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Abstract

Learning discriminative face features plays a major role
in building high-performing face recognition models. The
recent state-of-the-art face recognition solutions proposed
to incorporate a fixed penalty margin on commonly used
classification loss function, softmax loss, in the normalized
hypersphere to increase the discriminative power of face
recognition models, by minimizing the intra-class variation
and maximizing the inter-class variation. Marginal penalty
softmax losses, such as ArcFace and CosFace, assume that
the geodesic distance between and within the different iden-
tities can be equally learned using a fixed penalty margin.
However, such a learning objective is not realistic for real
data with inconsistent inter-and intra-class variation, which
might limit the discriminative and generalizability of the
face recognition model. In this paper, we relax the fixed
penalty margin constrain by proposing elastic penalty mar-
gin loss (ElasticFace) that allows flexibility in the push for
class separability. The main idea is to utilize random mar-
gin values drawn from a normal distribution in each train-
ing iteration. This aims at giving the decision boundary
chances to extract and retract to allow space for flexible
class separability learning. We demonstrate the superiority
of our ElasticFace loss over ArcFace and CosFace losses,
using the same geometric transformation, on a large set of
mainstream benchmarks. From a wider perspective, our
ElasticFace has advanced the state-of-the-art face recog-
nition performance on seven out of nine mainstream bench-
marks. All training codes, pre-trained models, training logs
will be publicly released 1.

1. Introduction

Face recognition technologies are increasingly deployed
to enhance the security and convenience of processes in-
volving identity verification, such as border control and
financial services. The typical pipeline of a face recog-

1https://github.com/fdbtrs/ElasticFace

nition system involves mapping the face image (after de-
tection and alignment [31]) into a feature vector (embed-
ding) [2, 4, 27]. Two face images are then compared by
comparing their relative embeddings and therefore, mea-
suring the degree of identity similarity between both faces.
Knowing that it is intuitive that such embeddings should
ideally have small intra-class and large inter-class varia-
tion, with the class here being an identity. This corresponds
to a face recognition system that still makes correct gen-
uine decisions (same identity) even when face images are
largely varied (pose, age, expression, etc.), and make cor-
rect imposter (not same identity) decision even when the
appearance of the face image pair of different identities is
very similar. To achieve that, different solutions opted to
train deep neural networks by either directly learning the
embedding (e.g. Triplet loss [23]) or by learning an iden-
tity classification problem (e.g. Softmax loss [2]). One of
the main challenges for training with metric-based learning
such as Triple [23], n-pair [25], or contrastive [3] losses,
is training the model with a large-scale dataset as the num-
ber of possible triplets explodes with the number of sam-
ples. Alternatively, classification-based losses such as soft-
max loss can be easily adopted for training a face recog-
nition model as it does not pose that issue. However, the
softmax loss does not directly optimize the feature embed-
ding needed for face verification. Liu et al. [17] proposed a
large-margin softmax (L-Softmax) by incorporating angular
margin constraints on softmax loss to encourage intra-class
compactness and inter-class separability between learned
features. SphereFace [16] extended L-Softmax by normal-
izing the weights of the last full-connected layer and de-
ploying multiplicative angular penalty margin between the
deep features and their corresponding weights. Different
from SphereFace, CosFace [27] proposed additive cosine
margin on the cosine angle between the deep features and
their corresponding weights. CosFace also proposed to
fix the norm of the deep features and their corresponding
weights to 1, then scaling the deep feature norm to a con-
stant s, achieving better performance on mainstream face
recognition benchmarks. Later, ArcFace [4] proposed addi-
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tive angular margin by deploying angular penalty margin on
the angle between the deep features and their correspond-
ing weights. The great success of softmax loss with penalty
margin motivated several works to propose a novel variant
of softmax loss [1, 5, 10, 12, 14, 15, 19, 26]. All these so-
lutions achieved notable accuracies on mainstream bench-
marks [9, 18, 24, 28] for face recognition. Huang et al. [10]
proposed an Adaptive Curriculum Learning loss based on
margin-based softmax loss. The proposed loss targets the
easy samples at an early stage of training and the hard ones
at a later stage of training. Jiao et al. [12] proposed Dyn-
arcface based on ArcFace loss [4] by replacing the fixed
margin value of ArcFace with an adaptive one. The mar-
gin value of Dyn-arcface is adjusted based on the distance
between each class center and the other class centers. How-
ever, this might not reflect the real properties of the class
separability, but rather their separability in the current stage
of the model training. Kim et al. [14] proposed to enrich the
feature representation learned by ArcFace loss with group-
aware representations. UniformFace [5] suggested to equal-
ize distances between all the classes centers by adding a
new loss function to SphereFace loss [16]. A recent work
by An et al. [1] presented an efficient distributed sampling
algorithm (Partial-FC). The Partial-FC method is based on
randomly sampling a small subset of the complete training
set of classes for the softmax-based loss function. Thus,
it enables the training of the face recognition model on a
massive number of identities. The authors experimentally
proved that training with only 10% of training samples us-
ing CosFace [27] and ArcFace [4] can achieve comparable
results on mainstream benchmarks to the case when train-
ing is performed on a complete set of classes. MagFace [19]
deployed magnitude-aware margin on ArcFace loss to en-
hance intra-class compactness by pulling high-quality sam-
ples close to class centers while pushing low-quality sam-
ples away. However, this is based on the weak assumption
of optimal face quality (utility) estimation. Moreover, this
might prevent the model from convergence when the most
of training samples in the training dataset are of low quality.

