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Abstract: Affect monitoring is being discussed as a novel strategy to make adaptive systems more
user-oriented. Basic knowledge about oscillatory processes and functional connectivity underlying
affect during naturalistic human—-computer interactions (HCI) is, however, scarce. This study assessed
local oscillatory power entrainment and distributed functional connectivity in a close-to-naturalistic
HCl-paradigm. Sixteen participants interacted with a simulated assistance system which deliberately
evoked positive (supporting goal-achievement) and negative (impeding goal-achievement) affective
reactions. Electroencephalography (EEG) was used to examine the reactivity of the cortical system
during the interaction by studying both event-related (de-)synchronization (ERD/ERS) and event-
related functional coupling of cortical networks towards system-initiated assistance. Significantly
higher «-band and 3-band ERD in centro-parietal and parieto-occipital regions and 3-band ERD in
bi-lateral fronto-central regions were observed during impeding system behavior. Supportive system
behavior activated significantly higher y-band ERS in bi-hemispheric parietal-occipital regions. This
was accompanied by functional coupling of remote $-band and y-band activity in the medial frontal,
left fronto-central and parietal regions, respectively. Our findings identify oscillatory signatures of
positive and negative affective processes as reactions to system-initiated assistance. The findings
contribute to the development of EEG-based neuroadaptive assistance loops by suggesting a non-
obtrusive method for monitoring affect in HCL

Keywords: affective reactions; human-computer interaction; adaptive assistance system; elec-
troencephalography; event-related desynchronization; event-related synchronization; functional
connectivity

1. Introduction

In recent years, the technical capabilities and the widespread use of interactive com-
puter systems have increased enormously. This has led to rising interest in the question of
how we can improve human—computer interaction (HCI). While early HCI research has
focused mainly on perceptual, cognitive and physical aspects, more and more attention
is now directed towards affective processes related to the interaction between human
and computer (e.g., [1]). In order to investigate affective user reactions during the HCI,
subjective measures such as questionnaires and interviews are commonly used [2]. With
the rise of more sophisticated mobile sensor technologies, HCI research started to explore
the potential of using neurophysiological signals to capture affective user processes dur-
ing their interaction with computers [3-9]. Neurophysiological measurements enable the
continuous monitoring of affective processes without disturbing the user, concurrently
avoiding possible memory and introspective biases. This knowledge can help to design
interactive computer systems in a more user-oriented manner. Moreover, continuous
neurophysiological measures of affect can enable neuroadaptive system loops to adapt
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the system’s behavior and assistance in real-time according to the current affective user
state [10-12]. However, before such systems can be applied outside research labs and
beyond medical scenarios, it is necessary to gain a reliable understanding of the brain
processes underlying affective reactions in HCI.

While considerable progress has been made in understanding the principles of brain
functions and organization that underlie affective processing [13,14], there is currently a
gap between research in the fields of affective neuroscience and HCIL. Most studies primarily
use well-established and standardized stimulus material such as pictures, sounds or movies
to investigate the brain mechanisms of affect [15-19]. However, those materials may lack
ecological validity [20] to investigate affective user reactions in real-world HCI applications.
This creates a need for more naturalistic and complex experimental environments as well
as tasks with active integration of the participants. Moreover, it can be assumed that affect
reactions during HCI will be significantly lower than the reactions to standardized stimuli
that has been specifically selected to generate strong emotional reactions such as pictures of
an injured person after a car crash or cute puppies [18]. These standardized stimuli cause
immediate affective reactions in terms of approach or withdrawal [21,22].

There have been only a few attempts to capture the underlying neurophysiological
signatures of affect during HCI. These studies were based on the idea that a technical system
changes its visual appearance or behavior to induce certain affective states [5-7,23-25].
While this generally appears to be a valid approach to assess affect during HCI, it should be
noted that these studies have primarily focused on negative affect. Moreover, some of the
studies used gaming interaction scenarios [6,7,24,26]. Brain processes underlying positive
affect during HCI and the extent to which positive and negative affect differs from each
other have largely been neglected. Therefore, it is important to identify neurophysiological
signatures of positive and negative affective processes during more naturalistic interactions.
Furthermore, this might help to exploit the potential of real-time affect monitoring for
neuroadaptive applications.

Functional magnetic resonance imaging (fMRI) has been used as a preferred mea-
surement technique to unravel subcortical and cortical structures involved in affect pro-
cessing [27-29]. However, due to its immobility and limited temporal resolution, this
technique is not well suited for applied research in the context of HCI. Several recent
studies highlighted the great potential of the electroencephalography (EEG) for capturing
and recognizing affective processes using computational models and various machine
learning algorithms [8,30-34]. EEG recordings provide insights in brain processes with a
fine temporal scale up to milliseconds range. Furthermore, it is a portable and non-invasive
technique allowing participants to maintain a rather comfortable position. EEG, therefore,
offers a great ecological validity for research in HCI. Numerous studies have revealed the
precise timing of affect with event-related potentials (ERPs) indexing different stages of
affective stimulus processing and perception [35-39]. Beside ERP-analysis, EEG provides
the possibility to study frequency-specific measures of oscillatory power ranging from
lower frequencies such as the 6-band (4-7 Hz) up to higher frequencies in the y-band
(>35 Hz). Moreover, it allows the examination of measures of the inter-relation between
certain cortical regions based on frequency-specific functional connectivity networks. Both
power and functional connectivity measures have been related to affect highlighting cor-
relations with valence, arousal and appraisal states [40-54]. However, to our knowledge,
such correlates of affect have not been systematically investigated in the context of HCI
and in more-naturalistic experimental environments.

