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Abstract

We present a phenomenological force-constant model developed for the description of lattice

dynamics of sp2 hybridized carbon networks. Within this model approach, we introduce a new set

of parameters to calculate the phonon dispersion of graphene by fitting the ab initio dispersion.

Vibrational modes of carbon nanotubes are obtained by folding the 2D dispersion of graphene and

applying special corrections for the low-frequency modes. Particular attention is paid to the exact

dispersion law of the acoustic modes, which determine the low-frequency thermal properties and

reveal quantum size effects in carbon nanotubes. On the basis of the resulting phonon spectra, we

calculate the specific heat and the thermal conductance for several achiral nanotubes of different

diameter. Through the temperature dependence of the specific heat we demonstrate that phonon

spectra of carbon nanotubes show one-dimensional behavior and that the phonon subbands are

quantized at low temperatures. Consequently, we prove the quantization of the phonon thermal

conductance by means of an analysis based on the Landauer theory of heat transport.

PACS numbers: 61.46.Fg, 63.22.Gh, 65.80.+n
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I. INTRODUCTION

Phonons play a fundamental role in the physics and the characterization of graphene

and carbon nanotubes. Phenomena such as charge,1–3 spin4 and heat transport,5–8 infrared

and Raman spectra,9–11 electron-phonon scattering12–18 and its related effects as supercon-

ductivity19 and resistivity20,21 can be understood, in most situations, only with a detailed

knowledge of the phonon spectrum. In particular, much effort has been done for determining

thermal and transport properties, which closely depend on the vibrational modes. The most

striking results of experimental and theoretical research in this domain are the observation of

the quantization of the phonon band structure through an analysis of the specific heat,22 the

discovery of ballistic phonon transport23 and the measurement of the quantum of thermal

conductance in a nanowire.24 In technological applications such as nanotube-based electronic

devices, thermal properties are of central importance for understanding and controlling heat

dissipation and self-heating effects.25 Efficient thermal management is required for ensuring

the performance and stability of the devices.

Much experimental work has been done for measuring vibrational spectra10,11,26,27 and for

detecting and controlling the phonon population of isolated nanotubes.28 The best known

feature of experimental data is the strong Raman-active radial breathing mode (RBM),

which is often used for the characterization or identification of different nanotubes in a

sample.29,30 From a theoretical point of view, phonon modes of graphene have been studied

either by effective models31,32 or by ab initio calculations.14,27,33–37 Several models have

been proposed for the lattice dynamics of carbon nanotubes, ranging from zone folding

and force-constant models,32,38–41 valence force-field models,42–44 and tight binding45 to ab

initio calculations.15,34,35,46

In this work we concentrate on the well-established fourth-nearest-neighbor force-constant

model by Jishi et al..32 It was developed and optimized for graphene and subsequently also

adapted to carbon nanotubes by Saito et al..38,39 It has been reparametrized several times

for graphene36,47,48 but, to our knowledge, no further calculations for carbon nanotubes have

been done. While the original parameters were empirically determined by fitting experimen-

tal data of graphite, we propose a new parametrization to fit the ab initio phonon dispersion

of graphene.49 With some corrections, we use this parametrization also for the calculation

of the phonon dispersion of achiral carbon nanotubes. Main attention is paid to the long-
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wavelength acoustic modes and to the controversial question of the dispersion law of the

transverse acoustic (TA) or flexure mode.40 While Saito et al.39 obtain four linear-dispersing

acoustic modes (ω ∝ q), we obtain two linear modes and a doubly degenerate quadratic

dispersing flexure mode (ω ∝ q2). The quadratic dependence of the flexure modes of carbon

nanotubes, predicted by continuum models20,50,51 and obtained by several ab initio calcula-

tions,34,35,46 has been reproduced only by few force-constant models.40,43,52 One of the latter

(the work of Mahan and Jeon40) pursued a detailed study of the symmetry rules that lead to

a quadratic flexure mode and achieved the correct behavior with a three-parameter spring

and mass model. It is chosen for comparisons throughout this paper.

We concentrate on an accurate description of the acoustic phonons since they allow to pre-

dict and interpret several low-temperature thermodynamic properties and to prove quantum

size effects in carbon nanotubes. Using our force-constant model we calculate the specific

heat and the thermal conductance of carbon nanotubes of different diameter and chirality.

Although the exact dispersion law of the acoustic modes is apparently irrelevant for the

quantized thermal conductance,53 the quadratic dispersion of the flexure modes results in

a very different behavior of the low-temperature specific heat.54 Several experimental and

theoretical studies have been achieved for determining the specific heat of carbon nanotubes

and nanotube ropes. Most of them22,55–57 cover a wide temperature interval and provide

approximate estimations of the power law of the T -dependence, but only few works54,58 ex-

tend the temperature range down to ∼0.1 K and provide a more precise analysis. Popov54

showed within a force-constant model that a T 0.5 dependence of the specific heat at very

low temperatures can be directly related to the flexure modes. Lasjaunias et al.58 deter-

mined experimentally on a sample of nanotube ropes that under ∼1 K dominates a T 0.62

dependence. We study the exact power law including temperatures in the mK region and

illustrate how it is correlated with the acoustic modes and the dimensionality of the system.

As in Ref. [22] we prove the 1D quantization of the phonon subbands in nanotubes.

Quantum size effects in carbon nanotubes are observed even in the thermal conductance.

The thermal conductance of phonon waveguides in the ballistic, one-dimensional limit has

been calculated by Rego et al.23 using the Landauer formula and has been proved experi-

mentally by Schwab et al..24 Within the same formalism, we show that the phonon thermal

conductance of carbon nanotubes is quantized and determine the thermal conductance quan-

tum. Our results are in good agreement with theoretical calculations.53,59
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This paper is structured as follows. In Sec. II we provide a brief description of the system.

Section III deals entirely with vibrational properties: After a summary of lattice dynamics

and the model approach in Sec. III A-B, we present our results for the phonon dispersions of

graphene and carbon nanotubes in Sec. III C-D. In Sec. IV we consider thermal properties:

The basic concepts are recalled in Sec. IV A, while Sec. IV B-C show our calculations of the

low-temperature specific heat and the thermal conductance, respectively. Section V contains

final remarks.

