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ABSTRACT 
In this article we describe a methodology and a tool 
chain that allows reusing simulation models for 
optimization and fault detection during building 
operation.  

We illustrate the integration of simulation models, set 
up in Modelica, in a Python environment using 
PyFMI. Then, considering as a demonstrator a 
complex energy supply system for a school campus in 
Germany, we show first results for the optimization 
of the ice storage management of that system. Finally, 
we discuss further applications of the described setup 
for offline and online fault detection, optimization 
and predictive control.  

INTRODUCTION 
Simulation models play a crucial role in the planning 
phase of complex energy supply systems for 
buildings, as they allow for determining the best 
options for the sizing and for the choice of control 
strategies of HVAC systems. Moreover, they provide 
an estimate of the expected energy consumption of 
buildings. The use of simulation models is 
particularly relevant to determine the control 
strategies and the optimal operation parameters of 
complex energy supply systems which involve 
several heat and power sources, storage capacities 
and varying demand schemes. 

However, in their real operation, buildings tend not to 
reach the expected performance estimated by detailed 
simulation models (Katipamula and Brambley 2005). 
The reason for the discrepancies between real and 
simulated operation are mainly due to uncovered 
optimization potentials in the systems controls and 
faults in the real operation of buildings. In order to 
avoid such shortcomings, the models which were 
developed in the planning phase can be used during 
the building operation to optimize control strategies 
and to detect faults at an early stage, thus enabling a 
more energy efficient operation and a support of 
maintenance tasks.  

There are principally two different approaches for 
model use during operation: the offline approach 
conducts optimization and fault detection based on 
(historic) monitoring data from a given building and 
does not feed the results back to the building 
management system (BMS) in an automated way, 
while the online approach gets current data from the 
BMS, evaluates those data in real time and feeds the 
estimated new set values or fault reports back to the 
BMS. Because of their immediate impact on the 
building energy system, online routines have to be 
tested extensively offline before implementation. 

A convenient framework for testing optimization and 
fault detection routines offline, using both, simulation 
models and monitoring data, is the programming 
language Python in combination with the package 
PyFMI. For online application of the tested routines, 
coupling to the BMS is possible, as will be discussed 
below. 

This article is structured as follows: First, we 
describe in detail the integration and application of 
simulation models (Modelica) in Python. Then, we 
introduce a specific example, where we illustrate the 
implementation of control and optimization schemes 
into the described framework. Then, we briefly 
present the results of the optimization routine. 
Finally, we discuss further steps for the specific 
example and give an outlook for applications of the 
general framework. 

GENERAL FRAMEWORK 
The integration of simulation models in python is 
based on the Functional Mockup Interface (FMI), an 
open standard which was developed in order to 
facilitate model exchange and co-simulation across 
different tools (Blochwitz, Otter et al. 2011). Tools, 
which support the FMI standard, as e.g. Dymola or 
SimulationX, allow for the export and import of 
models in terms of  Functional Mockup Units 
(FMUs). An FMU consists of  an xml-file containing 
the model description and C-code or binaries 
containing the whole model functionality. Importing  
 



 
Figure 1: Schematic of proposed framework 

 

an FMU into some destination tool allows to access 
inputs and outputs of the imported FMU and to 
simulate the model without running the original tool. 
The latter aspect is, for example, of particular 
relevance in a consortium where partners dispose of 
disjunct licenses. Another important aspect for using 
FMI is the possibility to incorporate data and results 
from several tools within one single environment.  
 

 
Figure 2: Python code for loading/assessing FMU 

 

Here, we use python as our destination tool, where 
the package PyFMI is installed. Then, within this 
Python framework (see Figure 1) the simulation 
model can be accessed via an FMU import. At the 
same time, monitoring data (if available) from a 
database can be retrieved. Thus, this set up allows 

using python routines for offline optimization and 
fault detection and diagnosis (FDD) on the basis of 
simulation results and real data from the building. In 
a further step, the developed and tested Python 
routines can be connected to the BMS to allow for an 
online application. 

Technically, the interaction of the optimization 
routine with an FMU object model is basically done 
via the functions model.get(), model.set() and 
model.do_step(). Figure 2 illustrates the usage of 
those functions in a simple Python (pseudo) code 
example. 

In the following, we introduce an example system, 
which will serve as a demonstrator to illustrate how 
the proposed framework can be used for designing 
and testing optimization routines. 

EXAMPLE SYSTEM 
We consider a school campus from the 1970s which 
consists of the school building itself, a gym and a 
swimming pool. The project goal is to significantly 
reduce the consumption of fossil fuels and CO2 
emissions by applying measures such as improved 
insulation, heat recovery, intelligent load 
management and low exergy systems. The central 
components of the planned, innovative energy supply 
concept include 

• 2 solar absorbers,  

• an ice storage, 

• 3 heat pumps, 

• photovoltaics (PV), 

• a combined heat and power plant (CHP), 

• a hot water storage tank, 

• a chilled water storage tank. 