The present study aims at promoting the development of EEG-based neuroadaptive
systems by providing a comprehensive picture of the underlying oscillatory EEG signa-
tures of positive and negative affect. The experimental task design and cover story (see
Section 2.2 for more details) mirrored the one described by [55]. The chosen paradigm—
AFFINDU—is especially suited for investigating correlates of affect during HCI because
it (a) provides a non-game based, close to realistic HCI scenario and (b) can be used to
induce affective states of different valence (positive and negative) [55]. The design of the
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adaptive behavior is based on the appraisal and the componential theory of affect [56-58].
Those theories state that an event that supports goal achievement is perceived as positive
while an event that impedes goal achievement is experienced as negative. In a previous
study [55], we evaluated to what extent the interaction behavior during navigation tasks are
subjectively perceived as supportive and impeding. In addition, we investigated whether
the designed events successfully induced the intended affective states in the participants.
Furthermore, we were interested in the overall affective experience during the interaction
with AFFINDU. Our results showed that AFFINDU is a valid experimental paradigm to
induce positive and negative levels of affect. In this current study, we want to extend our
previous research by analyzing the oscillatory EEG signatures of affective processes in a
larger cohort of participants. We focus our investigations on the frequency power and
functional connectivity responses to impeding and supportive behavior of the simulated
adaptive system behavior (AFFINDU, described in the methods section) during a navi-
gation task. Similarly to the conceptual framework of cognitive probing [59], AFFINDU
allows us to capture the participant’s affective processes towards the adaptive system
behavior during a navigation task. To our best knowledge, this study is the first attempt
to investigate the EEG oscillatory underpinnings of affective processes during a generic
navigation task. Hence, our study is designed as an exploratory study. We expect that the
reactivity of the participants’ brains towards the system behavior would be reflected in
different modulations of the frequency power and functional connectivity that showed
correlations with valence, arousal and appraisal in previous studies [34,60,61].

2. Materials and Methods
2.1. Participants

Sixteen right-handed healthy volunteers (Mg, = 26.38, SD = 3.22 years, seven female)
were recruited for the current study. Handedness was assessed by the Edinburgh Handed-
ness Inventory. Participants gave their written informed consent before participation and
received monetary compensation. The study protocol was approved by the local ethics
committee of the Medical Faculty of the University of Tuebingen, Germany (1922015BO2).

2.2. General Study Design and Cover Story

The experimental paradigm AFFINDU was implemented as a grid-based menu with
4 x 4items, through which the participants navigated in a controlled step-by-step sequence.
Each item of the grid menu was labelled by a monochrome icon representing an application
such as TV guide, weather forecast or emailing. The graphical set-up was based on an
earlier study [62] and is illustrated in Figures 1 and 2.

General Study Design and Cover Story

Experimental Session

| Block (A) I | Block (B) I | Block (C) Block design

Learning phase Testing phase
Cover Story

Q)
0o \
i\

Figure 1. Schematic illustration of the experimental paradigm and cover story of AFFINDU used during the experimental
session (for details please see the material and methods section).
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Time Course of Experimental Trial Paradigm

Trial Procedure of the Interaction with AFFINDU

Interaction with Supportive System Behaviour
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Figure 2. Schematic illustration of the trial procedure. (A) Trial based procedure of the experimental session. (B,C) The two

different implemented system behaviors of AFFINDU, supportive and impeding, respectively.

We instructed the participants to navigate to a specific target item in the grid menu
as fast and straight as possible. Hence, AFFINDU engaged the participants in a simple
but still realistic HCI task. We told participants that AFFINDU reacted to their input. We
implemented three different types of system reactions to this input:

1.  Supportive adaptation: The system helps the participant to reach the target faster
by rearranging the menu layout so that the number of remaining navigation steps
is reduced. This kind of system adaptation is expected to induce a positive affective
user reaction.

2. Impeding adaptation: The system hinders the participant reaching their target by
rearranging the menu layout so that the number of remaining navigation steps is
increased. In this condition, we assume induced negative affective user reactions.

3. No adaptation: As a baseline, the system does not perform any adaptive behavior.

The adaptation behavior was realized by calculating the Manhattan distance between
the currently selected item and the target item [55]. Figure 2 illustrates examples of
supportive and impeding system behaviors. In order to increase the ecological validity
of the experiment, we provided a meaningful context and plausible explanations for the
adaptive behavior of AFFINDU. We introduced the participants to the system with a cover
story according to Figure 1. The behavior of AFFINDU was presented as a self-learning
system. The participants were told that AFFINDU could be trained to learn the participants’
individual navigation strategies in a learning phase by monitoring participants during their
navigation to several self-selected target items. In the learning phase, the participants could
navigate freely and AFFINDU did not exhibit any assistance behavior. The subsequent
testing phase then revealed how well the system actually “learned” the participant’s
navigation style. Hence, participants believed that the self-initiated adaptations were based
on their own training during the learning phase. The interaction with AFFINDU was
realized on a controlled trial-based procedure as a visually cued task design including
different task epochs (Figure 2). This allowed us to capture the participants’ affective
processes during the navigation tasks by measuring power and functional connectivity
responses in the monitoring task of the given adaptations of AFFINDU.