II. SYSTEM

The typical honeycomb structure of graphene is defined by a 2D hexagonal lattice with

a basis of two atoms, which we call atom A and B. The lattice vectors are given by

a1 =
(√

3a/2, a/2
)

and a2 =
(√

3a/2,−a/2) with the lattice constant a = 2.46 Å, as

illustrated in Fig. 1.

A carbon nanotube can be thought of as a single graphene sheet that is wrapped into a

seamless cylinder. It is common to define a circumferential vector and a vector parallel to

the tube axis.38,61 The first one, called chiral vector, is defined in terms of the unit vectors

of graphene, C = na1 + ma2, and the sheet is rolled up in such a way that it becomes

the circumference of the tube. The pair of integers (n,m) uniquely defines a particular

nanotube and thus provides a classification among nanotubes. The translational vector T

zig-
zag

armchair

C

T

Θ

O

B

B'

a1

a2

y

x

na1 ma2 A

FIG. 1: The graphene honeycomb lattice with lattice vectors a1 and a2. A carbon nanotube can

be constructed by rolling up the graphene sheet along C so that points O and A coincide (as well

as B and B’ do). Θ denotes the chiral angle. (Figure taken from Ref. [60])
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is perpendicular to C and reproduces the periodicity of the nanotube structure along the

axis direction. It reads T = ((2m+ n)/dR) a1 − ((2n+m)/dR) a2, being dR the greatest

common divisor of (2m+ n) and (2n+m), as T should be the smallest lattice vector in its

direction. Alternatively a nanotube can be defined also by its radius R and the chiral angle

Θ, which is given by the chiral vector measured relative to the direction defined by a1. In

this work we concentrate on the particular cases of zigzag (Θ = 0) and armchair (Θ = π/6)

nanotubes, which represent the class of achiral nanotubes.

III. VIBRATIONAL PROPERTIES

A. Lattice dynamics

To derive the equations of motion for the atoms we use Hamiltonian mechanics, treating

the atoms as point masses moving according to the laws of classical mechanics. To describe

the ion configuration, characterized by the instantaneous location of the atoms, we use the

following notation for a crystal with a monoatomic basis

R̃n(t) = Rn + un(t). (1)

Hence at time t the ion is located at R̃n(t), while Rn is its equilibrium position. In the limit

of small displacements un of the atoms from their equilibrium position, the so-called har-

monic approximation, the equations of motion are a set of coupled second order differential

equations given by

M ün = −
∑
m

Φ(Rn,Rm) · um (2)

where M is the mass of the constituent atom and Φ(Rn,Rm) is the 3 × 3 force-constant

tensor that couples atom n and m. Due to lattice periodicity it is possible to search for

solutions of Bloch-wave type

uq
n(t) = A eiq·Rne−iωt (3)

where A gives the amplitude of the mode, ω the frequency, and q the wave vector. Inserting

Eq. (3) in (2), the equations of motion become

ω2MA =
∑
m

Φ(Rn,Rm) eiq·(Rm−Rn)A. (4)
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These can be written in the compact form

D(q) ·A = ω2A (5)

where we introduced the discrete Fourier transform

D(q) =
1

M

∑
m

Φ(0,Rm) eiq·Rm . (6)

The matrix D(q) is called dynamical matrix and is a hermitian and positive definite matrix.

In order to obtain the eigenvalues ω2(q) and the eigenvectors A(q) we have to solve the

secular problem detD(q) = 0 for each q vector chosen according to the Born-von-Kármán

periodic boundary conditions. The generalization of the above described theory to non-

monoatomic basis systems is easy and can be found, e.g. , in Ref. [62]. Considering a three-

dimensional system with r atoms per unit cell, the dynamical matrix has 3r×3r components

so that for each wave vector q there are 3r frequencies ωs(q), with s = 1, . . . , 3r.

B. Force-constant model

A practical method of investigating vibrational properties of graphene and carbon nan-

otubes (CNTs) is given by phenomenological lattice-dynamical models. These try to con-

struct the force-constant tensor starting by an analytic expression for the interaction energy

of two or more carbon atoms,40,52,63 or alternatively by approximating directly the inter-

atomic force constants by fitting experimental data.32,64 Such empirical models are based

on a few adjustable parameters and are able to provide reliable information that is com-

plementary to that obtainable from more advanced methods. Indeed, an alternative tool is

given by first principles or ab initio calculations based on the quantum mechanical descrip-

tion of electrons.65,66 This method does not rely on input from experimental informations

and includes all relevant effects, providing accurate, experimentally-confirmed and therefore

very predictive results, as has been shown, e.g. , in Ref. [67,68]. However, the computational

effort is large, leading to several restrictions in particular for complex systems of consider-

able size. The advantage of the phenomenological models consists in their simplicity and

the possibility of fast application to almost every system. In view of the aim of our work,

force-constant models turn out as the best choice for two reasons: (i) they provide quick

and reliable implementation for several CNTs of different diameter and chirality, (ii) they
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FIG. 2: An atom A and its first nearest-neighbor atoms Bp (p = 1, 2, 3). φr, φti, and φto represent

forces in radial, in-plane, and out-of-plane direction.

reproduce with a high level of accuracy especially the low-energy acoustic modes, which in

turn determine almost entirely the low-temperature thermal properties of CNTs.

