
DEVELOPMENT OF A FRAMEWORK BASED ON PYFMI FOR OPTIMIZATION
AND FAULT DETECTION

G. A. Böhme1 und N. Réhault1

1Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg, Germany

ABSTRACT
In this article we describe a methodology and a tool
chain that allows reusing simulation models for
optimization and fault detection during building
operation.

We illustrate the integration of simulation models, set
up in Modelica, in a Python environment using
PyFMI. Then, considering as a demonstrator a
complex energy supply system for a school campus in
Germany, we show first results for the optimization
of the ice storage management of that system. Finally,
we discuss further applications of the described setup
for offline and online fault detection, optimization
and predictive control.

INTRODUCTION
Simulation models play a crucial role in the planning
phase of complex energy supply systems for
buildings, as they allow for determining the best
options for the sizing and for the choice of control
strategies of HVAC systems. Moreover, they provide
an estimate of the expected energy consumption of
buildings. The use of simulation models is
particularly relevant to determine the control
strategies and the optimal operation parameters of
complex energy supply systems which involve
several heat and power sources, storage capacities
and varying demand schemes.

However, in their real operation, buildings tend not to
reach the expected performance estimated by detailed
simulation models (Katipamula and Brambley 2005).
The reason for the discrepancies between real and
simulated operation are mainly due to uncovered
optimization potentials in the systems controls and
faults in the real operation of buildings. In order to
avoid such shortcomings, the models which were
developed in the planning phase can be used during
the building operation to optimize control strategies
and to detect faults at an early stage, thus enabling a
more energy efficient operation and a support of
maintenance tasks.

There are principally two different approaches for
model use during operation: the offline approach
conducts optimization and fault detection based on
(historic) monitoring data from a given building and
does not feed the results back to the building
management system (BMS) in an automated way,
while the online approach gets current data from the
BMS, evaluates those data in real time and feeds the
estimated new set values or fault reports back to the
BMS. Because of their immediate impact on the
building energy system, online routines have to be
tested extensively offline before implementation.

A convenient framework for testing optimization and
fault detection routines offline, using both, simulation
models and monitoring data, is the programming
language Python in combination with the package
PyFMI. For online application of the tested routines,
coupling to the BMS is possible, as will be discussed
below.

This article is structured as follows: First, we
describe in detail the integration and application of
simulation models (Modelica) in Python. Then, we
introduce a specific example, where we illustrate the
implementation of control and optimization schemes
into the described framework. Then, we briefly
present the results of the optimization routine.
Finally, we discuss further steps for the specific
example and give an outlook for applications of the
general framework.

GENERAL FRAMEWORK
The integration of simulation models in python is
based on the Functional Mockup Interface (FMI), an
open standard which was developed in order to
facilitate model exchange and co-simulation across
different tools (Blochwitz, Otter et al. 2011). Tools,
which support the FMI standard, as e.g. Dymola or
SimulationX, allow for the export and import of
models in terms of Functional Mockup Units
(FMUs). An FMU consists of an xml-file containing
the model description and C-code or binaries
containing the whole model functionality. Importing

Figure 1: Schematic of proposed framework

an FMU into some destination tool allows to access
inputs and outputs of the imported FMU and to
simulate the model without running the original tool.
The latter aspect is, for example, of particular
relevance in a consortium where partners dispose of
disjunct licenses. Another important aspect for using
FMI is the possibility to incorporate data and results
from several tools within one single environment.

Figure 2: Python code for loading/assessing FMU

Here, we use python as our destination tool, where
the package PyFMI is installed. Then, within this
Python framework (see Figure 1) the simulation
model can be accessed via an FMU import. At the
same time, monitoring data (if available) from a
database can be retrieved. Thus, this set up allows

using python routines for offline optimization and
fault detection and diagnosis (FDD) on the basis of
simulation results and real data from the building. In
a further step, the developed and tested Python
routines can be connected to the BMS to allow for an
online application.

Technically, the interaction of the optimization
routine with an FMU object model is basically done
via the functions model.get(), model.set() and
model.do_step(). Figure 2 illustrates the usage of
those functions in a simple Python (pseudo) code
example.

In the following, we introduce an example system,
which will serve as a demonstrator to illustrate how
the proposed framework can be used for designing
and testing optimization routines.

EXAMPLE SYSTEM
We consider a school campus from the 1970s which
consists of the school building itself, a gym and a
swimming pool. The project goal is to significantly
reduce the consumption of fossil fuels and CO2
emissions by applying measures such as improved
insulation, heat recovery, intelligent load
management and low exergy systems. The central
components of the planned, innovative energy supply
concept include

• 2 solar absorbers,

• an ice storage,

• 3 heat pumps,

• photovoltaics (PV),

• a combined heat and power plant (CHP),

• a hot water storage tank,

• a chilled water storage tank.