2.3. Experimental Design and Trial Procedure

All participants were comfortably seated upright in a chair in front of a computer
screen equipped with a standardized keyboard lying on a desk and provided with instruc-
tions for the experimental design and cover story of AFFINDU. Their basic task was to
navigate through the menu grid towards a defined target item. Participants were told that
they could move from one item to the other by using the arrow keys and confirm the target
item achievement by pressing the enter key.
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Each participant completed a seventy-five-minute experimental session (see Figure 1)
consisting of three blocks (A, B, and C). Each block consisted of a learning phase of five
minutes and a testing phase of 20 min (navigation and monitoring part). In each testing
phase, AFFINDU performed either supportive or impeding adaptations for 50% of the
performed navigation steps, while for the other 50% no adaptations were performed. We
ended up with (A) a positive block—including supportive assistance in combination with
no assistance, (B) a negative block—including impeding assistance in combination with
no assistance, and (C) a mixed block—including both supportive and impeding assistance
in combination with no assistance. The adaptations were randomly distributed across
each block. In total, participants were confronted with 30 supportive and 30 impeding
adaptations: 20 supportive adaptations in block A, 20 impeding adaptations in block B and
a mixed composition of ten supportive and ten impeding adaptations in block C. In order
to reduce the impact of ordering, the blocks were randomized across participants. The
block design enabled us to gain insights into the oscillatory EEG signatures of affect when
participants are exposed to the system behavior for a longer period of time. Furthermore,
it allowed us to evaluate the participants’ subjective affective experience of the interaction
with AFFINDU after each block by using the Self-Assessment Manikin (SAM) in terms of
valence, arousal and dominance [63].

Each trial was initiated by an instructional cue “navigate” that lasted for 2 s. This
was followed by the navigation epoch requiring the participant to perform the navigation.
The navigation epoch ended when pressing the enter button. It was followed by a 10 s
resting epoch during which the menu disappeared and a black screen with a white fixation
cross was displayed. Subsequently, the second instructional cue “observe” started lasting
for another 2 s. It indicated that no keyboard input was required by the participant in the
following replay-adaptation epoch. The replay-adaptation epoch lasted 5 s and consisted
of two parts (Figure 2B,C): Within the first part, the move in the navigation path according
to the participant’s keyboard input was replayed (replay navigation step). In the second
part, the simulated assistance behavior was displayed, i.e., a supportive, impeding or no
adaptation (system adaptation).

The two-epoch-design allowed us to capture the participants” affective responses to
adaptive rearrangements of the menu’s grid during the monitoring part of the system
adaption epoch by measuring power and functional connectivity responses with EEG.
The long-lasting resting epochs of 10 s were included due to other (neuro-) physiological
recordings, i.e., functional near-infrared spectroscopy (fNIRS) that were applied in addition
to EEG during the experiment but were not included in the present work. The complete
experimental trial procedure and system behavior was presented in a web-based appli-
cation in Google Chrome and programmed in JavaScript using the jQuery and Bootstrap
libraries [55]. At the end of the experimental session, participants were debriefed, and all
details of the procedure and cover story were revealed to them.

2.4. Measurement Set-Up and Data Recording

Figure 3 illustrates the locations of the EEG channels and fNIRS optodes which were
integrated in a standard EEG cap according to the extended international 10-05 system.
Scalp EEG potentials were recorded (BrainAmp, Brain Products GmbH, Munich, Germany)
from 32 positions with Ag/AgCl electrodes (actiCAP, Brain Products GmbH, Germany).
The left mastoid was used as common reference and EEG was grounded to Cz. All
impedances were kept below 20 k() at the onset of each session. EEG data was digitized at
1 kHz, high-pass filtered with a time constant of 10 sec and stored for off-line data analysis
using the »BrainVision Recorder« Software (Brain Products, Munich, Germany). All EEG
data analyses were performed with custom written or adapted scripts in MATLAB®.
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EEG electrode
NIRS source
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Figure 3. Two-dimensional (2-D) layout of the EEG electrodes and fNIRS optodes. Locations of the
32 EEG electrodes (orange); EEG ground (black) and reference position (blue), fNIRS sources (red),
fNIRS detectors (pink).

2.5. Data Analysis of Subjective Affective Experience

Repeated-measures ANOVAs (rmANOVA) were carried out to analyze participants’
subjective affective evaluation of the adaptive system behavior in the three testing phase
blocks. The three dimensions of the SAM (a) valence, (b) arousal, and (c) dominance were
analyzed. The analysis included testing phase block (A—supportive system behavior,
B—impeding system behavior, C—mixed system behavior) as a within-subject factor and
was performed using SPSS (V20 IBM).

2.6. EEG Data Pre-Processing

For the further data analysis, the current study takes into account the EEG signals that
were recorded during the testing phase of the three blocks.

In the first pre-processing step, all trials of the supportive and impeding system be-
havior from the three blocks were grouped together. Next, the EEG signals were detrended,
zero-padded and re-referenced to mathematically linked mastoids [64]. All EEG signals
were subsequently filtered using a band-pass filter between 0.5 to 48 Hz to calculate the
event-related spectral perturbation (ERSP) and functional connectivity (FC) measures. The
filtering procedure was performed with a first order zero-phase lag finite impulse response
(FIR) filter.

For the analysis of ERSP and FC, the continuous EEG signals were split into stimulus-
locked segments (replay-adaptation phase) of 6000 ms. Each segment consisted of (a)
2000 ms rest phase in which the fixation cross was presented ranging from —4000 to
—2000 ms before stimulus-onset; (b) 2000 ms presenting the instructional cue »observe«
ranging from —2000 to 0 ms before stimulus-onset, and 2000 ms of the replay-adaptation
segment ranging from ms 0 to 2000 after stimulus-onset. The replay-adaption segment com-
prised of 1000 ms replaying the navigation step and the first 1000 ms of system adaptation.
Segments were rejected when they contained a maximum deviation above 200 1V in any of
the frontal EEG channels (AFp1, AFp2, AFF5h and AFF6h). We performed an independent
component analysis (ICA) using the logistic infomax ICA algorithm as implemented in the
EEGlab toolbox [65] on each un-rejected segments, and removed further cardiac, ocular
movement and muscular artifacts. This was done by careful visual inspection of the topog-
raphy, times course and power spectral intensity of the ICA components (mean £ SD of
rejected components: 3.18 & 0.91) [66,67].
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2.7. Estimation of Event-Related Spectral Pertubation