The main challenge for the majority of the previously
listed works is the fine selection of the ideal margin penalty
value. In this work, we propose the ElasticFace loss that
relaxes the fixed single margin value by deploying a ran-
dom margin drawn from a normal distribution. We addition-
ally extended this concept by guiding the assignment of the
drawn margin values to put more attention on hardly clas-
sified samples. We provided a simple toy example with an
8-class classification problem to demonstrate the enhanced
separability and robustness induced by our ElasticFace loss.
To experimentally demonstrate the effect of our ElasticFace
loss on face recognition accuracy, we report the results on
nine different benchmarks. The achieved results are com-
pared to the results reported in the recent state-of-the-art. In

a detailed comparison, compared to fixed margin penalties
and recent state-of-the-art, our ElasticFace loss enhanced
the face recognition accuracy on most of the considered
benchmarks, consequently extending state-of-the-art face
recognition performance on seven out of nine benchmarks
and scoring close to the state-of-the-art in the remaining
two. This is especially the case in the benchmarks where
the intra-class variation is extremely high, such as frontal-
to-profile face verification (CFP-FP [24]) and large age gap
face verification (AgeDB-30 [20]), which points to the gen-
eralizability induced by the proposed ElasticFace.

In the rest of this paper, we will first introduce our pro-
posed ElasticFace loss by building up to its definition start-
ing from the basic softmax loss. This rationalization will
include an experimental toy example demonstrating the ef-
fect of the proposed loss. Later on, the experimental setup
and implementation details are introduced. This is followed
by a detailed comparative discussion of the achieved results
and a final conclusion.

2. ElasticFace loss
We propose in this work a novel learning loss strategy,

ElasticFace loss, aiming at improving the accuracy of face
recognition by targeting enhanced intra-class compactness
and inter-class discrepancy in a flexible manner. Unlike pre-
vious works [4, 16, 27] that utilize a fixed penalty margin
value, our proposed ElasticFace loss accommodates flexi-
bility through relaxing this constraint by randomly drawing
the margin value from a Gaussian distribution. Our pro-
posed ElasticFace loss targets giving the model flexibility in
optimizing the separability between and within the classes
as it incorporates random margin values for each sample in
each training iteration. The randomized margin penalty can
be easily integrated into any of the angular margin-based
softmax losses, which we demonstrate on two state-of-the-
art margin-based softmax losses. The angular margin-based
losses and our ElasticFace loss extend over the softmax loss
by manipulating the decision boundary to enhance intra-
class compactness and inter-class discrepancy. Therefore,
in this section, we first revisit the conventional softmax loss.
Then, we present the modified version of softmax loss and
the angular margin-based softmax loss. This leads up to
presenting our proposed ElasticFace loss and an extended
definition, the ElasticFace+, where the assignment of the
drawn margins to training samples is linked to their prox-
imity to their class centers.

Softmax Loss The widely used multi-class classification
loss, softmax loss [17], refers to applying cross-entropy loss
between the output of the logistic function (softmax activa-
tion function) and the ground-truth. Assume xi ∈ Rd is a
feature representation of the i-th sample zi and yi is its cor-
responding class label (yi integer in the range [1, c]). Given
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that c is the number of classes (identities), the output of the
softmax activation function is defined as follows:

softmax(xi, yi) =
efyi
c∑

j=1

efj
=

exiW
T
yi

+byi

c∑
j=1

exiWT
j +bj

, (1)

where fyi is the activation of the last fully-connected layer
with weight vector Wyi and bias byi . Wyi is the yi-th col-
umn of weights W ∈ Rd

c and byi
is the corresponding bias

offset. The output of the softmax activation function is the
probability of xi being correctly classified as yi. Given a
mini-batch of size N, the cross-entropy loss function that
measures the divergence between the model output and the
ground-truth labels can be defined as follows:

LCE =
1

N

∑
i∈N

−log
exiW

T
yi

+byi

c∑
j=1

exiWT
j +bj

. (2)

In a simple binary class classification, assuming that the in-
put zi belong to class 1, the model will correctly classify
zi if WT

1 xi + b1 > WT
2 xi + b2 and zi will be classified as

class 2 if WT
2 xi+b2 > WT

1 xi+b1. Therefore, the decision
boundary of softmax loss is x(WT

1 −WT
2 ) + b1− b2 = 0.

One of the main limitations of using softmax loss for learn-
ing face embeddings is that softmax loss does not explicitly
optimize the feature representation needed for face verifi-
cation as there is no restriction on the minimum distance
between the class centers. Thus, training with softmax loss
is less than optimal for achieving the maximum inter-class
distances and the minimum intra-class distances. To mit-
igate this limitation, margin penalty-based cosine softmax
loss was proposed as an alternative to the conventional soft-
max loss and it became a popular loss function for train-
ing face recognition models [4, 16, 27]. To get there, [16]
has proposed a modified softmax loss (Cosine softmax loss)
that optimized the angle cosine between features and the
weights cos(θ) and then, incorporates a margin penalty on
cos(θ).