Additionally, in order to handle peak load situations
and for back-up, two gas boilers are foreseen.

To achieve a minimization of fossil fuel consumption,
it is crucial to use the potential of each component in
an optimal way. In particular, the two principal tasks
are

• to optimize the heat load management
(short-term optimization),

• to optimize the ice storage management
(long-term optimization).

Optimization of the heat load management implies
storing as much regenerative energy as possible,
coming from the solar absorbers and PV (via heat
pumps) during the day, to compensate for heat losses
during the night.

Optimization of the ice storage management should
take care of keeping the ice storage at a high

temperature level in winter, providing a favorable
heat source for the heat pumps, while keeping it cold
in summer, in order to use it as a direct cooling
source for the school building.

For an enhanced overall optimization of the energy
supply system, occupation schedules of the swimming
pool and the school building, weather forecasts and
energy prices will be taken into account.

In order to develop a suitable control scheme for heat
generation and supply, which fulfills the above-
mentioned criteria, we use the Python framework
described above. The simulation model was set up in
SimulationX and exported as FMU. In the following
two sections we describe the methodology we used to
optimize the heat control scheme and the ice storage
management of the considered energy system. For the
development of the heat control scheme we used the
full simulation model, containing all system
components, while for the optimization of the ice
storage management a simplified version, containing
only part of the system components, was used.

HEAT CONTROL SCHEME
The heat demand in our use case is divided into three
levels: high temperature (HT, 70°C – 90°C),
swimming pool water (SW, 50°C – 70°C) and low
temperature (LT, 30°C - 50°C). The heat generators
can supply different temperature levels, as depicted in
Figure 3.

Figure 3: Illustration of the 3 different temperature
levels and the respective heat generators. Numbers

indicate the quantities of the individual components.

For each temperature level the heat load management
has to decide whether the power of the generators
has to be increased/decreased or whether heat
generators have to be switched on/off. To do so, the
balance between heat excess and heat demand of a
specific level and the remaining heat capacity in the
heat storage at the respective level have to be
considered.

Here, we used for a first simple control scheme the
following procedure: Based on the mean heat balance
and the mean heat storage temperature over the last
hour, it is decided for each temperature level, whether
heat generation has to be decreased or increased. The
sequence for switching on HT-generators is CHP >

boilers, for switching on SW-generators it is
absorbers (if available) > heat pumps > boilers (if not
supplying HT) and for switching on LT-generators it
is CHP (if not supplying HT) > heat pumps (if not
supplying SW). Switching off occurs in the reverse
order. Generally, if more than one generator of the
same type is running and supplying the same
temperature level, the one, which was switched on
first is the first to be switched off. This analogously
holds for switching on components.

Figure 4 illustrates the implemented heat control

Figure 4: Temperatures in heat storage (top), heat

demand (center) and sequence of active heat
generators (bottom) for all temperature-levels.

scheme for two days in October. Shown are the actual
temperatures in the heat storage, together with the
corresponding set temperatures for each level (top),
the heat demand in each temperature level (center)
and the resulting active heat generators (bottom)
according to the described control scheme.

The fact that in the shown time period no heat
generator supplies the SW-level (Figure 4, bottom) is
due to a relatively high temperature level in the SW-
section of the heat storage, compared to the set flow
temperature of the respective heat circuit (Figure 4,
top). Additionally, there is a waste water heat pump,
which directly feeds into the SW circuit, and which is
not yet included in the heat control scheme.

Here, we do not take into account electricity
excess/demand. The next step is to define the priority
between heat pumps and CHP in the LT-sequence
according to the current electricity excess/demand.
Furthermore, overloading of the heat storage in case
of electricity excess from PV and predictive control
to avoid frequent switches have to be included in an
enhanced control scheme.

Once, a stable and comprehensive control scheme is
established, the output of the simulation model, i.e.
storage temperatures and load profiles, can be easily
replaced by measured data from the real facilities.
The output of the control routine, i.e. the new input
values to the simulation model serve then as set
values for the BMS in an online application or can be
used for offline fault detection by comparing the
calculated set values with the actual set values in the
BMS.

ICE STORAGE MANAGEMENT
Now, we consider a second aspect of our use case:
the optimization of the ice storage management.
Optimizing the ice storage management has to take
into account the requirements of the heat pumps, the
availability of the absorbers and the actual cooling
demand. Therefore, the optimization task basically
consists in finding in each time step the optimal
volume flows between those three components.

For simplicity, we do not account for the cold storage
here and we neglect the possibility of active cooling
via heat pumps. A sketch of the considered situation
is shown in Figure 5.

