

Presentation of the Joint Research Project Resource-Efficient Maintenance Logistics

(Ressourceneffiziente Instandhaltungslogistik – ResIH)

ICLS 2012, Seoul, Korea Thomas Anlahr, Thomas Heller

SPONSORED BY THE

INVENTED IN

Content

Resource-Efficient Maintenance Logistics

- Project overview
- Areas of work
- Results, innovations and products
- Conclusion
- Outlook

Project overview

Resource-Efficient Maintenance Logistics

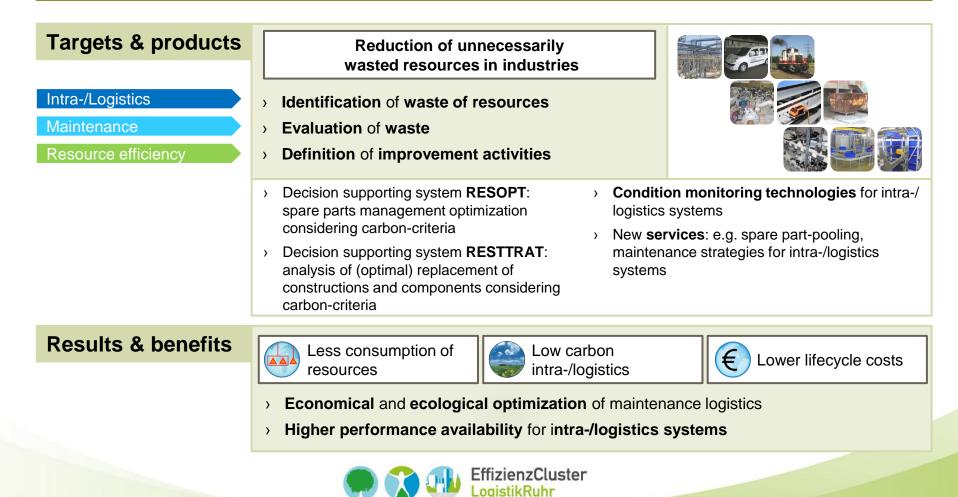
In industry, resources are often unnecessarily wasted

- > Maintenance and logistics are main functions to reduce or avoid consumption of resources
- > It is important to define and evaluate **measures** which can help to **save** resources and use them more efficiently

KNAPSACK

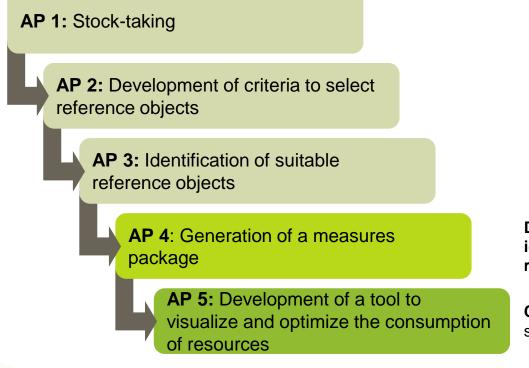
IML

Project partner


Motivation

Project overview

Resource-Efficient Maintenance Logistics



Areas of work

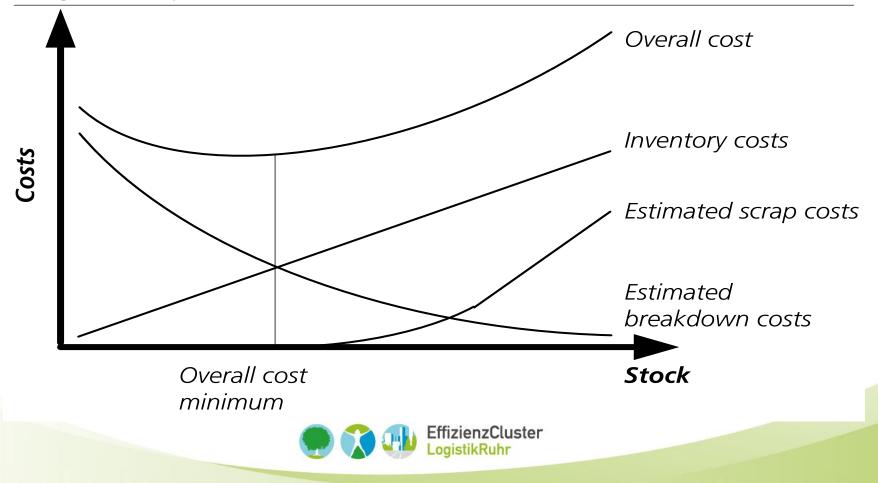
Current results and actual work: Packages of measures and concepts to visualize and optimize the consumption of resources