Cosine Softmax Loss Following [4, 16, 17, 27], the bias
offset, for simplicity, can be fixed to byi = 0. The
logit fyi , in this case, can be reformulated as: xiW

T
yi

=
∥xi∥∥Wyi

∥cos(θyi
), where θyi

is the angle between the
weights of the last fully-connected layer Wyi

and the fea-
ture representation xi. By fixing the weights norm and the
feature norm to ∥Wyi∥ = 1 and ∥xi∥ = 1, respectively,
and rescaling the ∥xi∥ to the constant s [27], the output of
the softmax activation function is subject to the cosine of
the angle θyi

. The modified softmax loss (LML) can be de-
fined, as stated in [16, 27], as follows:

LML =
1

N

∑
i∈N

−log
es(cos(θyi ))

es(cos(θyi )) +
c∑

j=1,j ̸=yi

es(cos(θj))
.

(3)
In the previous binary example, assume that the input zi
belong to the class 1, zi will be correctly classified if
cos(θ1) > cos(θ2). The decision boundary, in this case, is
cos(θ1)− cos(θ2) = 0. Therefore, training with the modi-
fied (cosine) softmax loss emphasizes that the model predic-
tion depends on the angle cosine between the features and
the weights. However, and similar to conventional softmax
loss, modified softmax loss does not explicitly optimize the
feature representation needed for face verification. This mo-
tivated the introduction of the angular margin penalty-based
losses [4, 16, 27].

Angular Margin Penalty-based Loss In recent works
[4, 16, 27], different types of margin penalty are proposed
to push the decision boundary of softmax, and thus enhance
intra-class compactness and inter-class discrepancy aiming
at improving the accuracy of face recognition. The gen-
eral angular margin penalty-based loss (LAML) is defined
as follows:

LAML = 1
N

∑
i∈N

−log es(cos(m1θyi
+m2)−m3)

es(cos(m1θyi
+m2)−m3)+

c∑
j=1,j ̸=yi

es(cos(θj))
,

(4)
where m1, m2 and m3 are the margin penalty parameters
proposed by SphereFace [16], ArcFace [4] and CosFace
[27], respectively. In SphereFace [16], multiplicative angu-
lar margin penalty is deployed by multiplying θ by m1 = α
and setting m2 = 0 and m3 = 0 ( α > 1.0). The decision
boundary of SphereFace is then cos(m1θyi

)− cos(θj) = 0.
Differently, CosFace [27] proposed additive cosine mar-
gin penalty by setting m1 = 1, m2 = 0 and m3 = α
(0 < α < 1 − cos(π4 )). The decision boundary of Cos-
Face is then cos(θyi)− cos(θj)−m3 = 0. Later, ArcFace
[4] proposed additive angular margin penalty by setting up
m1 = 1, m2 = α and m3 = 0 (0 < α < 1.0). The decision
boundary of ArcFace is then cos(θyi

+m2)− cos(θj) = 0.
Even though, ArcFace [4], CosFace [27] and SphereFace

[16] introduced the important concept of angular margin
penalty on softmax loss, selecting a single optimal margin
value (α) is a critical issue in these works. By setting up
m1 = 1, m2 = 0 and m3 = 0, ArcFace, CosFace and
SphereFace are equivalent to the modified softmax loss. A
reasonable choice could be selecting a large margin value
that is close to the margin upper bound to enable higher
separability between the classes. However, when the mar-
gin value is too large, the model fails to converge, as stated
in [27]. ArcFace, CosFace, and SphereFace selected the
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Figure 1. Decision boundary of (a) ArcFace, (b) ElasticFace-Arc, (c) CosFace, and (d) ElasticFace-Cos for binary classification. The
dashed blue line is the decision boundary. The gray area illustrates the decision margin.

margin value through trial and error assuming that the sam-
ples are equally distributed in geodesic space around the
class centers. However, this assumption could not be held
when there are largely different intra-class variations lead-
ing to less than optimal discriminative feature learning, es-
pecially when there are large variations between the sam-
ples/classes in the training dataset. This motivated us to pro-
pose ElasitcFace loss by utilizing random margin penalty
values drawn from a Gaussian distribution aiming at giving
the model space for flexible class separability learning.

Elastic Angular Margin Penalty-based Loss (Elastic-
Face) The proposed ElasticFace loss is extended over the
angular margin penalty-based loss by deploying random
margin penalty values drawn from a Gaussian distribution.
Formally, the probability density function of a normal dis-
tribution is defined as follows:

f(x) =
1

σ
√
2π

e−
1
2 (

x−µ
σ )2 , (5)

where µ is the mean of the distribution and σ is its standard
deviation. To demonstrate and prove our proposed elas-
tic margin, we chose to integrate the randomized margin
penalty in ArcFace (noted as ElasticFace-Arc) and CosFace
(noted as ElasticFace-Cos) as they proved to have clearer
geometric interpretation and achieved higher accuracy
on mainstream benchmarks than the earlier SphereFace.
ElasticFace-Arc (LEArc) can be defined as follows:

LEArc =
1
N

∑
i∈N

−log es(cos(θyi+E(m,σ)))

es(cos(θyi+E(m,σ)))+
c∑

j=1,j ̸=yi

es(cos(θj))
,

(6)
and ElasticFace-Cos (LECos) can be defined as follows:

LECos =
1
N

∑
i∈N

−log es(cos(θyi )−E(m,σ))

es(cos(θyi )−E(m,σ))+
c∑

j=1,j ̸=yi

es(cos(θj))
,

(7)
where E(m,σ) is a normal function that return a random
value from a Gaussian distribution with the mean m and the
standard deviation σ.