Given a certain (LT) heat demand, the heat pump is
switched on and supplied with a volume flow coming
from the ice storage (a) and/or the absorber (u).
Additionally, the volume flow r, coming from the
absorber or from the building, is specified. The goal
of the optimization routine is to determine the
optimal values for a, u, and r, which minimize the
objective function and fulfill the boundary conditions.
As the total volume flow supplying the heat pump

source circuit, v= a + u, is given, there are actually
only two degrees of freedom, a and r.

Boundary conditions are essentially given by
maximal volume flows and heating/cooling demands.
In the following, we compare two different
objectives:

1. The ice storage target temperature should be
reached.

2. The heat pump should operate at maximal
COP.

Note that the second objective only affects the choice
of the volume flow a. So, r is chosen according to the
first objective in both approaches.

Figure 5: Representation of heat transfer between ice

storage, solar absorbers and heat pump. Arrows
point in the direction of heat flow. The volume flows

a, u and r are the optimization parameters.
Regeneration of the ice storage occurs either via the

absorbers or via cooling.

Let us now explain our optimization approach for the
first objective. We assume we know the target ice
storage temperature (Ttarget) and its derivative (d/dt
Ttarget) in each time step. Then, the optimal derivative
of the actual ice storage temperature (d/dt Topt) in
order to reach the target temperature is approximately
(for sufficiently small step sizes) given by (see Figure
6 for illustration)

d/dt Topt = (Ttarget – Tact)/step_size + d/dt Ttarget. (1)

On the other hand, the estimated change in the ice
storage temperature depends on the volume flows a
and r and on the respective flow temperatures, which
return to the ice storage. Therefore, the estimated
derivative of the ice storage temperature yields

d/dt Tact = a/VIS (THP – Tact) + r/VIS (Tin – Tact,), (2)

where VIS is the volume of the fluid phase in the ice
storage, THP is the return temperature from the heat

pump and Tin is either the supply temperature from
the absorbers or the return temperature from cooling.

While Tin is a given quantity, provided as output from
the simulation model, the return temperature from the
heat pump depends on a, namely

THP = a/v Tact + (v-a)/v TSA - ΔTHP. (3)

Here, TSA is the supply temperature from the
absorbers and ΔTHP is the difference between flow
and return temperature at the heat pump source.

Now, minimizing the difference between the right-
hand sides of equations (1) and (2) in each time step
gives the optimal volume flows a and r, which are
then set as inputs for the next time step.

Figure 6: Visualization of the optimal change in the

ice storage temperature in order to approach the
target temperature in the next time step. The

parameter step_size refers to the communication step
size for interacting with the FMU (comp. Figure 2).

The optimization of a with respect to the second
objective is straight forward: if Tact > TSA, a is
maximal and if Tact < TSA, a is minimal. The optimal
value for r is then determined in the same way as
described for the first objective, but setting a in (2)
according to the second objective.

In order to compare the two different optimization
objectives, we run the simulation applying both
approaches, for one year each. In the simulation, we
assume a cooling demand of 20 kW in the months
June and July and of 5 kW during the rest of the year
(server rooms). Concerning heating demand, we
assume 150 kW during the months October – April
and 20 kW from May till September (swimming
pool). Both, cooling and heating is assumed to occur
only between 8 am and 4 pm. For the target ice
storage temperature we choose a step function,
reaching 15°C in winter (October – March) and -1°C
in summer (April – September), as indicated by the
red line in Figure 7, upper panel. The target
temperature in summer is below 0°C to enable icing.
For this choice of the target temperature curve, the
derivative is zero at all times and the last term in

equation (1) vanishes. The resulting ice storage
temperatures and COPs for both optimization
strategies are shown in Figure 7.

Figure 7: Resulting ice storage temperature (top)
and COP (bottom) for two different optimization

objectives.

From the plots in Figure 7 it can be seen that the
discrepancy between the two optimization objectives
is maximal in the summer period, when according to
the first optimization objective, the heat pump source
is supplied by the ice storage in order to cool the ice
storage, while according to the second optimization
objective it is supplied by the absorbers in order to
reach a high COP. The trade-off consists in heat
pump efficiency against cooling capacity.