We calculate the phonon modes of graphene and carbon nanotubes using the force-constant

model proposed by Saito et al..38 This model consists in the direct parametrization of

the diagonal real-space force constants including up to fourth nearest-neighbor interactions

(4NNFC approach). This leads to a set of twelve adjustable parameters. The truncation

after the fourth nearest neighbors is justified by the rapid decay of the force constants.35,37 In

the 4NNFC approach the force-constant tensor describing the interaction between an atom

and its nth nearest neighbor on an arbitrarily chosen axis (e.g. , the x axis) has diagonal

form

Φ =




φ
(n)
r 0 0

0 φ
(n)
ti 0

0 0 φ
(n)
to


 (7)

where φ
(n)
r , φ

(n)
ti , and φ

(n)
to represent the force-constant parameters in the radial (bond-

stretching), in-plane, and out-of-plane tangential (bond-bending) directions of the nth near-

est neighbors. The radial direction corresponds to the direction of the bonds and the two

tangential directions are perpendicular to it, as illustrated in Fig. 2. The force-constant

tensors for nearest-neighbor atoms of the same neighbor shell, that are not located on the x

axis, can be obtained by unitary rotation of the tensor of Eq. (7). The formalism is described

accurately in Ref. [38].

For example for first nearest neighbors (n = 1) we obtain the force-constant tensor Φ(A,Bp)

between atom A and its neighbor Bp (p = 2, 3) by

Φ(A,Bp) = U−1
z (θp) Φ(A,B1) Uz(θp) (8)
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where Uz(θp) is a unitary rotation matrix around the z axis

Uz(θp) =




cos(θp) sin(θp) 0

− sin(θp) cos(θp) 0

0 0 1


 (9)

and θp is the angle defined by atom B1, A, and Bp.

The above mentioned tensors describe the interaction between atoms in the plane and

for carbon nanotubes these have to be adapted because of the curvature of the walls. It

is possible to generate the force-constant tensors for the atoms of the nanotube unit cell

by rotation of the chemical bond from the two-dimensional plane of graphene to the three-

dimensional coordinates of the nanotube.38 It is possible to generate the force-constant

tensors for all the atoms of the unit cell of a nanotube from those related to one single atom

of the cell, e.g. atom A1 of Fig. 2. For atoms of type A the tensors of atom A1 must be

rotated by an angle Ψi around the axis of the nanotube (here the y axis)

Φ(Ai,Bp) = U−1
y (Ψi) Φ(A1,Bp−i+1) Uy(Ψi). (10)

Ψi is the polar angle between A1 and Ai around the circumference. If (p− i+1) is negative

or zero we use ( r
2
+ p− i+ 1) instead of it. For atoms of type B we must rotate the tensors

of atom A1 first by π around the z axis, and then by Ψi around the y axis, as before

Φ(Bi,Ap) = U−1
y (Ψi)U

−1
z (π) Φ(A1,Bp−i+1) Uz(π)Uy(Ψi) (11)

where Uy(ψ) and Uz(ψ) are unitary rotation matrices around the y- and z axis, analogously

to that of Eq. (9). The dynamical matrix is obtained by multiplying the force constant

tensors obtained above by exp(iqznT ), where n is the number of the unit cell in which atom

A1 is situated, and T = |T| is the modulus of the translational vector.

C. Results for graphene

In the calculation of the phonon-dispersion relation of graphene done by Saito et al.,38

the force-constant parameters were empirically determined by fitting experimental data of

graphite obtained by inelastic neutron scattering. We perform, instead, a parameter fit to the

ab initio dispersion relation of graphene calculated within density-functional perturbation

theory by Bohnen and Heid.49 The corresponding sets of force constants are listed in Table I.
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Parameters by Saito et al. (Ref. [32]) Our parametrization

Neighbor shell φ
(n)
r φ

(n)
ti φ

(n)
to φ

(n)
r φ

(n)
ti φ

(n)
to

1st 36.50 24.50 9.82 41.8 15.2 10.2

2nd 8.80 -3.23 -0.40 7.6 -4.35 -1.08

3rd 3.00 -5.25 0.15 -0.15 3.39 1.0

4th -1.92 2.29 -0.58 -0.69 -0.19 -0.55

TABLE I: Force-constant parameters for graphene in units of 104 dyn/cm = 10 N/m.

Precisely, the fitting process was performed through a matching of the force-constant

tensor to those obtained by ab initio calculations.49 This procedure is however limited by

the constraint of including up to fourth nearest neighbors in the force-constant tensor, as

required by the model approach. We varied and optimized the force constants in order to

fit as closely as possible the ab initio phonon dispersion. We follow Gartstein52 choosing

the in- and out-of-plane tangential force constants φ
(n)
t so as to satisfy φ

(1)
t + 6φ

(2)
t + 4φ

(3)
t +

14φ
(4)
t = 0. This equality is required by the rotational invariance of the graphene plane,

and the original parameters of Saito and coworkers do not obey this rule. Figure 3 shows

the phonon-dispersion relation resulting from: (a) the original parametrization and (b) our

new parametrization. Both curves are superposed to the ab initio dispersion of Bohnen and

Heid (dotted lines), for direct comparison.

The dispersion relation of graphene comprises three acoustic (A) and three optical (O)

modes, which are either out-of-plane (Z), in-plane longitudinal (L) or transverse (T). The

acoustic ZA mode shows a q2 energy dispersion near Γ rather than the linear dispersion of the

TA and LA mode, which is typical for acoustic modes in 3D solids. The quadratic dispersion

is a characteristic feature of the phonon dispersion of layered crystals69 and can be explained

as a consequence of the D6h point-group symmetry of graphene.38 Another consequence of

the symmetry are the linear crossings of the ZA/ZO modes and the LA/LO modes at the

K point. With respect to the phonon dispersion obtained by Saito et al. and in comparison

with first-principles results, our new parametrization yields a considerable improvement in

the overall phonon dispersion. In particular the acoustic modes provide a remarkable good

fit to ab initio data. The frequency values at high symmetry points Γ, M and K (listed in

Table II) differ only by up to 4% from ab initio data, with exception of the TO mode (6.7% at
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FIG. 3: Dispersion relation of graphene calculated with the fourth-nearest-neighbor model

(4NNFC) (solid lines) in direct comparison with ab initio calculations (dotted lines) of Bohnen

and Heid.49 (a) 4NNFC approach with the original parametrization of Saito et al.; (b) 4NNFC

approach with our parametrization. The corresponding sets of parameters are listed in Table I.