To study regional oscillatory neuronal signatures, an event-related spectral pertur-
bation (ERSP) time-frequency map, as implemented in the EEGLab toolbox [65] was
calculated. This map was estimated between 1 and 45 Hz with a frequency resolution of
0.48 Hz across all time points and a time resolution of 33.33 ms for each channel, separately.
For each participant, the ERSP was separately calculated trial-wise for all time points
of the 6000 ms segments and averaged across trials of supportive and impeding system
behavior. ERSP values have been normalized with respect to the rest epoch that precedes
the instruction epoch »observe« and visualized across frequency between 1 to 45 Hz, and
time with —4000 ms to —2000 ms comprising the rest phase, —2000 to 0 ms the instructional
cue »observe, 0 to 1000 ms the replay, and from 1000 to 2000 ms the system adaptation
(see also Figure 4).

frontal parieto-occipital
N N N
= ) =
. > > -
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System Behaviour 2 z z
g g g Ls
' 'S S
]
-4000 -2000 0 2000 -4000 -2000 0 2000 -2000 0
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Figure 4. Grand-averaged time-frequency maps of the event-related spectral perturbations (ERSPs). The grand-averaged
time-frequency of the ERSP to supportive (upper row) and impeding (lower row) system behavior averaged across different
regions of interest. Electrodes overlying frontal regions (left column): AFp1, AFp2, AFF5h, AFF6h, F1, F2, F7, F8; motor
related regions (middle column): FC5, FC3, FC6, FC4, FFC3h, FFC4h, C3, C1, C4, C2, CP3 and CP4; and parieto-occipital
regions (right column): P8, P4, P7, P3, PPO2h, PPO1h, POO2, POOL1. The ordinate represents the frequency axis, while the
abscissa represents the time axis, with the rest epoch from—4000 ms to—2000 ms (first black line), the instruction epoch
»observe« from—2000 ms to 0 ms (second black line), the replay navigation step from 0 to 1000 ms, and system adaptation
from 1000 to 2000 ms. The time-frequency map is visualized on a decibel (dB) scale and normalized with respect to the rest
epoch. Colors indicate event-related synchronization (ERS, red) and event-related desynchronization (ERD, blue).

2.8. Estimation of Functional Cortical Networks

To study global oscillatory neuronal signatures, we further analyzed functional cortical
networks. For the calculation of functional connectivity (FC), we utilized the imaginary
part of the coherence function (iCOH) [68]. iCOH disregards relations at zero phase lag and
is, therefore, insensitive to volume conduction properties. Thus, it indicates the relative
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ER — CiCOHSeed,j (FOI) =

coupling of phases, i.e., the time-lag between two brain processes. Since the original iCOH
function might exhibit a spatial bias towards long-range synchronizations, we used the
corrected version of the iCOH function (ciCOH) as suggested by [69]. ciCOH shares the
same properties as the originally proposed version but includes additional features to
compensate for the preference of remote interactions. For the analysis of FC, we focused on
two temporal windows of equal size: (1) a baseline comprising the last second of the rest
phase preceding the instructional cue »observe« and (2) the time window of interest (TOI)
comprising the first second of the system adaptation phase likely to capture the immediate
affective reaction.

The estimation of the ciCOH is based on the complex coherency function. Hence,
cross-spectral densities were calculated from each valid segment (baseline and TOI) using a
Fourier transformation of the EEG time series and spectrally smoothing the data according
to a multi-tapering approach as implemented in the »Chronux« toolbox [70] (http://
chronux.org/). A window size of 1000 ms with a step size of 100 ms was used. The 1000 ms
segments were tapered using slepian functions, whereby the number of tapers applied was
defined according to the equation 2*bandwidth-1 [71] with a bandwidth of 3, resulting in
five tapers for spectral smoothing with a spectral bandwidth of of = 0.98 Hz. From the
cross-spectra, the complex coherency function between channel pairs is defined as the
normalized cross-spectrum for channels i and j (1):

Sii(f)

COH;i(f) = ——tV)
() Sii(f)S;i(f)

@

where S;;(-) is the cross-spectrum between channels i and j, and S;;(-), Sjj(-) represents the
auto-spectra for channels i and j, respectively. From the complex coherency function the
ciCOH is defined [69] (2)

\/ (1 - Re(COHy)?)

where Im(-) and Re(-) denote the imaginary and real part, respectively. The ciCOH was
fisher z-transformed to fit a Gaussian distribution [68,72]. We evaluated the FC within
three pre-defined frequencies of interest (FOI): (1) a-band (8-14 Hz), (2) 3-band (15-35 Hz),
and (3) y-band (35-45 Hz).

We systematically evaluated the FC networks between the visual cortex (VIC) and
the whole brain (all other EEG channels), for each FOI, by defining POO1 and POO2
(electrodes over the VIC) as the seed electrodes. In a next step, the FC measure was
obtained by calculating the event-related ciCOH (ER-ciCOH) as the contrast between the
TOI and baseline [68,73,74] (3):

CiCOH;(f) = @

abs (CiCOHSeed,j (FOI) ) 01 abs (CiCOHSeed,j (FOI))
abs (ciCOHgeeq,j(FOI))

Baseline ( 3)
Baseline

where Seed denotes the seed electrode and abs indicates the absolute value of ciCOH. The
ER-ciCOH is a measure of functional coupling between electrode sites with positive values
indicating stronger functional connectivity during the TOI segment. While negative values
indicate stronger coupling during the baseline segment. We obtained ER-ciCOH values for
each trials of supportive and impeding system behavior, respectively, and averaged them
for each participant separately.

