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Abstract. This paper describes the application of machine learning
techniques and an associated assurance case for a safety-relevant chas-
sis control system. The method applied during the assurance process is
described including the sources of evidence and deviations from previ-
ous ISO 26262 based approaches. The paper highlights how the choice
of machine learning approach supports the assurance case, especially re-
garding the inherent explainability of the algorithm and its robustness
to minor input changes. In addition, the challenges that arise if applying
more complex machine learning technique, for example in the domain of
automated driving, are also discussed. The main contribution of the pa-
per is the demonstration of an assurance approach for machine learning
for a comparatively simple function. This allowed the authors to develop
a convincing assurance case, whilst identifying pragmatic considerations
in the application of machine learning for safety-relevant functions.

Keywords: Assurance Case · Safety Engineering · Machine Learning ·
Automotive Software.

1 Introduction

Recent advances in Machine Learning (ML) have demonstrated the potential for
efficient and sophisticated classifications based on data-driven models [16]. This
is especially visible in domains where conventional programming is difficult and
computationally expensive. However with the increased application of ML tech-
niques to safety-related tasks, concerns related to the probability of incorrect
or inaccurate predictions have also increased. Current safety-related challenges
in ML include, but are not limited to: explainability of decision-making, unre-
liable confidence information, inadequate approximations via limited data-sets,
insufficient or incomplete definitions, and meaningful safety metrics [15]. These
functional insufficiencies and safety concerns are especially important for ML
in automated driving applications, as they may potentially impact the overall
vehicle’s safety goals [3]. As such, industry safety standards, such as, ISO 26262
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(Road vehicles Functional safety) [6] and ISO/PAS 21448 (Safety of the In-
tended Functionality - SOTIF) [7] apply. However, while these ISO standards
tackle operational safety and offer guidance for safety analyses, neither standard
offers a complete and coherent safety assurance approach suited for ML [1].
These shortcomings are not just limited to automated driving functions alone,
guidance in the standards is also lacking when applying ML to other classes
of vehicle functions, such as powertrain and chassis control. Such functions can
directly impact the stability of the vehicle and therefore contribute to vehicle-
level safety goals. Hence, a comprehensive and tailored safety assurance is vital,
before deployment of ML-based systems, to guarantee safety.

This paper demonstrates such an assurance approach for a road surface
estimation based on sound patterns. Within the application, acoustic sensors
are used to categorise road conditions between the classes of dry (dry) and
not dry (!dry). This information is then used to adapt chassis control functions
to the road surface traction. A misclassification of the surface condition could
therefore lead to a hazardous control action.

The paper is organised as follows: first, an overview of related publications
and ideas is given in Section 2, followed by a description of the case study in
Section 3 and an outline of the proposed approach in Section 4. In Section 5 prop-
erties of the chosen ML technique are analysed with respect to their strengths
and weaknesses for assuring safety. The insights of the analysis are discussed and
summarised as lessons learned in Section 6, leading to a conclusion in Section 7.

2 Related Work

Safety standards already exist for automotive functionality. ISO 26262 focuses
on functional safety and provides comprehensive guidelines for the analysis of
conventional software and hardware failures and ISO/PAS 21448 addresses in-
sufficiencies and potential exploits for (conventional) software and ML, such as
performance limitations, impact from the environment and foreseeable misuse
by third parties. However, both standards do not offer a general strategy or
approach for validating safety of non-conventional SW, such as ML algorithms.

In [12] both ISO standards are combined to create a product development
process for ML. The authors incorporate ISO/PAS 21448 into ISO 26262 work
products and development phases. The proposed approach is heavily based on
ISO 26262 definitions, such as the chapter enumeration, and workflow, e.g. V-
model. The ML specific work products are handled as additional documentation
within each development phase. However, open questions regarding applicability
for complex systems, semantic gaps (cf. Section 4) and meaningful evidence
acquisition still remain. Additionally, no examples or methods are given on how
to generate these additional documents, as no case study is presented.

A different take on this matter is introduced by Picardi et al. in [11], with
argument patterns to demonstrate the safety of ML. The presented safety assur-
ance patterns are tailored for ML components and highlight how the collected
evidence, assumptions, strategies and claims relate to overall system safety goals.
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The patterns are graphically represented using GSN [14] and show how perfor-
mance evidence is (indirectly) connected to specific ML safety requirements. The
result is to coherently and unambiguously represent a compelling safety argu-
mentation. Additionally, the authors show how the argumentation patterns can
be applied within different stages and activities of a complete ML assurance pro-
cess. In a further work, Picardi et al. utilises the argument patterns to develop an
assurance case specifically for a ML component within medical diagnostics [10].