Additionally, in order to handle peak load situations 
and for back-up, two gas boilers are foreseen.  

To achieve a minimization of fossil fuel consumption, 
it is crucial to use the potential of each component in 
an optimal way. In particular, the two principal tasks 
are 

• to optimize the heat load management 
(short-term optimization), 

• to optimize the ice storage management 
(long-term optimization). 

Optimization of the heat load management implies 
storing as much regenerative energy as possible, 
coming from the solar absorbers and PV (via heat 
pumps) during the day, to compensate for heat losses 
during the night.  

Optimization of the ice storage management should 
take care of keeping the ice storage at a high 



temperature level in winter, providing a favorable 
heat source for the heat pumps, while keeping it cold 
in summer, in order to use it as a direct cooling 
source for the school building. 

For an enhanced overall optimization of the energy 
supply system, occupation schedules of the swimming 
pool and the school building, weather forecasts and 
energy prices will be taken into account. 

In order to develop a suitable control scheme for heat 
generation and supply, which fulfills the above-
mentioned criteria, we use the Python framework 
described above. The simulation model was set up in 
SimulationX and exported as FMU. In the following 
two sections we describe the methodology we used to 
optimize the heat control scheme and the ice storage 
management of the considered energy system. For the 
development of the heat control scheme we used the 
full simulation model, containing all system 
components, while for the optimization of the ice 
storage management a simplified version, containing 
only part of the system components, was used. 

HEAT CONTROL SCHEME  
The heat demand in our use case is divided into three 
levels: high temperature (HT, 70°C – 90°C), 
swimming pool water (SW, 50°C – 70°C) and low 
temperature (LT, 30°C - 50°C). The heat generators 
can supply different temperature levels, as depicted in 
Figure 3.  
 

 
Figure 3: Illustration of the 3 different temperature 
levels and the respective heat generators. Numbers 

indicate the quantities of the individual components.  
 

For each temperature level the heat load management 
has to decide whether the power of the  generators 
has to be increased/decreased or whether heat 
generators have to be switched on/off. To do so, the 
balance between heat excess and heat demand of a 
specific level and the remaining heat capacity in the 
heat storage at the respective level have to be 
considered. 

Here, we used for a first simple control scheme the 
following procedure: Based on the mean heat balance 
and the mean heat storage temperature over the last 
hour, it is decided for each temperature level, whether 
heat generation has to be decreased or increased. The 
sequence for switching on HT-generators is CHP > 

boilers, for switching on SW-generators it is 
absorbers (if available) > heat pumps > boilers (if not 
supplying HT) and for switching on LT-generators it 
is CHP (if not supplying HT) > heat pumps (if not 
supplying SW). Switching off occurs in the reverse 
order. Generally, if more than one generator of the 
same type is running and supplying the same 
temperature level, the one, which was switched on 
first is the first to be switched off. This analogously 
holds for switching on components.  

Figure 4 illustrates the implemented heat control 
 

 

 

 
Figure 4: Temperatures in heat storage (top), heat 

demand (center) and sequence of active heat 
generators (bottom) for all temperature-levels.  



scheme for two days in October. Shown are the actual 
temperatures in the heat storage, together with the 
corresponding set temperatures for each level (top), 
the heat demand in each temperature level (center) 
and the resulting active heat generators (bottom) 
according to the described control scheme. 

The fact that in the shown time period no heat 
generator supplies the SW-level (Figure 4, bottom) is 
due to a relatively high temperature level in the SW-
section of the heat storage, compared to the set flow 
temperature of the respective heat circuit (Figure 4, 
top). Additionally, there is a waste water heat pump, 
which directly feeds into the SW circuit, and which is 
not yet included in the heat control scheme. 

Here, we do not take into account electricity 
excess/demand. The next step is to define the priority 
between heat pumps and CHP in the LT-sequence 
according to the current electricity excess/demand. 
Furthermore, overloading of the heat storage in case 
of electricity excess from PV and predictive control 
to avoid frequent switches have to be included in an 
enhanced control scheme. 

Once, a stable and comprehensive control scheme is 
established, the output of the simulation model, i.e. 
storage temperatures and load profiles, can be easily 
replaced by measured data from the real facilities. 
The output of the control routine, i.e. the new input 
values to the simulation model serve then as set 
values for the BMS in an online application or can be 
used for offline fault detection by comparing the 
calculated set values with the actual set values in the 
BMS.  