M and 8% at K), which will be discussed later. In the high-energy range, our parametrization

leads to a qualitatively correct rearrangement of the LA and LO modes along the line M-K

and an improvement concerning the crossing of the LO and TO branches along the Γ-M and

Γ-K directions. Nevertheless, there are still major divergencies from the ab initio dispersion

for the LO and TO mode. Neither parametrization reproduces the initial upward curvature,

called overbending, of the LO branch away from Γ that is observed in both the experimental

data26,27,70,71 and in all published first-principles calculations.14,27,33–37 Furthermore, the TO

phonon at the K-point is significantly higher than in the ab initio dispersion. It is known

from literature that the highest optical phonon branch is shaped by the effect of electron-

phonon interactions, which results in a discontinuity in the frequency derivative at Γ and

K.14 These discontinuities are called Kohn anomalies and are revealed by two sharp kinks

in the phonon dispersion. The two Kohn anomalies originate from a non-analytic behavior
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Mode Ref. [49] This work Ref. [37]

Ab initio LDA Ab initio GGA

Γ ZO 914 925 881

LO/TO 1576 1583 1554

M ZA 474 469 471

TA 632 626 626

ZO 641 633 635

LA 1351 1315 1328

LO 1375 1351 1340

TO 1437 1341 1390

K ZA/ZO 538 539 535

TA 1010 969 997

LA/LO 1243 1208 1213

TO 1302 1408 1288

TABLE II: Phonon frequencies (cm−1) of graphene at high symmetry points.

of the phonon dispersion, which is impossible to be reproduced by a finite set of interatomic

force constants. All few-nearest-neighbor force-constant approaches yield a continuous slope

at Γ and K.

In summary, the divergencies from ab initio curves appearing in the high-frequency region

are due to the natural limit of accuracy of empirical force-constant models, which consider a

finite number of nearest-neighbor atoms and miss the long-range character of the dynamical

matrix.

D. Results for carbon nanotubes

In this section we present phonon dispersion relations of achiral carbon nanotubes that

rely on the earlier determined force constants of graphene. We concentrate in particular on

the commonly studied (10,10) and (10,0) CNT. The calculated phonon spectrum of a (10,10)

CNT is illustrated in Fig. 4 for both the original parametrization of Saito et al.38 and our

new parametrization. In Ref. [38] was proposed a scaling for the force-constant parameters
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FIG. 4: Phonon dispersion for a (10,10) CNT calculated with the fourth-nearest-neighbor model

with: (a) The parametrization of Saito et al.; (b) Our new parametrization. The corresponding

parameters are listed in Table I. Both parametrizations have been subsequently corrected in order

to obtain ω = 0 at q = 0 for the acoustic TW mode.

in order to treat the curvature effect when rolling up the graphene sheet to form a nanotube.

This scaling prevents from obtaining a wrong shift of the rotational acoustic mode (TW)

at q = 0 from about ≈ 4 cm−1. In the present work we do not apply the same rescaling,

but vary empirically only the out-of-plane tangential force constants φ̃
(n)
to = φ

(n)
to (1 + ε(n))

of graphene. These are responsible for vibrations perpendicular to the atom-bonding plane

and thus are the most subjected to changes when rolling a plane sheet into a cylinder.

This effect increases with decreasing tube diameter. For a (10,10) nanotube and Saito’s

parametrization we obtain a frequency of the twisting mode of ω ' 10−3 cm−1 at q = 0 by

varying only φ
(4)
to .72 At this point it is important to observe that even very small variations in

the force constants can have considerable effects on the low-frequency modes. In particular

the frequency of the quadratically-dispersing modes are strongly affected by modifications of

the parameters and can even become imaginary. For this reason, with our parameter set it

was not sufficient to correct φto only for the fourth nearest neighbors, but also for third and

second neighbors.72 For the latter the correction is smaller, because these are less affected by

the effect of curvature. It results in a frequency of the TW mode ω ' 10−1 cm−1 at q = 0.
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The condition of infinitesimal rotational- and translational invariance imposed on the

force-constant tensors gives rise to four zero-frequency modes at q = 0. Near the Γ point the

highest-energy acoustic mode is the longitudinal (LA) mode, followed, in order, by a twisting

or torsional mode (TW) and a doubly degenerate transverse or flexure mode (TA). Figure 5

shows in detail the low-energy region of the phonon spectrum of a (10,10) CNT for three

different cases: (a) and (b) are calculated with the 4NNFC model with the parametrization

for graphene of Saito et al.38 and with our parametrization, respectively, both corrected

for nanotubes. Panel (c) is calculated with a three-parameter spring-and-mass model for

carbon nanotubes presented by Mahan and Jeon40 and is shown for direct comparison. The

4NNFC model with the original parametrization of Saito et al. shows a linear dispersion at

small wave vectors for all four acoustic modes. With our new parametrization of the 4NNFC

model, adapted to nanotubes, we found that, while the high-energy optical phonons do not

vary significantly, remarkable changes occur for the acoustic modes. The two degenerate TA

modes now show quadratic dispersion near the zone center, which was not given by Saito’s

parametrization. The model of Mahan and Jeon also obtains the quadratic behavior of the

flexure modes, due to a detailed analysis and implementation of symmetry rules, which are

required by the correct force constants.

Also in case of nanotubes with other diameters and chiralities we obtain the correct

quadratic dispersion when applying our new parametrization. Figure 6 shows the phonon dis-

persion of a (10,0) CNT calculated with the 4NNFC model: Saito’s parametrization provides

linear dispersions for all four acoustic modes (panel (a)-(c)), while with our parametrization

we obtain the quadratic TA mode (panel (b)-(d)), which is given also by the model of Mahan

and Jeon (panel (e)). In particular, after adapting the force constants φ
(n)
to ,72 as in the case

of the (10,10) CNT, we obtain ω ' 10−1 cm−1 at q = 0 for the TW acoustic mode, for both

parametrizations.