Outside the automotive domain, audio interpretation via ML, for instance
in form of speech recognition, achieves impressive performance. However, most
considerations, analyses and evaluations of ML actually exclude safety as a major
desideratum [2].

In this paper, we apply similar argument patterns to [11] for an assurance
case of a chassis control function based on ML. We point out similarities to
and extensions of the ISO standards within our assurance case. Furthermore, we
highlight how a suitable selection of a ML paradigm can support the assurance
case claims.

3 Case Study

This paper describes the development of an assurance case for a Tyre Noise
Recognition (TNR) component that is used to improve multiple vehicle-level
functions. The TNR makes use of microphones positioned within the wheel hous-
ing to measure road surface noise in order to determine, in real time, whether
or not the road is dry. Here, dryness is defined as a road surface without any
materials between tyre and road surface. This classification is, in turn, used as
an additional source of information by chassis control and powertrain systems to
determine the current surface traction and thereupon adapt control parameters
accordingly, i.e. a !dry surface requires adaptations for a consistent traction. An
overview of the architecture is depicted in Figure 1.

Sense Understand Act

aleatoric epistemic

Decide

?

TYRE NOISE RECOGNITION

Fig. 1. TNR within system context and its sources of uncertainty.

In order to provide accurate information to the chassis control system, the
TNR must process the audio signal with strict real-time requirements and be
able to filter sampling anomalies caused by conditions such as the impact of loose
gravel. Due to the runtime properties as well as the ability to process a wide
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range of signal patterns based on available data, a ML technique was chosen
to implement the classification function of the TNR (cf. Section 5). Previous
versions of the TNR were used to optimise chassis control performance. Through
limits imposed within the vehicle-level function, the remaining safety concerns
regarding the ML-based classification were low enough to assign only Quality
Management (QM) requirements to the TNR after completing the hazard and
risk analysis according to ISO 26262. However, in order to increase the functional
benefits of the vehicle-level function through usage of TNR information, it was
decided to evaluate the impact of reducing the limits imposed within the vehicle-
level function. This in turn placed an increased safety load onto the TNR and
hence led to the following functional safety requirement (FSR) allocated to the
TNR:

– FSR x: The TNR shall not provide the result dry in case of a non-dry road
surface (ASIL B).

The objective of the project was to develop an assurance case to argue that
this level of integrity can be achieved for the TNR even though its output de-
pends on a ML-based classification function. This includes ensuring that the
hardware and software components were developed and verified according the
ASIL B relevant guidelines of ISO 26262 to ensure the integrity of the execution
with respect to hardware failures and software errors. In addition, SOTIF-like
safety concerns regarding uncertainty in the domain understanding as well as
accuracy of perception functions must also be considered when developing such
novel ML-based perception systems. This work describes the underlying ap-
proach for ensuring a sufficient level of accuracy of the ML-based road surface
classification across all target operational scenarios, providing a crucial building
block for assuring the safety of ML-based systems for vehicle control systems.

4 Assurance Approach

ML as an implementation paradigm is increasingly used in automotive use cases
where the characteristics of the environment can not be adequately specified for
the purposes of an algorithmic implementation or where such an implementation
may be too computationally intensive, as was the case in the TNR. This, however
can come at the price of introducing uncertainty into the system, which in turn
can manifest itself in the form of functional insufficiencies as defined by ISO/PAS
21448. These uncertainties manifest themselves in various components within
the logical architecture of the system. Of particular interest for this work were
the aleatoric uncertainty inherent in the environment in terms of the manifold
factors that can impact the acoustic signal as well as the epistemic uncertainty
introduced by the ML models themselves. Safety assurance must demonstrate
that the system performance is able to satisfy the safety goals, despite these
potential sources of inadequacies. Therefore, principles from the ISO/PAS 21448
were adapted to extend the safety lifecycle based on ISO 26262.
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An additional factor increasing the difficulty of assuring safety is the issue of
the semantic gap [4] by which the lack of a precise definition of the functional
and performance requirements leads to an inadequate definition of safety require-
ments in relation to the intended or expected behaviour of the system. These
considerations led to the identification of the following additional requirements
on the safety lifecycle:

– A domain analysis as an extension of the item definition phase is required
in order to include a thorough investigation of the operational domain and
understanding of aspects of the environment that can lead to misclassifica-
tions. This phase led to an improved understanding of the system’s safety
requirements and the identification of a domain model, which in turn was
used when reasoning about the completeness of training data and tests.