2.9. Statistical Analysis of Event-Related Spectral Pertubations and Functional Connectivity

To analyze the impact of adaptive system behavior in the frequency domain (i.e., ERSP
and FC), the neuronal signatures were compared between the supportive and impeding
system behavior trials.
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In order to evaluate regional oscillatory neuronal signatures in the frequency domain,
the time-frequency maps of the ERPS for the supportive and impeding trials were divided
into pre-defined FOI by calculating the mean values for the x-band (8-14 Hz), 3-band
(15-35 Hz), and y-band (3545 Hz) in four different time intervals (0-250, 250-500, 500-750,
and 750-1000 ms after the onset of the system adaptation) (see also Figures 5 and 6).

A) Supportive System Behaviour

250-500ms

500-750ms

750-1000ms

(48]

B) Impeding System Behaviour

0-250ms 250-500ms 500-750ms 750-1000ms

A

acbond l®l |

Figure 5. Grand-averaged topographical evolution of event-related spectral perturbations (ERSPs) to
supportive and impeding system behavior. The plots show the evolution of the ERSP (visualized on
decibel scale; dB) for the different frequency bands: «-band (8-14 Hz, first row), 3-band (15-35 Hz,
second row), and y-band (3545 Hz, third row) in four time intervals of the adaptation phase
(0-250 ms: first column, 250-500 ms: second column, 500-750 ms: third column, and 750-1000 ms:
fourth column) to supportive (A) and impeding system behavior (B). Colors indicate event-related
synchronization (ERS, red) and event-related desynchronization (ERD, blue).
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Supportive Vs Impeding

0-250ms 250-500ms 500-750ms 750-1000ms

[t-value]

Figure 6. Evolution of regional neuronal signatures of affective reactions in the frequency-domain. The plots represent the

evolution of t-value topography differences of event-related spectral perturbations (ERSPs) by comparing the supportive

with the impeding system behavior trials. The oscillatory neuronal signatures were estimated for three different frequency
bands: «-band (8-14 Hz, first row), 3-band (15-35 Hz, second row), and y-band (35-45 Hz, third row) in four time intervals
of the adaptation phase (0-250 ms: first column, 250-500 ms: second column, 500-750 ms: third column, and 750-1000 ms:

fourth column). Red color indicates higher modulations of ERSP (event-related desynchronization and event-related

synchronization) during the supportive as compared to the impeding system behavior trials, while blue color indicates

the opposite scenario. Electrode clusters, showing significant differences in the non-parametric randomization test, are
indicated by filled black circles.

We applied a multiple dependent samples t-test (supportive versus impeding system
behavior trials) on the level of individual electrodes for the ERSP and ER-ciCOH. For
this purpose we used a cluster-based non-parametric randomization approach which
included correction for multiple comparisons [75,76] as implemented in the »Field Trip«
toolbox [77] (http://fieldtrip.fcdonders.nl/). Here, a dependent sample t-statistic was
conducted to establish the topography of neuronal signatures in which the ERSP (for each
FOIs and time interval) and ER-ciCOH (for each FOlIs) revealed significant differences
between the supportive versus impeding system behavior conditions. Hence, f-values
exceeding the a priori threshold of p < 0.05 (uncorrected) were spatially clustered based
on neighboring electrodes. The cluster level statistics were defined as the sum of t-values
within every cluster. The correction of multiple comparisons was realized by calculating
the 95th percentile (two-tailed) of the maximum values of summed ¢-values estimated from
an empirical reference distribution. t-values exceeding this threshold were considered
as significant at p < 0.05 (corrected). The reference distribution of maximum values was
obtained by means of a permutation test (randomly permuting the ERSP and ER-ciCOH
across the supportive and impeding system behavior conditions for 1000 times).

3. Results
3.1. Subjective Affective Reations to Adaptive System Behavior

The rmANOVAs revealed the main effects of the testing phase block on the valence,
arousal and dominance dimensions. Mauchly’s test of sphericity showed that the assump-
tion of sphericity had been violated for the valence, arousal and dominance dimensions, x>
(2)=8.15,p=0.017, XZ (2) =15.63, p <£0.001, XZ (2) =11.62,00, p = 0.003, respectively. Based
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on their epsilon value the rmANOVAs for valence and arousal were corrected using the
Greenhouse—Geisser method, while for dominance the Huynh-Feldt correction was used.

The rmANOVA showed a significant main effect of the testing phase block on the
ratings of the valence dimension, F(1.37,19.10) = 10.70; p = 0.002. Post-hoc pairwise
comparisons via a two-sided t-test revealed that the testing phase block A (M = 6.07,
5D = 0.42) comprising supportive system behavior was rated significantly more positive
than the testing phase block C (M = 4.80, SD = 0.31; A vs. C, p = 0.028) and testing phase
block B (M =3.80, SD = 0.47; A vs. B, p = 0.009). No statistically significant difference was
observed between the testing phase blocks C and B. However, we found a main effect of
testing phase block on the ratings of the arousal dimension, F(1.45,49.37) = 5.95; p = 0.01.
Post-hoc pairwise comparisons indicated that arousal ratings were generally moderate
for all testing phase blocks. Still, the testing phase block B (M = 4.83, SD = 0.39) was
rated significantly higher than the testing phase block A (M = 3.49, SD = 0.33; B versus A,
p = 0.03). No statistically significant difference between testing phase blocks C and B was
found. Regarding the dominance dimension, there was a statistically significant main effect
of testing block F(1.60,54.44) = 4.45, p = 0.023, indicating a trend of a decrease in rating
scores from block A over block B to block C. However, none of the results of the post-hoc
pairwise comparisons reached significance.

3.2. Regional Frequency Domain Specific Neuronal Signatures of Affective Processes to Adaptive
System Behavior

Figure 4 represents the time-frequency map of event-related spectral perturbations
(ERSP) as the grand-average over trials and participants, separately, for supportive (Figure 4,
upper row) and impeding system behavior (Figure 4, lower row). The dynamics of ERSP
showed a difference of oscillatory power modulations of event-related desynchronization
(ERD) in the a-band and p-band, and event-related synchronization (ERS) in the y-band
among frontal regions, motor-related regions, and parieto-occipital regions between the
two system behavior conditions during the adaptation time window. The «- and 3-band
ERD tend to be stronger for the impeding system behavior (Figure 5B), while the y-band
ERS was increased after supportive system behavior (Figure 5A).