Furthermore, we concentrate on the important Raman-active radial breathing mode

(RBM). This mode arises from a radial expansion and contraction of the entire tube. It

is unique to single-walled CNTs and plays an important role in experiments.11,28 One of the

most important applications of the RBM is the determination of nanotubes diameters on the

basis of Raman data, through the expected dependence of the RBM frequency on diameter

ωRBM =
C1

dκ
t

+ C2(dt) (12)

13



0 0.1 0.2

qT / π

0

50

100

150

Fr
eq

ue
nc

y 
(c

m
-1

)

0 0.1 0.2

qT / π

0 0.1 0.2

qT / π

0

50

100

150

Fr
eq

ue
nc

y 
(c

m
-1

) (c)

(b)(a)

LA

TW
TA

FIG. 5: Low-frequency region of the phonon dispersion relation of a (10,10) CNT, shown near the

Γ point, calculated within: (a) 4NNFC model with the original parametrization, (b) 4NNFC model

with our new parametrization, (c) Force-constant model by Mahan and Jeon40 based on three free

parameters. While in (a) all four acoustic branches have linear dispersion for small wave vectors,

in (b) and (c) two increase linearly with q (LA, TW), and two are degenerate (TA) and increase

quadratically (TA).

where C1 is a constant, C2 possibly depends on the diameter dt and κ is an exponent. This

functional dependence was first introduced by Jishi et al.32 with C2=0 and κ=1. Several

articles and a range of values of C1 have been published, differing from each other by a few

per cent. A review of the experimental and theoretical values can be found in Ref. [61]. For

isolated tubes the values ranges from C1 = 218 to 248 cm−1 nm.

We verify the relation of Eq. (12) and analyze the chirality dependence of the RBM fre-

quency. For this purpose we calculate the RBM frequencies of a number of armchair and

zigzag nanotubes with the 4NNFC model with our parametrization adapted to CNTs. The

obtained frequencies are almost perfectly inverse proportional to the radius of the tube, as

shown in Fig. 7a, and independent on chirality. The RBM frequency decreases with increas-

ing tube diameter and becomes zero in the limit of infinite diameter, which corresponds to

the out-of-plane tangential acoustic mode of graphene at q = 0. By fitting the frequencies

of the RBM to tube diameters by the relation of Eq. (12), we get negligible values for C2

(order of 10−1 cm−1 nm), and C1 = 212 cm−1 nm for armchair tubes (Fig. 7b), which is in
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FIG. 6: Phonon dispersion for a (10,0) CNT: (a) and (c) 4NNFC model with the parametrization

of Saito et al.; (b) and (d) 4NNFC model with our new parametrization. The two parametrizations

show respectively linear and quadratic dispersion for the TA mode. For both the φto constants have

been corrected in order to obtain zero frequency for the acoustic TW mode at the Brillouin-zone

center. (e) Low-frequency region of the spectrum, calculated with the model of Mahan and Jeon,

which gets the correct quadratic dispersion of the TA mode.

satisfactory agreement with the experimental value of 224 cm−1 nm.73 For zigzag nanotubes

(Fig. 7c) we obtain C1 = 209 cm−1 nm. The values of C1 are in agreement also with previous

calculations.34,42,74 The frequencies obtained by the original parametrization of Saito et al.

are displayed in Fig. 7 by the dashed lines. We obtain C1 = 223 cm−1 nm for armchair tubes

and C1 = 222 cm−1 nm for zigzag nanotubes. They are in better agreement with experimen-

15



4 8 12 16
Diameter (Å)

100

200

300

400

500

600

F
re

qu
en

cy
 (

cm
-1

) armchair
zigzag

0 0.1 0.2 0.3

1/d
t
 (Å

-1
)

0

100

200

300

400

500
F

re
qu

en
cy

 (
cm

-1
)

0 0.1 0.2 0.3

1/d
t
 (Å

-1
)

(a)

(b) (c)

armchair zigzag

FIG. 7: (a) Frequency of the radial-breathing mode of various armchair (n = 3 − 12) and zigzag

(n = 6 − 20) tubes as a function of the nanotube diameter, calculated with the 4NNFC model

with our new parametrization. For comparison, the dashed lines show the results for the original

parametrization of Saito. (b) and (c) Frequency of the RBM as a function of the inverse tube

diameter for armchair and zigzag tubes, respectively. The solid lines are a linear fit to the data

excluding the small-diameter tubes (3,3), (4,4), (6,0), and (7,0), which are marked by circles.

These show a deviation from the predicted behavior, with a decrease in the RBM frequency.

Reference [34] explains it as a consequence of the hybridization changes and the decrease of the π

interaction induced by the curvature.

tal values than our parametrization, since the RBM frequencies are on average about 8 cm−1

higher.

A possible chirality dependence is below the resolution of the data. Indeed the proportion-

ality constant C1 differs only by about 1% between armchair and zigzag nanotubes. This

can be explained by the fact that the RBM corresponds to a stretching of the graphene

sheet in the [110] (armchair tubes) or [100] (zigzag tubes) direction. Because the system is

isotropic in the hexagonal plane, the elastic constant that the describes the stretching of a

graphene sheet is independent on the direction.74
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Beneath the RBM, also the other low-frequency modes depend strongly on the tube di-

ameter.38,46 Instead, the higher-frequency modes do not have such a strong diameter depen-

dence since their frequencies are more sensitively determined by the local displacements of

the atoms.