– The design phase refined these system-level requirements into technical safety
requirements allocated to either primary functions or diagnostic and moni-
toring mechanisms. An analysis of potential failure modes, in terms of insuf-
ficiencies of the ML technique and model was required in order to identify
performance improvements and diagnostic methods.

– Measures to validate the completeness of the specification and to determine
whether a sufficient coverage of environmental conditions that lead to known
insufficiencies has been reached and to minimise the residual risk of unknown
triggering events.

– Due to the lack of specific guidance from the relevant safety standards, an
assurance case approach [8] is required in order to reason about the adequacy
of the safety approach. GSN [14] was applied in order to document, evaluate
and argue the sufficiency of the safety measures within the project.

The phases of the assurance process (cf. Figure 2) were implemented as an
iterative process. For example, technical system design choices, such as the selec-
tion of sensor types, impact properties of the environment that must be analysed
as part of the domain analysis. The discovery of unsupported assumptions in the
assurance case may require a restriction of the functionality in order to ensure
that the system safety requirements are fulfilled.

System Design

Design of a system that is inherently capable of achieving the 

safety goals including an understanding of its technical limitations

Verification & Validation

Evidence to provide confidence in the safe behaviour and residual 

failure rate of the system

Domain Analysis

Definition of safety-relevant properties that must be maintained 

within the chosen operating environment

Assurance Case

Argument that a level of 

residual risk commensurate 

to societal and legal 

expectations has been met

Fig. 2. Summary of the assurance process.
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4.1 Domain Analysis

During the domain analysis phase, the open context environment was system-
atically investigated in order to understand factors influencing the sound profile
and hence lead to unintended classifications. In order to focus on factors affecting
safety, the following relationship between classified and actual prevailing road
surface condition was established:

– True-Positive (TP) Predicted dry while actually dry ,
– True-Negative (TN) Predicted !dry while actually !dry ,
– False-Negative (FN) Predicted !dry while actually dry ,
– False-Positive (FP) Predicted dry while actually !dry .

The misclassification FN only results in an overly conservative control strat-
egy as higher traction is not actually needed but still activated, thereby not
violating any safety goals. Hence, only the misclassification FP, which corre-
sponds to FSR x (cf. Section 3), is safety-relevant.

Next, the concept of identifying triggering events as described in ISO/PAS
21448 was applied in order to develop an understanding of environmental con-
ditions that could lead to a FP classification. This analysis was based on a
thorough technical understanding of the sensing and signal processing principles
involved as well as experience gained during the development and test of the pre-
vious QM-rated version of the TNR. The three main influences on the acoustic
sensing that were identified from the environment are: tyres, road surface and
the transmission medium of sound. These factors were then decomposed into
their fundamental properties, e.g. tyres into rubber mixture, tyre pressure, tyre
dimensions and others. The granularity and definition of each property has been
selected according to physical realisability, for instance, tyre sizes only within
actual produced dimensions. The resulting domain model consists of all feasible
combinations of these properties and can be used to identify known triggering
events describing known performance limitations of the systems [9]. The domain
model can also be used to determine coverage criteria for test cases. However,
even for this relatively simple application, the procedure created an unmanage-
ably large amount of combinations. Too many, in fact, to be practically feasible.
To reduce the amount of test cases, while still arguing coverage of the opera-
tional domain, each property and their individual impact was evaluated using
expert knowledge. This assessment included considerations about safety with
special attention to the physical sensing principle in detail, possible dependence
between properties, as well as their overall significance for the classification. For
instance, test cases regarding tyre dimensions only included min and max sizes
and other combinations of parameters were considered irrelevant as no correla-
tion between the parameters could be determined that would have an impact on
the performance beyond the individual impact of the parameters themselves.

Nevertheless, uncertainty in the completeness of the domain model and ad-
equacy of the abstractions required to reduce combinatorial explosion leads to
the possibility of unknown triggering events and must still be accounted for in
the assurance process. Therefore additional measures were defined in the V&V
phase in order to validate the domain model.
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4.2 System Design

To analyse the design of systems based on the TNR, the architecture presented in
Figure 1 was decomposed into the logical component groups: Sense, Understand,
Decide and Act. This allowed for a clear separation of the concerns identified
in the Domain Analysis and an analysis of each component’s contribution to
overall performance insufficiencies in the system.