Definition of **measures** and **strategies** to **identify** and **optimize** the **consumption** of **resources** in terms of the **reference objects**

Concept development of new decision supporting systems **RESOPT** und **RESSTRAT**

Current results:

Package of measures to optimize the consumption of resources in maintenance and spare parts management


Target: avoidance of unnecessarily produced spare parts Premise: Taking stock of the actual spare parts situation

- 1) Self-production or refurbishment of spare parts reaction time, utilization
- 2) Warehousemanagement concepts and strategies within a network lower stock of spare sparts
- 3) Identification of critical equipment spare parts availability
- 4) Utilization of condition monitoring technologies determination of remaining lifetime

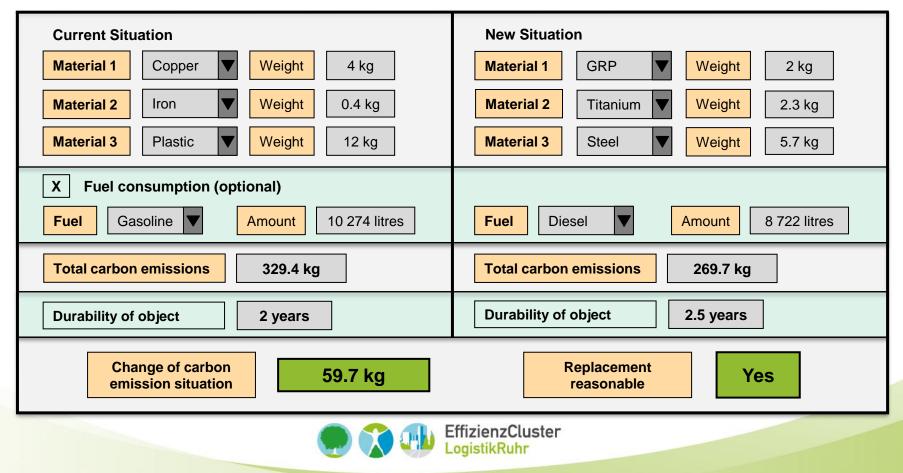
Actual work:

Decision supporting system RESOPT for optimal cross-location storage quantity of spare parts

Current results:

Package of measures to optimize consumption of resources in maintenance and logistics services

2 Kriterium A 1	B	C	D	E	F	G	Н
2 1						ů – Č	
		Material					
3	Titan	Holz	GfK	Kunststoffe	RIF	Abrollcontainer	
4 Beeinflussb Kriterium/							
5 Verfügbarke 2 Objekt							
6 Kostenante 3							
7 Kostenredu 4 Beeinflussbarkeit	√	1	\checkmark	1	V	√	
8 Reduzierun 5 Verfügbarkeitserhöhun	, ~	~	~	~	~	~	
9 Durchführba 6 Kostenanteil	\checkmark	√	\checkmark	1	~	\checkmark	
10 Multiplikato 7 Kostenreduzierung	~	~	~	~	~	~	
11 8 Reduzierung Ressourd	e ~	~	~	~	~	~	
12 ENTSCHEI 9 Durchführbarkeit	1	~	~	~	V	√	
13 10 Multiplikatorischer Nutz	en √	1	1	1	V	X	
15 12 ENTSCHEIDUNG	\checkmark	1	\checkmark	1	V	√	
16 Beeinfluss 13							
17 Verfügbarl 15	Definitionen						
18 Kostenanti 16 Beeinflussbarkeit	Wieviel Einfluss	Wieviel Einfluss hat dieLogistik der InfraServ Knapsack auf diese Maßnahme					
19 Kostenred 17 Verfügbarkeitserhöhu	ng Erhöht die Maßr	Erhöht die Maßnahme die Verfügbarkeit der Ressource					
20 Reduzieru 18 Kostenanteile		Wie hoch ist der Kostenanteil der verifizierten Maßnahme an dem Gesamtprodukt					
21 Durchführt 19 Kostenreduzierung	Kann durch die	Kann durch die Maßnahme die TCO reduziert werden					
20 Reduzierung Ressourd	e Werden durch d	Werden durch diese Maßnahme Ressourcen reduziert					
21 Durchführbarkeit	Wie leicht kann	Wie leicht kann die Maßnahme durchgeführt werden					
	ten Hat die Maßnah	Hat die Maßnahme weitern Nutzen innerhalb der Infraserv oder sogar für andere Unterneh					
24 23							
24							