IV. LOW-TEMPERATURE THERMAL PROPERTIES

A. Methods

1. Specific heat

In order to characterize the specific heat at constant volume of low-diameter single wall

CNTs, we start from the definition

cV =
1

V

(
∂E

∂T

)

V

(13)

where the internal energy E = kBT
2(∂lnZ/∂T ) is defined through the vibrational partition

function Z. According to statistical thermodynamics, the partition function of a system of

independent harmonic oscillators can be directly expressed in terms of the phonon frequen-

cies by

Z =
∏
q,s

e−~ωs(q)/2kBT

1− e−~ωs(q)/kBT
. (14)

Here, q is the phonon wave vector, ωs(q) are the phonon frequencies with mode index

s = 1, . . . , 3r (r is the number of atoms per unit cell, see Sec. IIIA), T is the temperature,

kB the Boltzmann constant and ~ the Planck constant. The specific heat can thus be written

as

cV =
kB

V

∑
q,s

(
~ωs(q)

2kBT

)2
1

sinh2(~ωs(q)/2kBT )
. (15)

We do not distinguish between specific heat at constant volume, cV, or constant pressure,

cP, since the model approaches do not include thermal expansion of the lattice. Anyway,

the difference between cV and cP is only in the range of a few percent.37 For densely spaced

values of the wave vector q it is possible to replace the sum by an integral

∑
q,s

→
∑

s

∫
dq ≡

∑
s

V

(2π)3

∫
d3q (16)

= 3rN

∫ ∞

0

g(ω)dω (17)
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where g(ω) is the density of states (DOS) and N is the number of unit cells. The expression

for the specific heat results

cV = 3rkB

∫ ∞

0

dω

(
~ω

2kBT

)2
g(ω)

sinh2(~ω/2kBT )
. (18)

Therefore the specific heat depends in a detailed way on the frequency spectrum g(ω) of the

normal modes.

2. Landauer phonon transport

Phonon heat transport in mesoscopic systems can be investigated using methods analogous

to the Landauer description of electrical conductance.23,75 We consider a model of an ideal

one-dimensional heat conductor, built by two long perfect leads that join a central segment

in which the phonon scattering occurs. Only elastic scattering is taken into account, while

phonon-phonon interaction is neglected. The free ends of the two leads are connected to

reservoirs of temperature Thot and Tcold, respectively. No scattering occurs at the reservoir-

lead connections. The energy flux of the right/left moving phonons is given by23,24,76

J+/− =
1

2π

∑
s

∫ ∞

0

dq ~ωs(q) ηhot/
cold

(ωs(q)) vs(q) Ts(q)

=
1

2π

∑
s

∫ ωmax
s

ωmin
s

dω ~ω ηhot/
cold

(ω) Ts(ω) (19)

where ωs(q) is the dispersion relation of the discrete mode s, vs(q) is the group velocity and

Ts(q) are transmission coefficients characterizing the coupling of waveguide modes to the

reservoirs. The total heat current is therefore Jph = J+− J−. Assuming perfectly adiabatic

contact between the thermal reservoirs and the ballistic quantum wire, the transmission

function for a monotonically dispersing mode s is the step function

Ts(ω) =





1 for ωmin
s ≤ ω ≤ ωmax

s ,

0 otherwise.
(20)

Instead, for non-monotonic dispersions, given a frequency ω, the transmission Ts(ω) is de-

fined as the number of crossings of the line ω = ω with the phonon dispersion of the mode s.

With the total transmission function given by T =
∑

s Ts(ω), the Landauer energy flux

results23

Jph =

∫ ∞

0

dω

2π
~ω [ηhot − ηcold] T (ω). (21)
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Eventually, the thermal conductance is defined as

κph =
Jph

∆T
(22)

with ∆T = Thot − Tcold. In the limit of linear response, ∆T ¿ T ≡ (Thot + Tcold)/2, we

obtain using Eq. (21) and the substitution x = ~ω/kBT

κph =
k2

BT

h

∫ ∞

0

dx
x2ex

(ex − 1)2
T

(
x
kBT

~

)
. (23)

This equation plays the role of a ‘universal’ phonon conductance. An important statement

is that the result is independent of all details of the dispersion curve except the transmission

function. This arises because the density of states in the frequency integral is canceled by

the group velocity.

B. Specific heat results

The specific heat of carbon nanotubes is mainly determined by phonons, while electronic

contributions to it can be neglected even at a few Kelvin.77 According to Eq. (18) it depends

sensitively on the characteristics of the phonon spectrum and on its vibrational density of

states (DOS).

The specific heat calculated from the theoretical DOS spectra is shown in Fig. 8 as a func-

tion of temperature. At high temperatures, the specific heat of all the different approaches

and all chiralities converges to the classical limit of 3kB/M = 2078 mJ/gK with M being

the atomic mass of carbon (see inset in Fig. 8a). In the low-temperature regime that we

are interested in (below 20 K, see Fig. 8b), the specific heat of graphene is dominated by

the quadratic out-of-plane bending mode and is expected to have a linear T dependence

at very low temperatures. The nanotube curve is lower than the graphene one because

the tube has no low-energy counterpart to the layer-bending modes.22 In this temperature

range, nanotube modes with ~ωs(q) À kBT will negligibly contribute to Eq. (18), since

the integrand will vanish exponentially. Optical phonons are frozen out and only the long-

wavelength acoustic modes are populated, because for these holds ωs(q) → 0 as q → 0.

Therefore, the acoustic modes alone determine the low-temperature behavior of the specific

heat. Only at a temperature Topt ≈ ~ωopt/6kB does the lowest-lying optical subband with

frequency ωopt at q = 0 begin to contribute to the specific heat.55 The two cV curves calcu-
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FIG. 8: (a) Specific heat as a function of temperature for graphene (dotted line), calculated with

the 4NNFC model and our new parameters, and for a (10,10) CNT calculated with the model

of Mahan-Jeon (dot-dashed line), the 4NNFC model with our parameters (solid line), and the

4NNFC model with the original constants of Saito et al. (dashed line). The inset shows a wider

temperature interval: cV approaches the value 2078 mJ/gK for high temperatures. (b) Specific

heat on a logarithmic scale for the low frequency region. The assignment of the line styles is the

same as in (a).

lated by the model of Mahan (dot-dashed line in Fig. 8b) and by the 4NNFC model with

our parametrization (solid line) coincide in the temperature range of a few Kelvin. This

was expected because both models predict quadratically dispersing flexure modes and thus

analogous low-temperature behavior. The slope of the curves increases smoothly when the

first optical subband begins to contribute to cV. In the model of Mahan this takes place

approximately at Topt ≈3 K, while for our parametrization it appears about 5 K, due to the

different frequencies of ωopt, that are 12.6 cm−1 and 20.2 cm−1, respectively. The 4NNFC

model with Saito’s parametrization instead yields linearly dispersing flexure modes and the