The decision boundaries of ElasticFace-Arc and
ElasticFace-Cos are cos(θyi +E(m,σ))− cos(θj) = 0 and
cos(θyi) − cos(θj) − E(m,σ) = 0, respectively. Figure 1
illustrates the decision boundary of ArcFace, ElasticFace-
Arc, CosFace and ElasticFace-Cos. The sample push
towards its center during training using ElasticFace-Arc
and ElasticFace-Cos varies between training samples,
based on the margin penalty drawn from E(m,σ). During
the training phase, a new random margin is generated for
each sample in each training iteration. This aims at giving
the model flexibility in the push for class separability.
When σ is 0, our ElasticFace-Arc and ElasticFace-Cos are
equivalent to ArcFace and CosFace, respectively.

ElasticFace+ We propose an extension to our Elastic-
Face, the ElasticFace+, that observes the intra-class varia-
tion during each training iteration and use this observation
to assign a margin value to each sample based on its prox-
imity to its class center. This causes the samples that are rel-
atively far from their class center to be pushed with a larger
penalty margin to their class center. This aims at giving the
model space to push the samples that are relatively far from
their class center to be closer to their centers while giving
less penalty attention to the samples that are already close to
their center. To achieve that, we sort (descending) the output
of the Gaussian distribution function (Equation 5) based on
cos(θyi) value. Thus, the sample with small cos(θyi) will
be pushed with large value from E(m,σ) function, and vice
versa.

Parameter Selection The probability density function
has its peak around m [22]. Thus, when ElasticFace is in-
tegrated into ArcFace [4], we select the best margin value
(as a single value) by training three instances of ResNet-
50 [8] on CASIA [30] with ArcFace loss using margins
equal to 0.45, 0.50 and 0.55, respectively, to assure the ad-
vised margin in [4]. Then, based on the sum of the perfor-
mance ranking Borda count on LFW [9], AgeDB-30 [20],
CALFW [34], CPLFW [33], and CFP-FP [24], we select the
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(c) ElasticFace+ (m = 0.5, σ = 0.0175)
Figure 2. Toy example of 3 ResNet-18 networks trained under different experimental settings. The 2-D features are normalized. Thus, the
feature embeddings are allocated around the class centers in the arc space with a fixed radius. The numbers next to each class center indicate
the mean of the standard deviation of each class feature embeddings. The angle in degree are calculated between each two consecutive
classes to illustrate the decision margin between the classes. One can noticed that feature produced by ElasticFace and ElasticFace+ are
more equally distributed around the class centers than ArcFace, in the arc space. Same colors always indicates same class across plots.

Loss m σ
LFW AgeDB-30 CALFW CPLFW CFP-FP -
Acc (%) BC Acc(%) BC Acc(%) BC Acc(%) BC Acc(%) BC Sum BC

ArcFace 0.55 - 99.52 3 94.58 1 93.82 2 89.05 1 95.24 1 8
ArcFace 0.5 - 99.46 2 94.83 3 93.88 3 89.72 3 95.36 2 13
ArcFace 0.45 - 99.43 1 94.66 2 93.80 1 89.42 2 95.53 3 9
ElasticFace-Arc 0.5 0.0125 99.53 4 94.80 1 93.68 2 89.72 3 95.43 1 11
ElasticFace-Arc 0.5 0.0175 99.47 1 95.13 4 93.67 1 89.53 2 95.54 3 11
ElasitcFace-Arc 0.5 0.025 99.52 3 94.95 3 93.78 3 89.50 1 95.44 2 12
ElasitcFace-Arc 0.5 0.05 99.52 3 94.82 2 93.90 4 89.79 4 95.59 4 17
ElasitcFace-Arc+ 0.5 0.0125 99.53 4 95.00 2 93.68 1 89.58 4 95.40 2 13
ElasitcFace-Arc+ 0.5 0.0175 99.53 4 95.07 3 93.95 3 89.37 1 95.67 4 15
ElasitcFace-Arc+ 0.5 0.0225 99.42 1 95.15 4 93.73 2 89.48 2 95.36 1 10
ElasitcFace-Arc+ 0.5 0.05 99.45 2 94.83 1 94.00 4 89.50 3 95.56 3 13

Table 1. Parameter selection for ElasticFace-Arc and ElasticFace-
Arc+. The Borda count (BC) is reported separately for each of
training settings (ArcFace, ElasticFace-Arc and ElasticFace-Arc+)
and each of the evaluation benchmarks. The final σ and m param-
eters are selected based on the highest BC sum. In all settings, the
used architecture is ResNet-50 trained on CASIA [30].