ICE STORAGE MANAGEMENT 
Now, we consider a second aspect of our use case: 
the optimization of the ice storage management. 
Optimizing the ice storage management has to take 
into account the requirements of the heat pumps, the 
availability of the absorbers and the actual cooling 
demand. Therefore, the optimization task basically 
consists in finding in each time step the optimal 
volume flows between those three components.  

For simplicity, we do not account for the cold storage 
here and we neglect the possibility of active cooling 
via heat pumps. A sketch of the considered situation 
is shown in Figure 5. 

Given a certain (LT) heat demand, the heat pump is 
switched on and supplied with a volume flow coming 
from the ice storage (a) and/or the absorber (u). 
Additionally, the volume flow r, coming from the 
absorber or from the building, is specified. The goal 
of the optimization routine is to determine the 
optimal values for a, u, and r, which minimize the 
objective function and fulfill the boundary conditions. 
As the total volume flow supplying the heat pump 

source circuit, v= a + u, is given, there are actually 
only two degrees of freedom, a and r.  

Boundary conditions are essentially given by 
maximal volume flows and heating/cooling demands. 
In the following, we compare two different 
objectives: 

1. The ice storage target temperature should be 
reached. 

2. The heat pump should operate at maximal 
COP.  

Note that the second objective only affects the choice 
of the volume flow a. So, r is chosen according to the 
first objective in both approaches.  
 

 
Figure 5: Representation of heat transfer between ice 

storage, solar absorbers and heat pump. Arrows 
point in the direction of heat flow. The volume flows 

a, u and r are the optimization parameters. 
Regeneration of the ice storage occurs either via the 

absorbers or via cooling.  
 

Let us now explain our optimization approach for the 
first objective. We assume we know the target ice 
storage temperature (Ttarget) and its derivative (d/dt 
Ttarget) in each time step. Then, the optimal derivative 
of the actual ice storage temperature (d/dt Topt) in 
order to reach the target temperature is approximately 
(for sufficiently small step sizes) given by (see Figure 
6 for illustration)     

d/dt Topt = (Ttarget – Tact)/step_size + d/dt Ttarget.   (1) 

On the other hand, the estimated change in the ice 
storage temperature depends on the volume flows a 
and r and on the respective flow temperatures, which 
return to the ice storage. Therefore, the estimated 
derivative of the ice storage temperature yields 

d/dt Tact = a/VIS (THP – Tact) + r/VIS (Tin – Tact,),   (2) 

where VIS is the volume of the fluid phase in the ice 
storage, THP is the return temperature from the heat 



pump and Tin is either the supply temperature from 
the absorbers or the return temperature from cooling. 

While Tin is a given quantity, provided as output from 
the simulation model, the return temperature from the 
heat pump depends on a, namely 

THP = a/v Tact + (v-a)/v TSA - ΔTHP.                      (3) 

Here, TSA is the supply temperature from the 
absorbers and ΔTHP is the difference between flow 
and return temperature at the heat pump source.  

Now, minimizing the difference between the right-
hand sides of equations (1) and (2) in each time step 
gives the optimal volume flows a and r, which are 
then set as inputs for the next time step.   
 

 
Figure 6: Visualization of the optimal change in the 

ice storage temperature in order to approach the 
target temperature in the next time step. The 

parameter step_size refers to the communication step 
size for interacting with the FMU (comp. Figure 2). 

 

The optimization of a with respect to the second 
objective is straight forward: if Tact > TSA, a is 
maximal and if Tact < TSA, a is minimal. The optimal 
value for r is then determined in the same way as 
described for the first objective, but setting a in (2) 
according to the second objective. 

In order to compare the two different optimization 
objectives, we run the simulation applying both 
approaches, for one year each. In the simulation, we 
assume a cooling demand of 20 kW in the months 
June and July and of 5 kW during the rest of the year 
(server rooms). Concerning heating demand, we 
assume 150 kW during the months October – April 
and 20 kW from May till September (swimming 
pool). Both, cooling and heating is assumed to occur 
only between 8 am and 4 pm. For the target ice 
storage temperature we choose a step function, 
reaching 15°C in winter (October – March) and -1°C 
in summer (April – September), as indicated by the 
red line in Figure 7, upper panel. The target 
temperature in summer is below 0°C to enable icing. 
For this choice of the target temperature curve, the 
derivative is zero at all times and the last term in 

equation (1) vanishes. The resulting ice storage 
temperatures and COPs for both optimization 
strategies are shown in Figure 7.  
 

 

 
 

Figure 7: Resulting ice storage temperature (top) 
and COP (bottom) for two different optimization 

objectives. 
 