(log cV) vs. (logT ) curve (green line in Fig. 8b) shows a higher slope than the two curves
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Dimension Phonon Phonon Specific

dispersion DOS heat

1D ω ∝ q2 g(ω) ∝ 1/
√

ω cV ∝
√

T

ω ∝ q g(ω) = const cV ∝ T

2D ω ∝ q2 g(ω) = const cV ∝ T

ω ∝ q g(ω) ∝ ω cV ∝ T 2

3D ω ∝ q g(ω) ∝ ω2 cV ∝ T 3

TABLE III: Low-temperature behavior of the specific heat. The dimensionality of the system is

correlated to the density of states and, therefore, to the specific heat. At low temperature only

acoustic modes are excited. These can have either linear or quadratic dispersion.

described just now. Due to the lowest lying optical mode with ωopt = 21.0 cm−1, the slope

increases at ∼5 K, as expected.

The low-temperature behavior of the cV vs. T curves needs to be analyzed in more detail.

Indeed, the behavior of cV contains informations regarding the dimensionality of the system

through a fixed correlation between cV, the DOS and the exact dispersion law.54 According

to Table III, through evaluation of the exponent α in the power law cV ∝ Tα it is possible

to get informations about the dimensionality of the system. Since nanotubes are quasi-one

dimensional (1D) systems consisting of rolled-up 2D sheets, they should display both 1D

quantum size effects and 2D features.

Figure 9 shows the low-temperature specific heat for the (10,10) and the (10,0) with the

4NNFC model and our parametrization, and the inset shows the slope α of (log cV) vs.

(logT ) curves. In the mK temperature range α clearly tends to the value 1/2. This is

almost entirely due to the doubly degenerate flexure mode with quadratic dispersion law

(see Table III), which is dominating in this temperature range. With increasing temperature

(0.8 to 5 K for the (10,10) CNT), also the contribution of the two linearly dispersing modes

becomes stronger and α holds values between 1/2 and 1 due to the superposition of these

four modes. Above Topt the slope changes considerably due to the optical phonons and the

tube is essentially 2D. This behavior is in accordance with theoretical predictions22 and is a

direct confirmation of quantized 1D phonon subbands in carbon nanotubes. Our results for

low-temperature cV agree very well with previous calculations of Popov,54 and additionally
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FIG. 9: Low-temperature specific heat for a (10,10) and a (10,0) CNT calculated with the 4NNFC

and our new parametrization. The inset shows the value of their slope α = d(log cV)/d(logT ).

we extended the low-temperature limit by two orders of magnitude. We find good agree-

ment also with experimental results of Lasjaunias et al.,58 who measured the specific heat

down to 0.1 K and fitted their measured curves with a power law of 0.043T 0.62 + 0.035T 3.

However, experimental measurements are usually performed on bundles of nanotubes, whose

properties can differ greatly from those of isolated tubes. The adding of tubes to a bun-

dle suppresses in particular the bending flexure modes, with a consequent increase of the

exponent α in favor of a linear T dependence.

We achieved similar results for other armchair and zigzag nanotubes. However, since

the first optical subband edge varies from tube to tube and depends on the model, the

turning points in cV vs. T curves are different, causing a crossover of cV curves. The general

uptrend and the high-temperature limit are the same. Figure 10a shows the specific heat

curves for a (10,10) and a (10,0) CNT. The tube diameter influences the specific heat of

carbon nanotubes, especially in the range of 25-350 K. In order to determine the effect

of tube diameter on the specific heat, additional results for T = 300 K are displayed in

Fig. 10b, using the 4NNFC model with our parametrization. At a fixed temperature the

specific heat increases with increasing tube diameter. This was as expected, since for very

large diameters the curve should approach the cV value of graphene, which is 794 mJ/gK

at 300 K. However, the effect decreases at large tube diameter. The chirality shows only

a small effect in the tubes specific heat, with cV of the zigzag tubes lying over that of the

armchair tubes. This small effect is negligible and could also be caused by inaccuracies of
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FIG. 10: Chirality dependence of the specific heat: (a) Temperature dependence of cV for a (10,10)

CNT (straight lines) and a (10,0) CNT (dashed lines). The index 1 refers to the model of Mahan-

Jeon and the index 2 to the 4NNFC model with our parameters; (b) The effect of tube diameter

on zigzag and armchair CNT specific heat. At a given temperature the specific heat increases with

the increase of tube diameter. The upper limit is given by graphene, with cV = 794 mJ/gK at

300 K.

the model description. The results are in good agreement with those of Ref. [56,57].

C. Thermal conductance

In the following, we demonstrate that at low temperatures a carbon nanotube behaves

as a ballistic, one-dimensional wire and that the phonon thermal conductance is quantized.

The thermal conductance can be calculated by evaluating Eq. (23). In this expression,

the integrand is given by the product of two functions: the transmission function and a

weight function x2ex/(ex − 1)2. The former is related to the phonon spectral properties of

the nanotube and the latter takes into account the effects due to temperature. Figure 11

shows the transmission function T =
∑

s Ts(ω) for a (10,10) CNT. Some branches count

doubly because of their degeneracy. For high temperatures, these two functions are non-

zero within the same range, which means that all the transmission modes contribute to

the thermal conductance. Whereas, in the limit of low temperature, the broadness of the

weight function is extended only to the low-energy modes. Therefore, at low temperatures

only four acoustic modes give an appreciable contribution to the thermal conductance of a
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FIG. 11: Phonon dispersion of a (10,10) CNT and the transmission function T =
∑

s Ts(ω). The

latter is a sum of s = 120 step functions.

carbon nanotube. In this temperature regime Eq. (23) becomes greatly simplified

κph ' k2
BT

h
4

∫ ∞

0

dx
x2ex

(ex − 1)2
= 4

π2k2
BT

3h
. (24)

Here, the factor 4 represents the number of acoustic modes. The upper limit of the integral

is of few importance, because the integrand function falls off rapidly, before the successive

step in the transmission function takes place. From Eq. (24) results that a fundamental

relation holds for each mode

κ0 =
π2k2

BT

3h
. (25)

This quantum of thermal conductance represents the maximum possible value of energy

transported per phonon mode. It does not depend on particle statistics, therefore, is uni-

versal for fermions, bosons, and anyons.78 Furthermore, it is independent of any material

parameters and of precise details of the dispersion law. This is clear since to construct the

transmission function as in Eq. (20), it does not matter whether the dispersions are linear

or quadratic, but the branch upper and lower limits should be accurately computed.