To quantify this trade-off, we calculate for both
optimization schemes the average COP, and the
percentage of cooling demand, which is covered. The
average COP yields 4.89 for optimization strategy 1
and 5.03 for optimization strategy 2, while the
cooling demand is covered to 91.8 % and 90.6 %,
respectively. There are several possibilities to obtain
a compromise between the two strategies. For
example, one can in each time step randomly decide,
with probability p, whether to follow strategy 1 or
strategy 2. The results for p ranging between 0 and 1

are plotted in Figure 8 (crosses). Another criterion for
deciding in each time step whether to choose strategy
1 or strategy 2 would take into account the expected
cooling demand still to come until the end of the year.
The circles in Figure 8 correspond to an optimization
scheme where strategy 1 is applied up to the point
where the remaining cooling load becomes less than x
percent of the total cooling load; then strategy 2 is
used. Here, x is chosen to be 100%, 68%, 55%, 45%,
23%, 0% (from left to right). In Figure 8 it can be
seen that this quasi-predictive strategy performs
better than the random strategy for small x and worse
for large x. For x = 100% and x = 0% the predictive
and the random strategy coincide. An optimal
strategy would lie in the upper right corner of Figure
8. So, the goal is to find an optimization scheme
which is as close as possible to the optimal one.

Figure 8: Trade-off between average COP and
coverage of cooling demand for different

optimization strategies. The optimum lies in the
upper right corner.

One might argue that the maximal discrepancy
between the different optimization schemes, which
for our scenario corresponds to an energy reduction
of approximately 2.3 MWh/a, or 6.9 %, and an
increase of cooling capacity of 6 hours (in summer),
is too small to invest much effort in finding an
optimum. However, as mentioned above, we used a
simplified model and rough assumptions for heating
and cooling loads to illustrate the optimization
procedure. Consequently, the actual energy savings
or comfort improvements, which can be achieved,
might differ significantly when considering the full
simulation model and more realistic loads, as it will
be done in the further course of the project.

Similarly, considering other use cases or different
boundary conditions will lead to an altered picture.
Therefore, one has to ponder different optimization
objectives carefully against each other for every
individual case. Here, we presented a general

methodology which facilitates this process, by using
the Python framework described above for
establishing, testing and comparing different
optimization schemes.

 As in the case of heat control, the outputs from the
simulation model, which are used for the optimization
routine, can be replaced by monitoring data and thus
allow for online optimization and fault detection.

CONCLUSION
We showed, using a school campus as an example
from a current project, how an existing simulation
model, which was set up in the planning phase, can
be reused for developing optimal control schemes.
The simulation model was integrated as FMU into
our Python framework and controlled via Python
routines. We addressed two central tasks of the
described project, the heat control and the ice storage
management. For both tasks we developed simple
Python routines which can be used as a basis for the
control schemes implemented in the BMS or which
can be used for fault detection as soon as first
monitoring data from the school campus is available.
The described framework and methodology also
serves as a test-bed for developing advanced control
mechanisms which account for uncertainties and
include weather forecasts and energy prices.

OUTLOOK
The framework we described here is particularly well
suited for testing and applying model-based and data-
based algorithms for automated fault detection and
diagnosis and optimization. Because both, the
simulation model and monitoring data can be
accessed within the same framework, methods which
combine model-based and data-based analysis can be
conveniently implemented.

For example, statistical methods for fault detection
typically require a lot of high-quality training data to
be set up. Depending on the method, the training data
should even contain time periods of faulty operation,
which are hard to obtain from monitoring. Therefore,
faulty and correct training data for statistical methods
can be artificially generated using a simulation
model. The application of the respective method then
occurs on the measured data. As training and
application period usually alternate, best performance
can be achieved when handling the whole workflow
within one single framework.

For online application of fault detection and
optimization routines, an interface between the BMS
and the Python framework is required. One
possibility for an interaction with the real building is
to directly implement the Python scripts into the
BMS. Another approach, which has been presented at
the International Modelica Conference this year, is to
export the optimization or control scheme as FMU

and import it into the BMS (Nouidui and Wetter
2014). Both approaches rely on the capability and
flexibility of the specific BMS.

ACKNOWLEDGEMENTS
We thank Monika Wicke and Torsten Schwan from
EA Systems Dresden GmbH Christian Kehrer from
ITI GmbH for providing the simulation models and
supporting the coupling process. This work was
funded by the German Federal Ministry for Economic
Affairs and Energy (BMWi) under the support code
03ET1199A.

REFERENCES
Blochwitz, T. et al. 2011. The functional mockup

interface for tool independent exchange of
simulation models. 8th International Modelica
Conference, Dresden.

Katipamula, S. and Brambley, M. R. 2005. Methods
for fault Detection, Diagnostics, and Prognostics
for Building Systems - A Review, Part I.
HVAC&R Research 11(1): 3-25.

Nouidui, T. S. and Wetter, M. 2014. Tool coupling
for the design and operation of building energy
and control systems based on the Functional
Mock-up Interface standard. 10th International
Modelica Conference, Lund.

	Abstract
	Introduction
	General Framework
	Example system
	Heat Control SCHEME
	ice storage management
	Conclusion
	Outlook
	Acknowledgements
	References