Loss m σ
LFW AgeDB-30 CALFW CPLFW CFP-FP -
Acc (%) BC Acc (%) BC Acc (%) BC Acc (%) BC Acc (%) BC Sum BC

CosFace 0.4 - 99.42 1 94.65 3 93.45 1 90.38 3 95.30 1 9
CosFace 0.35 - 99.55 3 94.55 2 93.78 3 89.95 1 95.31 2 11
CosFace 0.3 - 99.45 2 94.45 1 93.46 2 90.12 2 95.39 3 10
ElasticFace-Cos 0.35 0.0125 99.45 2 94.72 1 93.83 1 90.12 2 95.47 3 9
ElasticFace-Cos 0.35 0.0175 99.50 3 94.77 3 93.97 4 90.10 1 95.30 2 13
ElasticFace-Cos 0.35 0.025 99.42 1 94.85 4 93.88 2 90.20 3 95.21 1 11
ElasticFace-Cos 0.35 0.05 99.52 4 94.77 3 93.93 3 90.38 4 95.52 4 18
ElasticFace-Cos+ 0.35 0.0125 99.38 1 94.50 2 93.67 3 89.85 1 95.20 1 8
ElasticFace-Cos+ 0.35 0.0175 99.45 2 94.97 4 93.48 1 89.98 2 95.23 2 11
ElasticFace-Cos+ 0.35 0.025 99.55 4 94.63 3 93.65 2 90.28 4 95.47 4 17
ElasticFace-Cos+ 0.35 0.05 99.48 3 94.45 1 93.77 4 90.01 3 95.26 3 14

Table 2. Parameter selection for ElasticFace-Cos and ElasticFace-
Cos+. The Borda count (BC) is reported separately for each
of training settings (ArcFace, ElasticFace-Cos and ElasticFace-
Cos+) and each of the evaluation benchmarks. The final σ and m
parameters are selected based on the highest BC sum. In all set-
tings, the used architecture is ResNet-50 trained on CASIA [30].

margin that achieved the highest Borda count sum and set it
as m for E(m,σ) function, where our goal is to use the most
optimal margin. The best margin observed in our experi-
ment, in this case, is 0.5 (Table 1). To select the σ value for
E(m,σ) function, we conducted additional experiments on
four instances of ResNet-50 trained on CASIA [30] with our
proposed ElasticFace-Arc by setting up the σ to one of these

values 0.0125, 0.015, 0.025 and 0.05. Then, we rank these
models based on the sum of the performance ranking Borda
count across all datasets. Finally, the σ value is chosen
based on the highest Borda count sum. The best σ observed
in our experiment, in this case, is 0.05 (Table 1). Similarly,
we follow the same procedure to select the parameters (m
and σ) for ElasticFace-Cos. We first choose the best mar-
gin value by training three different instances of ResNet-50
on CASIA [30] with CosFace using a margin equal to 0.3,
0.35, and 0.40. The best m observed in our experiment
based on the sum of the performance ranking Borda count
across all evaluated datasets, in this case, is 0.035 (Table 2).
Similar to σ selection approach of ElasticFace-Arc, we train
four instance of ElasticFace-Cos to choose the best σ for
E(m,σ) function. The best observed σ in our experiment,
in this case, is 0.05 (Table 2). For ElasticFace-Cos+ and
ElasticFace-Arc+, we followed the exact approach of pa-
rameter selection for ElasticFace-Arc and ElasticFace-Cos.
The best observed σ for ElasticFace-Arc+ is 0.0175 and the
best observed one for ElasticFace-Cos+ is 0.025 (Table 1
and 2). These selected parameters are used to train our so-
lutions (training details in Section 3) evaluated in Section
4.

Toy example To demonstrate the robustness and the class
separability induced by our proposed ElasticFace and Elas-
ticFace+, we present a simple toy example by training three
ResNet-18 networks [8] to classify eight different identi-
ties and produce 2-D feature embeddings. All the networks
are trained with a small batch size of 128 for 11200 iter-
ations with stochastic gradient descent (SGD) and an ini-
tial learning rate of 0.1. The learning rate is reduced by
a factor of 10 after 1680, 2800, 3360, and 8400 training
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iterations. To demonstrate a classification case where the
classes are not identically varied, these eight identities are
selected to have four identities with small intra-class varia-
tion and another four identities with a large intra-class vari-
ation (measured as the average of all intra-class compari-
son scores for each identity). These identities were cho-
sen from all the identities with more than 400 images per
identity in the MS1MV2 dataset [4], we note this selected
subset as MS1MV2-400. From these identities, we select
the four identities with the highest intra-class variation and
the four with the lowest intra-class variation. The features
for this selection were extracted using an open-source 2

ResNet-100 [8] model trained with ArcFace loss [4], and
the comparison is performed by a cosine similarity. The
set of the selected eight identities is noted as MS1MV2-
8. We use MS1MV2-8 to train the toy networks with Arc-
Face (m=0.5), ElasticArcFace (m=0.5, σ=0.05), and Elas-
ticArcFace+ (m=0.5, σ=0.0175), based on our parameter
selection. Figure 2 shows the classification of MS1MV2-
8 for each of the experimental settings. In each of the plots
in Figure 2a, 2b and 2c, we calculate the angle between
each consecutive identities to demonstrate the separability
between the identities in the arc space (inter-class discrep-
ancy). The optimal inter-class discrepancy may be achieved
if the angle, in degree, between each of consecutive identi-
ties is close to 45 degrees i.e. 360 / 8. Also, we calculate the
mean of the standard deviation of each class feature embed-
dings to illustrate intra-class compactness induced by Arc-
Face, ElasticFace, and ElasticFace+. The smaller standard
deviation (shown at the edge of each class in Figure 2), in
this case, indicates higher intra-class compactness. It can be
noticed that our EalsticFace and EalsticFace+ achieved bet-
ter intra-class compactness and inter-class discrepancy than
ArcFace, while the differences in inter-class variation be-
tween EalsticFace and EalsticFace+ are minor (Figures 2a
2c, and 2b).