The phonon thermal conductance κph of a (10,10) CNT as a function of temperature

is shown in Fig. 12a, already normalized by 4κ0. For temperatures in the range of a few

Kelvin, this ratio reaches the constant value of 1, independent of the model approach and

of chirality. This behavior confirms that the thermal conductance of carbon nanotubes
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FIG. 12: (a) Phonon thermal conductance for a (10,10) CNT calculated with the Mahan-Jeon

model (dot-dashed line), the 4NNFC model with our parameters (solid line), and the 4NNFC

model with the original constants of Saito et al. (dashed line). The two latter show, respectively,

quadratic and linear dispersion for the TA mode. (b) Thermal conductance for several carbon

nanotubes, calculated with our parametrization.

is quantized. Despite the quantization, the curves do not present steps because of the

broadening of the Bose-Einstein distribution in comparison with the energy gap between

subband edges. The length of the plateau depends on the lowest optical frequency of the

dispersion curve. Indeed, the turning point in the curve of the (10,10) CNT calculated with

the model of Mahan (Fig. 12a, dot-dashed line) is about 2K, while it is higher for the 4NNFC

model with both parametrizations (about 3K). As predicted, the exact dispersion law of the

acoustic TA mode does not affect the qualitative behavior of the κph vs. T curve. The two

curves for the 4NNFC model result respectively from a quadratic and linear dispersion of

the TA mode, but show the same low-temperature behavior. The deviations above 10 K are

due to small differences in the respective optical frequencies.
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The results of the 4NNFC model are believed to be more accurate than the ones obtained

using Mahan and Jeon’s method for the phonon dispersion, because the latter does not

correctly reproduce the graphene dispersion. Eventually, the thermal conductance depends

only on the tube radius and not on chirality. Results for armchair tubes are very similar

to the ones for zigzag tubes, when same diameters are compared. This arises because the

energy ~ω of the lowest-lying optical modes is determined only by the tube radius and

decreases approximately according to ∼ 1/R2 (see Ref. [59]). Figure 12b shows the thermal

conductance for some armchair and zigzag nanotubes.

Our results are in very good agreement with those of Yamamoto et al.59 and Mingo et

al..53 Experimental studies were achieved by Schwab et al.,24 who observed the quantum

thermal conductance in a nanofabricated 1D structure, which behaves essentially like a

phonon waveguide.

Finally, we would like to express a word of caution to specify the limits of the Landauer

model of heat conduction. It must be stated that it describes an idealized case of ballis-

tic transport through a one-dimensional waveguide, where the phonon transmission occurs

without scattering by defects or scattering at the reservoir-lead connection. The waveguide

and the reservoirs are coupled adiabatically and anharmonicity and phonon-phonon inter-

actions are neglected. These conditions are fulfilled only at low temperatures, where the

phonon mean free path is limited only by the size of the system and anharmonic terms

are small compared with the harmonic part of the Hamiltonian. However, as far as the

system size exceeds the mean free path, which strongly depends on temperature, scattering

of phonons due to anharmonic terms of the interatomic potential begins to decrease the

conductivity and the transport ceases to be ballistic. Indeed, anharmonic terms give rise

to phenomena as finite phonon lifetimes and interaction between phonons. These deter-

mine strongly the transport properties at higher temperatures and are responsible for finite

thermal conductivity.

V. CONCLUSIONS

We presented a combined theoretical investigation of both vibrational and thermal prop-

erties of graphene and carbon nanotubes within a force-constant model. First we fitted the

phonon dispersion of graphene to that obtained with ab initio calculations by Bohnen and

26



Heid49 and found reasonable agreement for the overall dispersion and good agreement for

the acoustic modes. The frequency values at high symmetry points Γ, M, and K lie close

to those obtained by various first-principles calculations (about 4%, with the exception of

only one mode). Then we presented results for the phonon spectra of achiral carbon nan-

otubes and focused on the low-frequency region. The dispersion of the doubly-degenerate

flexure mode shows ω ∝ q2 behavior at long wavelengths, as predicted by several theoretical

works. Particular attention has been paid to the radial-breathing mode, with a detailed

analysis of the frequency- and chirality dependence on the tubes’ diameter. On the basis

of the so-obtained phonon spectra, we calculated the specific heat and the thermal conduc-

tance of carbon nanotubes. The quadratic dispersion of the flexure modes leads to a
√
T

dependence of the specific heat at very low temperatures. This is a direct confirmation of

the one-dimensional behavior of carbon nanotubes at low temperature. Concerning heat

transport, we showed that nanotubes can conduct heat by ballistic phonon propagation.

At low temperatures the thermal conductance for a single phonon channel approaches a

maximum value of κ0 = π2k2
BT/3h, which is the universal quantum of thermal conductance.

We showed that for nanotubes of different diameter and chirality, the thermal conductance

reaches the value 4κ0 for T → 0, where the factor 4 is due to the four acoustic modes of

a nanotube. All our results are in very good agreement with theoretical and experimental

data available in literature.
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47 A. Grüneis, R. Saito, T. Kimura, L. G. Cançado, M. A. Pimenta, A. Jorio, A. G. Souza Filho,

G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 65, 155405 (2002).

48 Ge. G. Samsonidze, R. Saito, A. Jorio, A. G. Souza Filho, A. Grüneis, M. A. Pimenta, G. Dres-
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57 C. Li and T.-W. Chou, Phys. Rev. B 71, 75409 (2005).
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