From the plots in Figure 7 it can be seen that the 
discrepancy between the two optimization objectives 
is maximal in the summer period, when according to 
the first optimization objective, the heat pump source 
is supplied by the ice storage in order to cool the ice 
storage, while according to the second optimization 
objective it is supplied by the absorbers in order to 
reach a high COP. The trade-off consists in heat 
pump efficiency against cooling capacity.  

To quantify this trade-off, we calculate for both 
optimization schemes the average COP, and the 
percentage of cooling demand, which is covered. The 
average COP yields 4.89 for optimization strategy 1 
and 5.03 for optimization strategy 2, while the 
cooling demand is covered to 91.8 % and 90.6 %, 
respectively. There are several possibilities to obtain 
a compromise between the two strategies. For 
example, one can in each time step randomly decide, 
with probability p, whether to follow strategy 1 or 
strategy 2. The results for p ranging between 0 and 1 



are plotted in Figure 8 (crosses). Another criterion for 
deciding in each time step whether to choose strategy 
1 or strategy 2 would take into account the expected 
cooling demand still to come until the end of the year. 
The circles in Figure 8 correspond to an optimization 
scheme where strategy 1 is applied up to the point 
where the remaining cooling load becomes less than x 
percent of the total cooling load; then strategy 2 is 
used. Here, x is chosen to be 100%, 68%, 55%, 45%, 
23%, 0% (from left to right). In Figure 8 it can be 
seen that this quasi-predictive strategy performs 
better than the random strategy for small x and worse 
for large x. For x = 100% and x = 0% the predictive 
and the random strategy coincide. An optimal 
strategy would lie in the upper right corner of Figure 
8. So, the goal is to find an optimization scheme 
which is as close as possible to the optimal one.  
 

 
 

Figure 8: Trade-off between average COP and 
coverage of cooling demand for different 

optimization strategies. The optimum lies in the 
upper right corner. 

 

One might argue that the maximal discrepancy 
between the different optimization schemes, which 
for our scenario corresponds to an energy reduction 
of approximately 2.3 MWh/a, or 6.9 %, and an 
increase of cooling capacity of 6 hours (in summer), 
is too small to invest much effort in finding an 
optimum. However, as mentioned above, we used a 
simplified model and rough assumptions for heating 
and cooling loads to illustrate the optimization 
procedure. Consequently, the actual energy savings 
or comfort improvements, which can be achieved, 
might differ significantly when considering the full 
simulation model and more realistic loads, as it will 
be done in the further course of the project.  

Similarly, considering other use cases or different 
boundary conditions will lead to an altered picture. 
Therefore, one has to ponder different optimization 
objectives carefully against each other for every 
individual case. Here, we presented a general 

methodology which facilitates this process, by using 
the Python framework described above for 
establishing, testing and comparing different 
optimization schemes. 

 As in the case of heat control, the outputs from the 
simulation model, which are used for the optimization 
routine, can be replaced by monitoring data and thus 
allow for online optimization and fault detection. 

CONCLUSION 
We showed, using a school campus as an example 
from a current project, how an existing simulation 
model, which was set up in the planning phase, can 
be reused for developing optimal control schemes. 
The simulation model was integrated as FMU into 
our Python framework and controlled via Python 
routines. We addressed two central tasks of the 
described project, the heat control and the ice storage 
management. For both tasks we developed simple 
Python routines which can be used as a basis for the 
control schemes implemented in the BMS or which 
can be used for fault detection as soon as first 
monitoring data from the school campus is available. 
The described framework and methodology also 
serves as a test-bed for developing advanced control 
mechanisms which account for uncertainties and 
include weather forecasts and energy prices.  

OUTLOOK 
The framework we described here is particularly well 
suited for testing and applying model-based and data-
based algorithms for automated fault detection and 
diagnosis and optimization. Because both, the 
simulation model and monitoring data can be 
accessed within the same framework, methods which 
combine model-based and data-based analysis can be 
conveniently implemented.  

For example, statistical methods for fault detection 
typically require a lot of high-quality training data to 
be set up. Depending on the method, the training data 
should even contain time periods of faulty operation, 
which are hard to obtain from monitoring. Therefore, 
faulty and correct training data for statistical methods 
can be artificially generated using a simulation 
model. The application of the respective method then 
occurs on the measured data. As training and 
application period usually alternate, best performance 
can be achieved when handling the whole workflow 
within one single framework.  

For online application of fault detection and 
optimization routines, an interface between the BMS 
and the Python framework is required. One 
possibility for an interaction with the real building is 
to directly implement the Python scripts into the 
BMS. Another approach, which has been presented at 
the International Modelica Conference this year, is to 
export the optimization or control scheme as FMU 



and import it into the BMS (Nouidui and Wetter 
2014). Both approaches rely on the capability and 
flexibility of the specific BMS. 
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