3. Experimental setup

Training settings: The network architecture we used to
demonstrate our ElasticFace is the ReseNet-100 [8]. This
was motivated by the wide use of this architecture in the
state-of-the-art face recognition solutions [1,4,5,10,26]. We
follow the common setting [1, 4, 10] to set the scale param-
eter s to 64. We set the mini-batch size to 512 and train our
model on one Linux machine (Ubuntu 20.04.2 LTS) with
Intel(R) Xeon(R) Gold 5218 CPU 2.30GHz, 512 G RAM,
and 4 Nvidia GeForce RTX 6000 GPUs. The proposed
models in this paper are implemented using Pytorch [21].
All models are trained with Stochastic Gradient Descent
(SGD) optimizer with an initial learning rate of 1e-1. We
set the momentum to 0.9 and the weight decay to 5e-4.

2https://github.com/deepinsight/insightface

The learning rate is divided by 10 at 80k, 140k, 210k, and
280k training iterations. The total number of training iter-
ation is 295K, which corresponds to the number of margin
sampling from the normal distribution. During the train-
ing, we use random horizontal flipping with a probability of
0.5 for data augmentation. The networks are trained (and
evaluated) on images of the size 112 × 112 × 3 to produce
512− d feature embeddings. These images are aligned and
cropped using the Multi-task Cascaded Convolutional Net-
works (MTCNN) [31] following [4]. All the training and
testing images are normalized to have pixel values between
-1 and 1.

Training dataset: We follow the trend in recent works
[1,4,10,19] in using the MS1MV2 dataset [4] to train the in-
vestigated models with the proposed ElasticFace loss. This
enables a direct comparison with the state-of-the-art as will
be shown in Section 4. The MS1MV2 is a refined ver-
sion [4] of the MS-Celeb-1M [7] containing 5.8M images
of 85K identities.

Evaluation benchmarks and metrics: To demonstrate
the effect of our proposed ElasticFace on face recogni-
tion accuracy and enable a wide comparison to state-of-
the-art, we report the achieved results on nine bench-
marks. These benchmarks are of a diverse nature, where
some represent a special vulnerabilities of face recogni-
tion. The nine benchmarks are 1) Labeled Faces in the
Wild (LFW) [9], 2) AgeDB-30 [20], 3) Cross-age LFW
(CALFW) [34], 4) Cross-Pose LFW (CPLFW) [33], 5)
Celebrities in Frontal-Profile in the Wild (CFP-FP) [24],
6) IARPA Janus Benchmark-B (IJB-B) [28], 7) IARPA
Janus Benchmark-C (IJB-C) [18], 8) MegaFace [13], and
9) MegaFace (R) [4]. The face recognition performance
on LFW, AgeDB-30, CALFW, CPLFW, and CFP-FP is re-
ported as verification accuracy, following their evaluation
protocol. The performance on IJB-C and IJB-B is reported
(as defined in [18, 28]) as true acceptance rates (TAR) at
false acceptance rates (FAR) of 1e-4. The MegaFace and
MegaFace(R) benchmarks report the face recognition per-
formance as Rank-1 correct identification rate and as TAR
at FAR=1e–6 verification accuracy.

We acknowledge the verification and identification per-
formance evaluation metrics reported in ISO/IEC 19795-
1 [11]. However, to enhance the reproducibility and com-
parability, we follow the evaluation protocols and metrics
used in each of the benchmarks as listed above.

4. Results
Tables 3 and 4 presents the achieved results on the nine

considered benchmarks. The main observation is that our
proposed ElasticFace solutions scored beyond the state-of-
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Method Training
Dataset

LFW AgeDB-30 CALFW CPLFW CFP-FP
Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%)

ArcFace [4] (CVPR2019) MS1MV2 [4, 7] 99.82 (3) 98.15 95.45 92.08 98.27
CosFace [27] (CVPR2018) private 99.73 - - - -
Dynamic-AdaCos [32] (CVPR2019) clean MS1M [7, 32] + CASIA [30] 99.73 - - - -
AdaptiveFace [15] (CVPR2019) clean MS1M [7, 29] 99.62 - - - -
UniformFace [5] (CVPR2019) clean MS1M [4, 7] + VGGFace2 [2] 99.8 - - - -
GroupFace [14] (CVPR2020) clean MS1M [4, 7] 99.85 (1) 98.28 (3) 96.20 (1) 93.17 98.63
CircleLoss [26] (CVPR2020) clean MS1M [7, 26] 99.73 - - - 96.02
CurricularFace [10] (CVPR2020) MS1MV2 [4, 7] 99.80 98.32 (2) 96.20 (1) 93.13 98.37
Dyn-arcFace [12] (MTAP2021) clean MS1M [4, 7] 99.80 97.76 - - 94.25
MagFace [19] (CVPR2021) MS1MV2 [4, 7] 99.83 (2) 98.17 96.15 92.87 98.46
Partial-FC-ArcFace [1] (ICCVW2021) MS1MV2 [4, 7] 99.83 (2) 98.20 96.18 (2) 93.00 98.45
Partial-FC-CosFace [1] (ICCVW2021) MS1MV2 [4, 7] 99.83 (2) 98.03 96.20 (1) 93.10 98.51
ElasticFace-Arc (ours) MS1MV2 [4, 7] 99.80 98.35 (1) 96.17 (3) 93.27 (2) 98.67 (2)
ElasticFace-Cos (ours) MS1MV2 [4, 7] 99.82 (3) 98.27 96.03 93.17 98.61 (3)
ElasticFace-Arc+ (ours) MS1MV2 [4, 7] 99.82 (3) 98.35 (1) 96.17 (3) 93.28 (1) 98.60
ElasticFace-Cos+ (ours) MS1MV2 [4, 7] 99.80 98.28 (3) 96.18 (2) 93.23 (3) 98.73 (1)