The non-parametric randomization test revealed significant changes of «- and (3-band
ERD and y-band ERS, during the respective four time-windows after the onset of system
adaptation (Figure 6).

More specifically, we observed stronger «-ERD starting at 250 ms after the onset
of system adaptation in bi-lateral parieto-occipital regions when participants observed
impeding system behavior (Figure 6, upper row). Furthermore, stronger 3-ERD starting at
250 ms after the onset was found in bi-lateral fronto-central and parieto-occipital regions
while the frontal activity decreased in the successive interval from 500-750 ms. Parieto-
occipital regions displayed significantly stronger 3-ERD even 500-750 ms after onset of the
system adaptation. However, the 3-ERD was still significantly stronger for the impeding
system behavior condition (Figure 6, middle row).

For the y-band ERS the non-parametric randomization test revealed significant differ-
ences at bilateral parieto-occipital regions compared to the baseline starting at the shortest
latencies (0-250 ms) after onset of the system adaptation. The y-band ERS was stronger
when participants observed supportive system behavior (Figure 6, lower row).

3.3. Global Frequency Domain Specific Neuronal Signatures of Affective Processes to Adaptive
System Behavior

The non-parametric randomization test revealed significant changes of ER-ciOCH for
the 3-band and y-band (Figure 7, right column), but not for the a-band.
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Figure 7. Global neuronal signatures of affective reactions in the frequency-domain. The plots represent the cortical

modulations of the functional connectivity for the 3-band (15-35 Hz, upper row), y-band (35-45 Hz, lower row). The plots

on the left and middle column show the grand-averaged event-related corrected imaginary coherence (ER-ciCOH) for

the supportive (left column) and impeding (middle column) system behavior trials. Colors indicate increased functional

coupling (red) and decreased functional coupling (blue) within the time window of interest (one second after system

adaptation) relative to baseline segment. The plots on the right column show the ¢-value topographies of the ER-ciCOH as

a contrast between supportive versus impeding system behavior trials for the f-band (upper) and y-band (lower). The
black crosses in all plots indicate the seed electrodes position (POO1 and POQO2). Electrode clusters, showing significant
differences in the non-parametric randomization test, are indicated by filled black circles. Red color indicates higher

modulations of ER-ciCOH during the supportive as compared to the impeding system behavior trials, while blue color

indicates the opposite scenario.

We observed higher functional connectivity in the 3-and y-band during the TOI
(one second after the onset of system adaptation) compared to the baseline segment for
the supportive system behavior (Figure 7, left column). For impeding system behavior,
functional connectivity increased only in the 3-band, while functional coupling was even
stronger during the baseline compared to the TOI in the y-band (Figure 7, middle column).
More specifically, we observed that the seed electrodes overlying the visual cortex showed
stronger functional connectivity with electrodes overlying the medial prefrontal regions in
the 3-band when participants observed trials with supportive system behavior (Figure 7,
right column, upper plot). For the y-band, the seed electrodes overlying the visual cortex
showed stronger functional connectivity with electrodes overlying the left fronto-central
and parietal regions in the supportive system behavior condition (Figure 7, right column,
lower plot).

4. Discussion

The current study investigated oscillatory neuronal signatures in the electroencephalog-
raphy (EEG) that represent affective processes of participants during the interaction with
an adaptive computer system. To investigate affective user reactions in an ecologically
valid and close-to-naturalistic approach, we used a validated experimental paradigm called
AFFINDU [55]. AFFINDU allows us to systematically manipulate the participants’ affective
states by adaptive system behaviors that either support or impede their goal achievement
during a navigation task. In the study presented here, the participants’ subjective ratings
showed that supportive adaptations were evaluated significantly more positive and less
arousing than impeding adaptations of the system. Our results further indicate that the
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cover story worked effectively, and the participants believed that they were interacting
with an actual adaptive system.

4.1. Difference in Regional and Global Oscillatory Neuronal Signatures

The simultaneous EEG recordings during the HCI allowed us to gain new insights into
the functional basis of affective processing during the interaction with assistive technology.
We observed regional and global oscillatory neuronal oscillatory signatures by studying
event-related spectral perturbations (x- and 3-band ERD and y-ERS) and functional con-
nectivity in the 3- and y-band during the interaction. These neuronal signatures seem
to be sensitive to positive and negative affective reactions to adaptive system behavior,
respectively (Figures 6 and 7). Measures of the oscillatory activity in circumscribed cortical
regions as well as the interrelations among certain regions based on frequency-specific neu-
ronal correlations in large-scale cortical networks have been proposed to serve as spectral
neuronal signatures underlying learning as well as most cognitive, motor and emotional
functions [78-80]. Event-related spectral perturbations in different frequencies display
certain neurophysiological properties within circumscribed cortical regions, indexing sen-
sory, higher order cognitive and motor processing during different stages of task-related
processing. These activities are commonly summarized as event-related synchroniza-
tion/desynchronization (ERD/ERS) [81]. ERD/ERS represents oscillatory power changes
before, during or after a stimulus, reflecting changes in firing properties of neuronal cell as-
semblies in cortical regions underlying EEG electrodes [81]. We observed stronger y-band
ERS in electrodes overlying parieto-occipital regions during the observation of supportive
system behavior, while impeding system behavior induced a decrease in 'y-band oscillatory
power with simultaneously higher «- and (3-band ERD. Previous studies suggest that the -
and (3-band ERD represent electrophysiological correlates of activation in cortical regions
that are involved in sensory and higher order cognitive information processing and the
production of motor behavior [82-86]. Hence, a visual input results in desynchronization
of occipital o- and -band rhythms and simultaneous increases in y-band synchronization
across parietal and occipital cortical regions. This signature indicates visual perception
and task-relevant categorization [84,87-91]. In contrast to «- and f3-band ERD, y-band
ERS represents an electrophysiological correlate of the enhancement of cooperative and
synchronized behavior in larger number of neurons underlying EEG electrodes. This
synchronization is important for a rapid active binding of sensory information in visual
regions [92].