The sensing part of the system includes the microphones inside the wheel
arches and their task of measuring the sound waves. The sound waves are recoded
within certain frequency boundaries and compressed for data transmission (cf.
Figure 1). Potential sources of aleatoric uncertainty are the lack of information,
meaning the recorded frequency range does not cover the complete frequency
spectrum sufficiently, measurement uncertainty, defining an imperfect measure-
ment process by technical devices, and numerical approximations within the
data compression algorithm. As all of these uncertainties can potentially lead to
insufficient performance of the TNR, they have been addressed within the as-
surance case along with supporting evidence, e.g., mathematical analysis of data
compression losses. The understanding portion of the logical architecture is ac-
complished by signal pre-processing and an ML-based classifier within the TNR
(cf. Figure 1). The classification exploits the fact that different road conditions
are differentiable through acoustic properties. Potential causes of uncertainties
are ambiguous sound patterns or epistemic uncertainty arising from the selected
ML technique and model. A pessimistic decision strategy was used. In particular,
the TNR will select the safer option !dry in case of conflicting predictions. Sam-
ples from multiple sensors are combined and aggregated over multiple sampling
steps before providing a dry classification. The components corresponding to the
decide and act function groups contain the chassis control logic and actuator
components, respectively. According to the prediction the driving performance
is optimised, for instance by adapting the suspension or spoiler.

4.3 Verification and Validation

Within the verification and validation (V&V) phase, performance requirements
allocated to the system and its components were confirmed. In addition, as-
sumptions regarding the performance potential of the design, as well as the
environment operating conditions were confirmed in order to argue the safety of
the system for its chosen context. This led to the identification of the following
additional objectives within the V&V strategy, with respect to the QM version
of the TNR function:

– Confirmation of assumptions made during system design and safety
assurance: This included, for example, evaluating field data to assess whether
the operating condfitions matched the assumptions in the domain model (cf.
Section 4.1) and confirming that pre-processing of the audio signal did not
reduce the dimensionality of the input data in such a way that dry and !dry
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signals could be mapped to similar feature vectors. Other assumptions in-
clude the influence of signal noise (aleatoric uncertainty) on the performance
of the classifier.

– Evaluation of the function with regard to known triggering events:
These include combinations of environmental conditions discovered during
the domain analysis as well as specific corner cases discovered during field
testing.

– Evaluation of the potential for unknown triggering events: This
objective includes confirms that the domain model covers a sufficient range
of conditions that can impact the performance of the function and that all
relevant usage scenarios have been considered.

– Evaluation of the resilience of the function with regard to residual
unknown triggering events: This objective relates to the ability of the
system to respond to signal patterns not considered in the domain model
and for which either a valid response must nevertheless be given, or no value
at all, resulting in a conservative action from the chassis control system.

A number of analyses, simulations and tests had previously been performed
for the QM-rated version of the TNR. However, these measures were not nec-
essarily aligned to the objectives described above, resulting in some gaps in the
argumentation structure. Therefore, the following methods were identified in or-
der to provide explicit evidence corresponding to the V&V objectives. In some
cases, existing evidence could be aligned with the V&V objectives, in other cases,
additional tests and associated documentation were required.

– Analysis: An understanding of the strengths and weaknesses of the chosen
ML technique and model provided evidence for the inherent properties re-
garding robustness and generalisation. In addition, the prototypes generated
by the algorithm (cf. Section 5) were amenable to examination by subject
matter experts to confirm that they corresponded to known properties of
the dry and !dry signals.

– Simulation: A simulation environment based on synthetic and recorded
data was used for a focused verification of ML properties. Here, signal noise
can also be simulated in order to verify the robustness of the classifier.

– Structured testing: The domain model was used to determine a set of test
cases which cover all known properties which could influence the performance
of the function. In addition, the test cases also included specific corner cases
discovered during field tests and added to the regression test set.

– Field tests: Field tests, where the function was tested on real roads (both
test track and public roads) were performed according to selected properties
of the domain model (cf. Section 4.1). This allowed the coverage of conditions
to be evaluated. Anomalies which could not be explained by the parameters
of the domain model were used to iteratively refine the domain model.