Table 3. The achieved results on the LFW, AgeDB-30, CALFW, CPLFW, and CFP-FP benchmarks. On large age gape (AgeDB-30)
and frontal-to-profile face comparisons (CFP-FP), the ElasticFace solutions consistently extend state-of-the-art performances. ElasticFace
scores very close to the state-of-the-art on LFW and CALFW. All decimal points are provided as reported in the respective works. The top
performance in each benchmark is in bold. The top three performances in each benchmark are noted with rank number between parentheses
(1,2 or 3).

Method Training
Dataset

IJB-B IJB-C MegaFace (R) MegaFace
TAR at

FAR1e–4 (%)
TAR at

FAR1e–4 (%) Rank-1 (%)
TAR at

FAR1e–6 (%) Rank-1 (%)
TAR at

FAR1e–6 (%)
ArcFace [4] (CVPR2019) MS1MV2 [4, 7] 94.2 95.6 98.35 98.48 81.03 96.98
CosFace [27] (CVPR2018) private - - - - 82.72 (1) 96.65
Dynamic-AdaCos [32] (CVPR2019) clean MS1M [7, 32] + CASIA [30] - 92.40 97.41 - - -
AdaptiveFace [15] (CVPR2019) clean MS1M [7, 29] - - 95.02 95.61 - -
UniformFace [5] (CVPR2019) clean MS1M [4, 7] + VGGFace2 [2] - - - - 79.98 95.36
GroupFace [14] (CVPR2020) clean MS1M [4, 7] 94.93 96.26 98.74 (3) 98.79 81.31 (2) 97.35 (2)
CircleLoss [26] (CVPR2020) clean MS1M [7, 26] - 93.95 98.50 98.73 - -
CurricularFace [10] (CVPR2020) MS1MV2 [4, 7] 94.8 96.1 98.71 98.64 81.26 (3) 97.26
Dyn-arcFace [12] (MTAP2021) clean MS1M [4, 7] - - - - - -
MagFace [19] (CVPR2021) MS1MV2 [4, 7] 94.51 95.97 - - - -
Partial-FC-ArcFace [1] (ICCVW2021) MS1MV2 [4, 7] 94.8 96.2 98.31 98.59 - -
Partial-FC-CosFace [1] (ICCVW2021) MS1MV2 [4, 7] 95.0 96.4 98.36 98.58 - -
ElasticFace-Arc (ours) MS1MV2 [4, 7] 95.22 (3) 96.49 (3) 98.81 (1) 98.92 (1) 80.76 97.30
ElasticFace-Cos (ours) MS1MV2 [4, 7] 95.30 (2) 96.57 (2) 98.70 98.75 81.01 97.31 (3)
ElasticFace-Arc+ (ours) MS1MV2 [4, 7] 95.09 96.40 98.80 (2) 98.83 (3) 80.68 97.44 (1)
ElasticFace-Cos+ (ours) MS1MV2 [4, 7] 95.43 (1) 96.65 (1) 98.62 98.85 (2) 80.08 97.29

Table 4. The achieved results on the IJB-B, IJB-C, MegaFace (R), and MegaFace benchmarks. On the earlier three, and the verification
accuracy of the fourth, the ElasticFace solutions consistently extend state-of-the-art performances. ElasticFace scores very close to the
state-of-the-art on MegaFace. MegaFace has been refined in [4] to MegaFace (R) as it contains many face images with wrong labels.
All decimal points are provided as reported in the respective works. The top performance in each benchmark is in bold. The top three
performances in each benchmark are noted with rank number between parentheses (1,2 or 3).

the-art in seven out of the nine benchmarks, and very close
to the state-of-the-art in the remaining two. When possi-
ble, and to build a fair comparison, the results of previous
works are reported when trained on the MS1MV2 [4, 7] (or
a refined variant of MS1M [7]) as the ElasticFace results
are based on training on this dataset. The proposed Elas-
ticFace ranked first in comparison to the state-of-the-art on
the benchmarks AgeDB-30, CPLFW, CFP-FP, IJB-B, IJB-
C, MegaFace (R), and MegaFace (verification). In the re-
maining benchmarks, ElasticFace solutions ranked second
on CALFW, third on LFW, and fourth on MegaFace (iden-
tification).