Our results show a higher o-band ERD at electrodes overlying centro-parietal and
parieto-occipital regions during impeding system behavior (Figure 6, upper row), poten-
tially indicating a higher reactivity of the motor cortical network. Moreover, we observed
significantly higher 3-band ERDs in electrodes overlying bi-lateral fronto-central and
centro-parietal regions at the time interval starting at 250 until 750 ms after the onset of
the AFFINDU adaptation (Figure 6, middle row). These topographical activation maps of
a- and 3-ERD might represent an initial preparatory up-regulation of the motor cortical
network and mental effort for the possible initiation of a movement during the observation
of impeding system behavior [84,86,93], since the presented AFFINDU behavior is in high
conflict with the goal achievement of the participant. This interpretation is further sup-
ported by the observation of a stronger «-ERS at bilateral central regions during supportive
trials in the last time window from 750-1000 ms (Figure 5). Previous studies associate
correlates of &-ERS with an active inhibition of the motor cortex [94]. Therefore, our finding
could indicate an active inhibition of motor related movement intentions reflecting no
conflict with planned actions of the participants during supportive system behavior. Con-
versely, the impeding adaptive system behavior is not consistent with the goal-achievement
and motivation of the participants to complete the assigned navigation task. Thus, the
stronger «- and 3-band ERD during impeding trials might point to a higher readiness for
the recruitment of other cortical resources potentially associated with mental imagery, error
correction and increased alertness [81].
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For «- and -band ERD, a valence-related role has been described [95-99], showing the
general tendency of higher activity towards negative visual emotional stimuli compared to
positive and neutral ones. Previous studies demonstrated that both, pleasant and unpleas-
ant stimuli, elicit y-band increases in subcortical and cortical regions [45,49,100-103]. These
studies showed a general tendency for neuronal optimization during rapid processing of
emotionally relevant stimuli (positive and negative) compared to neutral stimuli. Increased
up-regulation of neuronal oscillatory activity has further been described for y-band activity
among distributed cortical regions, i.e., in visual, prefrontal, parietal and posterior cortices
for emotional stimuli relative to neutral stimuli [101]. In addition, increases in the y-band at
short latencies after the stimulus onset were found to reflect the conscious perception and
awareness of emotionally relevant contents, which is important for rapid discrimination of
aversive stimuli [101,104]. Taken together, our results are in line with previous findings
and provide evidence for the link between y-frequencies and bottom-up related processing
of sensory information in the visual system [105]. During the AFFINDU experiment, the
neuronal activation in y-frequencies seemed to provide information whether the presented
system adaptation was meaningful or not.

Functional processing of emotional stimuli from the environment first arrives at
thalamic nuclei, and is then processed via two main pathways consisting of (1) subcortical
and (2) cortical neuronal circuits [106,107]. Within these neuronal circuits, the information
is directed towards sensory and parietal cortices. Thus, when the information is processed
in the visual system, there might be a pronounced bottom-up processing of information
for supportive behavior as indicated by stronger oscillatory y-band ERS [105]. In addition,
the neuronal processes are re-allocated to change intrinsic strategies during impeding
system behavior as indicated in «- and p-band ERD [80,84]. Taken together the regional
oscillatory neuronal activity found in our study indicates ongoing processes of affective
regulation during the observation of the adaptive behavior by the participant. The spectral
power in the 'y-band appears to be a neuronal signature associated with the observation of
the expected system behavior. While, the «- and 3-band activity might indicate a higher
regional activity to recruit further cortical resources associated with the observation of the
impeding system behavior probably evaluated as inappropriate. Thus, our results show
that frequencies in the -, 3-band and y-band are sensitive for different stages of affective
stimulus processing during the interaction with an adaptive computer system.

Attention-related effects of neuronal synchronization in the y-band between function-
ally connected the visual, parietal and prefrontal cortices have previously been described
during visuospatial tasks [90]. The functional connectivity profiles in our study are in
accordance with recent findings showing activation of attention-related networks including
parietal and prefrontal regions recruited by the visual system when processing emotional
stimuli [46,47]. Synchronized activity between prefrontal and parietal regions in the y-band
is known to be involved in attentional and motor control processes [108]. A motivational
role has recently been reported during emotional processing associated with an activation
of the fronto-parietal network in the y-band [109]. This network activity shows a pre-
ponderance towards the left hemisphere that is important for the active self-regulation of
affective reactions [110]. Attention-related mechanisms during the processing of emotional
situations may, therefore, be driven by low-level stimulus properties, e.g., perceptually
salient exogenous stimuli. However, they could also be related to the volitional goals
and endogenous goal-directed behavior of the person himself or herself [111]. Within
this network, the role of the visual cortex may act to optimize early perception of specific
features indicating emotional relevance for the participants [104]. The role of the pari-
etal cortex is crucial in representing associations between the cognitive control circuits in
the prefrontal cortices [100] and motivation-oriented plans with the purpose of flexible
adaptation and re-allocation of neuronal process to current task demands [112]. The pre-
frontal cortex (PFC) is important for higher-order attention and cognitive control to enable
inhibition of task-irrelevant information and the prioritized processing of task-relevant
information [106,109,113,114]. The seed electrodes overlying visual regions functionally
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connected with electrodes over the midline prefrontal in the (3-band further support this
argument of the top-down related role of the PFC. This top-down related PFC activation
seems to be important for monitoring the presented system behavior and to dissociate
supportive from impeding trials.