4.4 Assurance Case

The objective of the assurance case was to develop a structured and convincing
argument that the classifier fulfilled its technical requirements, in particular
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with respect to functional insufficiencies that could lead to FP identifications of
dry road surface conditions. The assurance case was described using GSN and
applied the principles from [8]. During the project it was primarily used as a
means of communicating and evaluating the safety assurance approach within
the team but was also developed with future external safety assessors in mind.

The top level structure of the assurance case is shown in Figure 3. The
assurance case focused on claims regarding a sufficient understanding of the
domain and subsequent completeness of the technical safety requirements, the
intrinsic performance potential of the chosen ML technique, the sufficiency of the
training data to cover critical conditions of the domain, and the performance
of the trained function itself. In addition, arguments were developed that the
ML-based classifier was robust against changes in the operating environment as
well as differences between the development and test environment and future
deployment scenarios (e.g. different vehicle configurations).

Fig. 3. Top-level assurance case structure.

5 Detailed Analysis of the Machine Learning Function

A detailed analysis of the applied ML-based classifier with respect to the tech-
nical safety requirements allocated to it and its general suitability regarding the
target task was performed.
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In the case of the TNR, Adaptive Generalised Learning Vector Quantisation
(AGLVQ), an extension to GLVQ [13], was used. Figure 4 shows the operating
principle of this algorithm.

Fig. 4. Overview of the employed AGLVQ algorithm. In the training phase, mean-
ingful features are extracted from the audio signal (1) that are subsequently used to
generate prototypes (2) for both classes, dry (circles) and !dry (triangles), maximis-
ing the distance between them. A threshold for the dry prototype is defined, forming
the decision space for this class. Additionally, a polynomial is fitted (3) that, using
additional context information, adapts the dry prototype to the current situation. At
runtime, features are again extracted from the audio signal (4), mapping the current
sample (rectangle) to the feature space. After that, the learned polynomial is used to
adapt (5) the dry prototype to the current situation. Finally, the current sample is
matched to the prototypes (6) based on the Euclidean distance in the feature space. If
the current sample is within the decision space of the dry prototype it is classified as
such else a !dry road surface is assumed.

The use of AGLVQ had several advantages over other ML approaches from
the perspective of safety assurance. The learned prototypes have been repre-
sented in the same form as the feature engineered audio signals and allowed
the engineers to verify their plausibility. Additionally, in combination with the
straightforward prototype matching used for runtime predictions and the inter-
pretable adaption polynomial, it allowed for a detailed analysis of the decision
space and uncovered potential error patterns. This also outlined another strength
of this approach, the robustness to small input perturbations. Compared to, e.g.,
neural networks, there has been no feature subspace in which small changes of
individual features could be amplified in a way that causes drastic and unex-
pected changes in the output. While not explicitly investigated, this may also
significantly reduce the susceptibility to adversarial attacks. Due to this absence
of discontinuities, the sensitivity to individual factors, e.g., tread depth, the bur-
den of proof on the empirical tests was significantly lower compared to other
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discontinuous functions. Figure 5 shows an extract of the GSN regarding the
choice of the ML technique. Here, the strengths of AGLVQ have been reflected
in G4 1.

Several limitations of AGLVQ were also identified and used to derive addi-
tional Technical Safety Requirements (TSR). One such limitation was a low level
of generalisation. As only a single prototype for the relevant class was generated
there was a noticeable trade-off between safety and execution performance. A
prototype adaption function mitigated this to some extent by incorporating ad-
ditional knowledge about the context of the present situation. However, this
was not sufficient for complex generalisations such as completely new types of
road surfaces. Another limitation was that the prototype adaption in certain
situations transformed the dry prototype slightly towards the decision space for
non-dry road conditions, increasing the risk of incorrect classifications. Further-
more, the approach did not have an explicit way to quantify the uncertainty
for the learning of, adapting, and matching to the prototype apart from the
Euclidean distance, which does not fully account for the relation between the
features. The known weaknesses and the evidence associated with the effective-
ness of the counter-measures to these have been reflected in the GSN under G4 2.
The analyses of these inherent weaknesses in the approach led to the proposal to
develop self-assessment methods, specifically uncertainty quantification [5] and
out-of-distribution detection to be applied at run-time.

Fig. 5. Assurance case structure for choice of ML technique.

