ij) S fori € I do
t t
6 fori € {o7'(|1]),...,07 (1)} 6: nilh;] <= nifh;] + 1
7 for j € N(i) : 0(j) < o(i) 7: nalhiai] « ni[hiai] + 1
8 I'«TU(®,37) 8: pi < Ypi + T o
9 return I’ 9: Qi[hiai] « Qilhial] + %r[a?]%]
10: for j € N(i) do
11 pij < Vpij +1;
0. htat
12: Quslhial] & Quslhiaf] + P4 gl

n[h,fafi]

estimated action given the partial assignment a;;. For this, expected reward that is not directly visible
to 7 is considered in the form of the received messages. But for computing the message entry, the
message coming from j is ignored and reward that is visible to both ¢ and j is removed. This ensures
that every reward variable is considered only once in the action selection after the message passing
schedule has finished. Action selection is performed in lines 7 to 13. The joint action assignment is
initialized with an empty sentinel value for every component. Then, the agents select the best action
assignment within their scope, in accordance to the previously fixed partial assignment a 4. with an
additional Upper Confidence Bound bias for exploration. Actions that were not previously taken have
precedence and are sampled from a uniform distribution.

Proposition 1. If the agent neighborhoods form a tree-structure H, then FV-MPOMCP can be
recovered by adding the Upper Confidence Bound bias term c\/log(n[h;] + 1)/n[h;d;] also to the
message computation in both lines 5 and 6 of SELECTACTION and assigning a unique reward value
to every agent that takes on the globally generated reward in every step.

Proof. First, the agent definition in GPOMCP corresponds to the experts in FV-MPOMCP, where the
agents in FV-MPOMCP are non-overlapping in terms of the visible actions. Second, by comparing the
update mechanisms, it is easy to see that Q;[hta;] in GPOMCP equals Q. (ht, a.) in FVv-MPOMCP
for the same observed histories. Third, even though all agents in GPOMCP receive the global reward,
every agent accesses a unique reward variable. So there is no overlap in the visible rewards and
the term —@Q;;[h}bi] for reducing overcounting is always zero. Fourth, message passing on a tree-
structure yields the same assignments as Variable Elimination [12]. Including the Upper Confidence
Bound bias in the messages, thus recovers the result of Variable Elimination over the biased Q-value
estimations of the experts. O



Proposition 1 holds for both the Factored-Statistics and Factored-Tree versions of FV-MPOMCP. Their
difference lies only in the observations visible to each agent (agents have access to all observations
in the Factored-Statistics version). The assumption of tree-structured neighborhood relations can
be relaxed. In that case, the CONSTRUCTTREESCHEDULE is replaced and, for example, returns a
randomized schedule where several messages are passed over each directed edge. This approach is
known as Loopy Belief Propagation and gives good results in practice although convergence is not
guaranteed [22]. Message-passing schemes with guaranteed convergence on loopy graphs exist [13]
but are not considered here.

4 Benchmark

For the benchmark, we adopt the Firefighting domain in-

troduced in [18]. The model dynamics are identical to the Scenario with 4 Agents
original description and we omit a full reproduction due
to lack of space. For FV-MPOMCP, we assign an expert -0 i*é i

—15 §

—&— GPOMCP
FT-FV-MPOMCP
—x— POMCP

to every firefighter (agent). Experts see the actions and
observations of the (left and right) neighbors and receive

Average reward

the global reward after every step. So we consider the _25
Factored-Tree version of FV-MPOMCP where experts es- 0t 10? w0
timate the Q-value for a partial history h.. For GPOMCP, Trial rollouts before each action

each firefighter is represented by an agent that receives the Scenario with 9 Agents

actions and observations of his left and right neighbors. -15 L/@ - e A
Furthermore, the agents receive the reward generated at —20 B

the houses they can potentially visit. For POMCP, a cen- =25 ¢

tral controller has access to all actions and observations

and the cumulative global reward. We benchmarked two 10! 10? 10°
scenarios with 5 houses (4 firefighters) and 10 houses (9 Trial rollouts before each action
firefighters) respectively. Each scenario had a length of 10

undiscounted steps. Figure 1 shows the expected perfor- Figure 1: Benchmark results for the fire-
mance over 10 steps for a certain number of trial rollouts fighting scenario averaged over 100 sim-
before each action selection. Each measurement was re- ulations.

peated 100 times with the initial state sample randomly

drawn. All algorithms ran with an exploration weight factor of ¢ = 50 for the scenario with 5 houses
and ¢ = 100 for the scenario with 10 houses.

The benchmark results show good performance of GPOMCP compared to POMCP and FV-MPOMCP
on the larger scenario with 9 agents when information from only a few rollouts is available. On the
small scenario with 4 agents, the differences between the algorithms become smaller than the standard
error for more than 32 rollouts are made before each action selection. Our C++ implementation
of GPOMCEP is based on the original POMCP code by Silver and Veness and can be accessed at
https://github.com/jpfr/gpomcp.

Average reward
|

w
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5 Summary

In this contribution, we introduced the Graphical Partially Observable Monte-Carlo Planning
(GPOMCP) algorithm for planning in distributed POMDP. GPOMCP combines Monte-Carlo Tree
Search with a message passing scheme to combine local estimations of so-called marginal reduced
Q-values. The advantage over previous work (notably FV-MPOMCP) is that the reward structure is
considered in the estimation. This gives better insight into the causal relations between actions and
the different (local) reward terms. On a commonly used benchmark problem, GPOMCP was shown
to compare favorably to previous work.

In their current form, FV-MPOMCP and GPOMCTP still require a central component to run the trial
rollout simulations. To enable truly distributed decision making, future work might extend GPOMCP
for independent trial rollout simulations using a generative model of limited scope for each agent. A
characterization of the convergence properties of GPOMCP and the sample complexity for estimating
the reduced marginal Q-values is highly desirable and subject of ongoing work.
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