A main outcome of the evaluation is concerning the
databases with very large intra-user variations. These

are the large age gape benchmark (AgeDB-30) and the
frontal-to-profile face verification benchmark (CFP-FP). On
AgeDB-30, our ElasticFace-Arc solution scored an accu-
racy of 98.35%, while the top state-of-the-art performance
was 98.32% scored by the CurricularFace [10]. On CFP-
FP, our ElasticFace-Arc+ solution scored an accuracy of
98.73% and our ElasticFace-Arc scored an accuracy of
98.67%, while the top state-of-the-art performances were
98.51% scored by the Partial-FC-CosFace [1] solution and
98.46% scored by the MagFace [19]. This significantly en-
hanced performance in the extreme intra-class variation sce-
narios points out the generalizability induced by the Elas-
ticFace loss. CALFW and CPLFW also considered age
gaps and pose variation, however, with a lower variation
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than AgeDB-30 and CFP-FP. In CALFW, ElasticFace-Cos+
scored a close second with 96.18% accuracy, with the lead
going to the CurricularFace [10] with 96.20% accuracy. In
CPLFW, our ElasticFace-Arc+ is ranked first with 93.28%
accuracy, while the top state-of-the-art performance was
93.17% accuracy scored by the GroupFace [14]. On the
LFW benchmark [9], which is one of the oldest and nearly
saturated benchmarks reported in the recent works, our
ElasticFace-Cos and ElasticFace-Arc+ solutions scored an
accuracy of 98.82%, very close behind the GroupFace [14]
with 99.85%.

In Table 4, on IJB-B benchmark, our ElasticFace-Cos+
scored a TAR at FAR1e–4 of 95.43%, far ahead of the
Partial-FC-CosFace [1] and the GroupFace [14] with 95.0%
and 94.93%, respectively. Similarly, on the IJB-C bench-
mark, our ElasticFace-Cos+ scored a TAR at FAR1e–4
of 96.65%, ahead of the Partial-FC-CosFace [1] and the
GroupFace [14] with 96.4% and 96.36% respectively. On
the MegaFace (R), our ElasticFace-Arc scored 98.81%
Rank-1 identification rate and 98.92% TAR at FAR1e–6,
ahead of the previous lead solution, the GroupFace [14]
with 98.74% and 98.79%, respectively. On the MegaFace
benchmark, our ElasticFace-Cos scored Rank-1 identifica-
tion rate of 81.01%, close to the state-of-the-art 82.72%
score by CosFace [27], noting that CosFace was trained
on a private dataset. On the same benchmark (MegaFace),
our ElasticFace-Arc+ ranked first with 97.44% TAR at
FAR1e–6, while the top state-of-the-art performances were
97.35% scored by the GroupFace [14]. It must be men-
tioned that the MegaFace benchmark has been refined in
[4] to MegaFace (R) as it contains many face images with
wrong labels as reported in [4].

In comparison to the closely defined losses in ArcFace
[4], CosFace [27], and Partial-FC [1] solutions, our Elas-
ticFace models did prove to provide a strong performance
edge by scoring higher recognition performance on most
benchmarks. When it comes to comparing ElasticFace and
ElasticFace+, the ElasticFace-Arc and ElasticFace-Arc+
did achieve very close performances when considering all
benchmarks. On the other hand, the ElasticFace-Cos+ did
outperform ElasticFace-Cos on most benchmarks.

We acknowledge that the Partial-FC [1] solution reported
additional performance rates when trained on their new col-
lected database, the Glint360K [1]. However, we could not
acquire this database as it requires an account on a cloud
platform, that in itself requires a SIM card registered in a
specific country, which is very restrictive and we do not
have access to. Therefore, and for a fair comparison, we
opted to compare our results with the Partial-FC results
when trained on the same dataset that our ElasticFace so-
lution is using, the MS1MV2 [4, 7] dataset.

The slightly increased training computational cost is a
minor limitation of our proposed ElasticFace. Training the

ResNet-100 model on MS1MV2 dataset with CosFace or
ArcFace using the specified machine and training details
described in Section 3 requires around 57 hours. This train-
ing time is increased by around one minute for ElasticFace
and by 11 hours for ElasticFace+. The minor increase in
the ElasticFace training time is caused by the sampling of
the margin values, while the larger increase in ElasticFace+
training time is additionally caused by the sorting algo-
rithms.

On a less technical note, we stress that our efforts in the
advancement of face recognition are aimed at enhancing the
security, convenience, and life quality of the members of so-
ciety, e.g. enabling convenient access to financial and health
services [6] and enhancing the security of border checks
within clear legal frameworks and users consent. We ac-
knowledge and reject the possible malicious or illegal use
of this and other technologies.

5. Conclusion

In this paper, we propose an elastic margin penalty loss
(ElasticFace) that avoids setting a single constant penalty
margin. Our motivation considers that real training data is
inconsistent in terms of inter and intra-class variation, and
thus the assumption made by many margin softmax losses
that the geodesic distance between and within the different
identities can be equally learned using a fixed margin is less
than optimal. We, therefore, relax this fixed margin con-
strain by using a random margin value drawn from a nor-
mal distribution in each training iteration. In an extended
definition, the assignment of these margin values to train-
ing samples corresponds to their proximity to their class
centers. We evaluated our ElasticFace loss, in comparison
to state-of-the-art face recognition approaches, on nine dif-
ferent benchmarks. This evaluation demonstrated that our
ElasticFace solution consistently extended state-of-the-art
face recognition performance on most benchmarks (seven
out of nine). This was specifically apparent in the chal-
lenging benchmarks with large intra-class variations, such
as large age gaps and frontal-to-profile face comparisons.
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