👫 🔸 🕨 🖉 Material 🖉 Entwässerung 🧹 Bauart 🖉 Sonstiges 🏑 Zusammenfassung 📜 Entscheidung 🤇 😭

EffizienzCluster

Actual work:

Decision supporting system RESSTRAT to analyze the replacement of materials & vehicles based on carbon criteria

Current results and actual work: Package of measures to optimize consumption of resources in maintenance and intralogistics

Condition monitoring technologies:

- Acoustic Emission Testing
- Ultrasonic Testing
- Electromagnetical Testing
- Electrical Inspection
- Laser Inspection
- Leak Testing
- Magnetic Particle Testing
- Penetrant Testing
- Radiographic Testing
- Stress Wave Analysis
- Thermal Inspection
- Tribological Testing
- Vibration Analysis
- Visual / Optical Inspection
- Etc.

EffizienzCluster

Selected and used technologies:

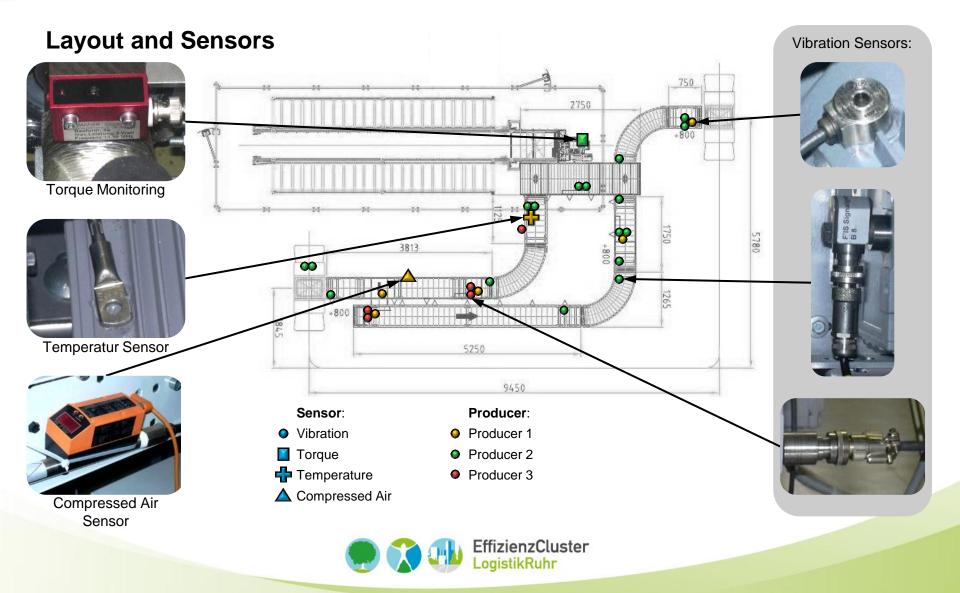
- Vibration Analysis
- Torsional Moment Analysis
- Thermal Inspection
- Leak Testing
- Electrical Testing
- Current Consumption
 Analysis
- PLC Monitoring

Experimental field for condition monitoring

Motivation

- Intralogistics systems are often build too robust
- Little wear after end-of-life time and possibility for further use

Waste of resources



Ambition

- Practical testing of condition monitoring technologies in intralogistics
- Determination of components status and remaining life span
- Further development of predictive maintenance

Experimental field for condition monitoring

Conclusion

Resource-Efficient Maintenance Logistics

Less consumption of resources

consumption calculator

Condition monitoring technologies

Design requirements

Low carbon intra-/logistics

Lower lifecycle costs

Innovations, technology- and leading trends in logistics through ...

- ... utilization of condition monitoring and conditionoriented maintenance in intra-/logistics systems based on reliable information about the objects remaining lifetime
- ... decision supporting system to analyze the replacement of constructions and components considering carbon-emissions (RESSTRAT)
- ... decision supporting system to determine the optimal storage quantity of spare parts considering carbon-emissions (RESOPT)
- ... testing, evaluation and utilization of alternative materials in intra-/logistics systems considering ecological aspects

Strengthening of the competitive position of the project partners and the clusterregion through ...

- ... new services in cross location spare parts management
- ... avoidance or delay of investments in constructions, components and means of transport
- ... increasing the performance driven availability of (project) focused constructions, components and means of transport

Objectives for the future:

- Finishing work at decision supporting system RESOPT and implementation – going live
- Finishing work at decision supporting system RESSTRAT and implementation – going live
- Analysis of condition monitoring research results
- Invention of marketing concepts

Thank you for your attention!

SPONSORED BY THE

Federal Ministry of Education and Research