In order to demonstrate the performance of the trained function itself (sub-
goal G5 of Figure 5) performance metrics were defined and related to the TSRs.
Since the TNR is a classification task, appropriate metrics were, among others,
accuracy, precision/recall and confusion matrices. These helped to measure the
overall performance and aided the investigation of error patterns. For instance,
class-wise precision and recall allowed appropriate distance thresholds for the
prototype matching to be identified and validated using the available test data.
Additionally, the metrics helped with finding variances in the test data. The
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causes of these variances were iteratively analysed in more depth, either by
gathering additional data or by qualitatively assessing the function with respect
to the properties of the variance causing data. Lastly, the metrics were used to
define acceptance criteria for the TSRs, e.g. that a certain class-wise accuracy
on all validation datasets shall be achieved.

Based on a combination of the measures described above, the fundamental
capability of the classifier for the target task was argued. Regarding the TNR,
AGLVQ was found to be generally suitable, especially as the high degree of
explainability allowed for a thorough analysis of the function and its behaviour.
However, the known limitations and their consequences still left a burden of proof
on the training data and the validation results, which were argued in sub-goals
G3 and G5 of the assurance case.

6 Lessons Learned

The evaluation of the TNR with respect to its application for a safety-critical
system (ASIL B) led to a number of lessons learned that could be applied in
future projects as well as open questions that still remain to be resolved. The na-
ture of the system level safety goals associated with the chassis control functions
allowed for a safe state to be achieved if the road surface could be considered as
!dry, thereby leading to a conservative traction control strategy. This allowed the
function to be designed to indicate an invalid output in the case of ambiguous
inputs as well as a skewing of the audio signals towards the !dry prototype if
required.

The robustness and explainability of the approach helped with the in-depth
analysis of the machine learning component. The ability to analyse the gen-
erated prototypes, their adaption to the current situation at runtime, and the
respective decision space allowed the incorporation of expert knowledge in the
quality assessment. In addition, the robustness due to the continuity of the func-
tion substantially facilitated the investigation of the influence of factors such as
tread depth. This allowed for a significant reduction in the amount of in-field
tests due to a reduction in the dimensions considered during coverage analysis.

Open questions nevertheless remain on the required level of granularity in
the domain model used to evaluate the completeness of selected training data
as well as quantitative test stopping criteria related to statistical performance
metrics. Inevitably, an iterative approach to system development and assurance
will be required (cf. Figure 2) where field-based validation is required to confirm
that sufficient detail in the domain model was achieved and that assumptions
made during analysis, simulation and test were valid. These questions, however,
are currently not addressed by existing safety standards such as ISO 26262,
which assumes behaviour of software that can be evaluated through qualita-
tive measures or ISO/PAS 21448 which requires a function-specific allocation
of quantitative performance targets. The approach used within the project was
to use qualitative arguments to argue the robustness of the ML function with
respect to a broad range of operating conditions as defined by the domain model,
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whilst applying a range of measures (including extensive structured field tests)
to confirm the assumptions behind the domain model. In addition, the TNR is
embedded within a vehicle chassis control system, which in turn is developed
and released according to a set of established development and homologation
guidelines. Nevertheless, an external evaluation of the assurance approach by a
qualified third party is recommended to examine the strength of the provided
arguments.

7 Conclusion

The work described within this paper has demonstrated the feasibility of an as-
surance case for the application of ML for chassis control systems. The assurance
approach made use of a systematic domain analysis to define properties of the
environment relevant to the performance, dedicated measures in the system ar-
chitecture to reduce the safety requirements on the ML function itself, the choice
of an ML technique that enhanced robustness and explainability combined with
a systematic validation plan to argue the absence of unknown triggering events.
However, questions remain relating to the statistical level of performance that
should be demonstrated by the ML algorithm. This type of evidence, would go
above and beyond the forms of V&V proposed by the ISO 26262 standard for
software but is required due to the inherent uncertainties when applying ML
compared to conventional non data-driven algorithms.

The project highlighted the need for better industry-specific standards re-
garding the use of ML for safety-relevant functions, including outside of the do-
main of automated driving. These standards should include specific guidelines
for determining coverage and selection criteria for training data, as well as for
determining quantitative performance targets and testing criteria. These aspects
would become even more relevant by alternative choices of ML technique, such
as Deep Neural Networks, where qualitative arguments relating to the robustness
and generalisation properties of the trained functions are more difficult to gen-
erate based on the complexity and opaqueness of the calculations involved. As
such, any future standardisation should also include a differentiation of measures
based on the intrinsic characteristics of the ML algorithms.
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