From a methodological point of view, the present study has certain limitations regard-
ing the localization of functional coupling among distant EEG sensors and possible volume
conduction effects in the functional connectivity analysis [115-117]. The imaginary part of
the coherency function (iCOH) is a connectivity measure insensitive to volume conduction
properties ignoring relations at zero (or close to zero) time lag [69,118]. It is important to
note that the classical iCOH might exhibit a spatial bias towards long-range interactions,
thus, possibly underestimating short-range interactions at the sensor level. The corrected
form of the iCOH function (ciCOH), which is used in the present study, intends to address
this bias by maximizing the imaginary part of the cross-spectrum [69,118]. Thus, the ci-
COH function improves the spatial specificity further when connectivity is studied on the
sensor level, which potentially leads to observations of interactions otherwise hidden in
the noise [69,118]. The field spread problem of neuronal signals recorded at scalp EEG
electrodes is a serious problem when the anatomical relationship of cortical structures is
of interest. One possible way of improving the spatial specificity and further reducing
the possible volume conduction biases is the use of source reconstruction, which in turn
introduce other downsides such as the inverse problem and source leakage [115-117].
Further studies could investigate the functional connectivity profiles in combination with
inverse source modelling analysis.

4.2. Processing of Computer-Generated Feedback

The AFFINDU experimental paradigm was designed to research affective processes
towards an automated system showing either impeding or supportive behavior in an
observational navigation task. One main motivation to choose this experimental paradigm
was (a) its suitability in a closed human—computer interaction loop and (b) the interactive
nature of the task itself. The participants first provided their own navigation input and
observed the system-initiated behavior to the given input afterwards. Thus, the system-
initiated behavior could also be interpreted as a feedback to the suggested navigation
provided by the participants. Since the system-initiated behavior was either congruent or
incongruent with the participants’ goals, the system feedback could be perceived either
positively or negatively depending whether expectations were violated or not. Sheridan
and Parasuraman [119] defined five functions of a human supervisor within the interaction
with an automated system: (1) plan off-line, (2) teach the automation, (3) monitor the
automation’s execution of the plan, (4) intervene to abort or assume control as necessary,
and (5) learn from experience. Within the AFFINDU experiment, participants experienced
the first three functions during each interaction trial with the system. Since we did not
provide the possibility to execute the fourth function of intervention, participants could
not correct impeding system behavior in trials preventing goal achievement. However, we
observed regional oscillatory and global functional coupling which might hint towards the
motivation and intention to assume control due to inappropriate observed system behavior.
Recent studies investigated neuronal correlates associated with socio-emotional language
processing of a self-related feedback either provided by a human or randomly generated
by a computer [120,121]. Their results revealed that the same not only positive but also neg-
ative feedback perceived by random computer-generated feedback elicit less pronounced
event-related potentials (ERPs) compared to ERPs elicit by feedback from humans. The
authors concluded that the perception and processing of positive and negative feedback
changes quantitatively and qualitatively when received in a human—computer interaction
due to the missing social context. However, they observed larger late positive potentials in
the positive feedback condition compared to the negative feedback condition not only in
a social context but also in the interaction with a computer. This so-called self-positivity
bias could be an explanation for the high subjective valence and dominance ratings for
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the supportive system behavior in our AFFINDU experiment. Since participants provided
their intended navigation and taught (based on the cover story) the system in the learning
phase, they might attribute the goal achievement in the supportive system behavior of
AFFINDU to their initial training of the system. Due to the repeated interaction with the
system showing not only supportive but also impeding behavior, it is important to mention
that the concept of trust might play a mediating role in the perception and evaluation.
Trust is defined as the attitude that an agent or system will support to achieve a pursued
goal [122,123]. Previous research has provided evidence that trust in an agent or system is
strongly influenced by its reliability in task performance and negatively correlated with
perceived errors of the automated system [124-126]. Since we did not measure the level
of trust evaluated by the participants and its time course within the repeated interaction
comprising supportive but also impeding trials, the neurophysiological signatures might
be influenced by this mediating factor. Further studies could investigate the possible effects
of instable task performance, trust evaluation and their neurophysiological correlates.

5. Conclusions

The present results provide important new insights into regional and global oscilla-
tory EEG activity in cortical processing as it is reflected in the ERD/ERS and functional
connectivity modulations to supportive and impeding assistance during the interaction
with adaptive systems. Our results revealed significantly higher x-band and 3-band ERD
in centro-parietal (with a left hemispheric preponderance) and parieto-occipital regions
as well as early (3-band ERD at bi-hemispheric fronto-central regions during impeding
system behavior. Supportive system behavior activated significantly higher y-band ERS in
bi-hemispheric parietal-occipital regions. Furthermore, the supportive system behavior
modulated significantly higher functional coupling of remote (3-band and y-band activity
in the medial frontal and left fronto-central and parietal regions, respectively. A better
understanding of the oscillatory signatures associated with affective processes in a close-
to-naturalistic interaction with an adaptive system is a precondition for the development
of EEG-based neuroadaptive assistance loops. In a next step, we aim at exploring the
suitability of the identified oscillatory signatures as features (and in combination with
other possible EEG-based features) in various machine learning algorithms for classifying
affective states during the HCI. Furthermore, we plan to repeat this study with a higher
spatial sampling of EEG electrodes (>64 channels) to perform the connectivity analysis in
the source space in order to gain a deeper understanding of the underlying sources in the
functional connectivity. This will allow us to integrate recognized affective user states as
additional feedback into adaptive systems so that they can appropriately optimize their
behavior towards increased safety and user acceptance.
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