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1. Introduction

Imaging measurement methods provide
valuable information for solar cell characteri-
zation and a number of methods, such as
electroluminescence (EL), photolumines-
cence (PL), and infrared thermography
(IR), are widely used inline as they are fast
enough for current production lines.[1–5]

They reveal material- and process-related
defects, which are expressed by reduced radi-
ative recombination. Examples include
microcracks, shunts, edge isolation prob-
lems, and resistivity defects in emitters and
metal contacts. These methods extend the
classical characterization based on the analy-
sis of current–voltage (IV) curves by allowing
a spatially resolved evaluation of the cell and
conclusions about the defect origins.

Despite the high information content of
the measurements, the data cannot be fully
evaluated even by experts. Due to overlap-
ping defect structures and the high number
of image dimensions, it is hard to estimate
the influence of measurement features, be

it a defect or even a “good” spot, on, e.g., the cell efficiency. This
is currently done by experts or supported by the use of reference
measurements.[6,7] For this, inline approaches are currently
being developed.[8] At present, they require a special measure-
ment setup and evaluation algorithms for image analysis.

There exist many ideas aiming at processing the measurement
images, such as EL images mainly in the form of defect detection.
Twomain types of defect detection approaches can be found in the
literature: 1) human-made heuristic filters and 2) end-to-endmeth-
ods based on human-made labels. In the category of human heu-
ristics (1), filters are developed by experts to either search for
specific defect-typical structures (dark areas, finger interruptions,
etc.) or extract features that serve as input to a machine learning
(ML) model such as a support vector machine (SVM)[9] for further
processing. In recent years, end-to-end approaches (2) have been
increasingly published, in which the measurement images are
mostly processed by deep convolutional neural networks (CNNs)
or other ML models. The main difference here is that the filters
are no longer developed by humans, but are empirically optimized
based on a large database of images and labels. However, defect
annotations by human experts are needed as a basis here.
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Measurement images of solar cells contain information about their material- and
process-related quality beyond current–voltage characteristics. This information
is currently only partially used because most algorithms look for human-defined
image features or defects. Herein, a purely data-driven method is proposed to
derive the essential image information in terms of the electrical quality within a
comprehensive and meaningful representation. This representation is denoted as
the empirical digital twin of the cell. Using it, solar cells can be classified
according to their defects visible in the measurement images. For this purpose, a
human-in-the-loop approach to efficiently develop a classification scheme is
presented. Therefore, a convolutional neural network combining various mea-
surement data of a sample by correlating them with quality parameters is
designed. The digital twin is an intermediate representation of the network
capturing the quality-relevant defect signatures from the images. Human experts
can analyze this representation space to identify defect clusters that relate to
different process errors, such as finger interruptions and shunts. How the
representations are usable to derive sorting criteria for quality inspection is
shown. Finally, how the empirical digital twin and the sorting scheme can be
used for segmenting the defects without additional label effort is demonstrated.
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Both approaches, based on image processing methods or on
CNNs, have some disadvantages limiting their usefulness and
applicability. One drawback relates to the label process and to
the labels themselves. Labels as well as heuristic filters are
error-prone,[10] time-consuming, costly, and use only a part of
the information contained in the measurement images because
they focus, e.g., only on the detection of one defect. Another dis-
advantage pertains to the usability of the results. The transferabil-
ity to other process lines is limited, so relabeling is necessary.
In addition, heuristics are required for the application of the
results, e.g., process optimization or defect cause detection.

To address this issue, we propose the empirically learned dig-
ital twin of the solar cell and show how it circumvents the afore-
mentioned problems and can be brought into practice quickly
with little label overhead. Specifically our contributions are
1) we present a sensor fusion approach to learning an empirical
digital twin (EDT) of the solar cell from multiple measurement
images describing its current quality state; 2) we utilize the EDT
for defect detection within a “human-in-the-loop” approach to
reduce labeling effort while maintaining or even improving
the detection rate; and 3) we show a weakly supervised approach
for spatially resolved defect segmentation without further label-
ing work based on the human-in-the-loop approach.

2. Related Work

There exist many works focusing on the detection of defects in
EL or PL images using classical image processing techniques.
The algorithms are designed to detect microcracks and finger
interruptions by advanced image processing techniques using
EL images[11–18] or PL images.[19,20] For this, filtering methods
are used, either to directly find the searched defect or to extract
features, allowing a ML model like a support vector machine to
perform defect classification.

With the success of deep learning models in image processing,
they have also been applied to defect detection in solar cells. They
usually involve expert defect labeling of a large dataset of images of
cells or even whole modules so that a CNN can be trained for auto-
matic detection. The latest works present CNN-based methods to
detect microcracks, finger interruptions, or dislocation structures
spatially resolved in EL images of cells or modules.[21–32] In terms
of pure defect classification without segmentation determining if
there is a defect, e.g., a microcrack or a finger interruption, many
CNN approaches using EL and IR images of cells and modules are
proposed.[33–44] To address the problem of a limited amount of
data, a method based on generative adversarial networks (GANs)
is demonstrated, which enables improvement of prediction results
through artificially created EL images.[44] Both segmentation and
classification approaches vary strongly in terms of the CNN archi-
tecture, dataset, data processing, and defect sought, so the quality of
the predictions can only be compared to a limited extent.[45]

The approaches described have high detection quality, but
share drawbacks, which are addressed within our approach.
Some CNNs have detection rates above 90%, showing that they
are well suited to find labeled defect structures. However, one
disadvantage is that the defects must be labeled beforehand by
an expert. This process is time-consuming and correspondingly
expensive. Furthermore, it has been shown that even experts

have difficulties finding all defects and the human defect detec-
tion rate can vary strongly.[10,32] This causes the labeling process
to be error-prone, and thus leads CNNs to partially identify false
structures as defects. The disadvantage of the time-consuming
labeling process becomes even more important when the algo-
rithms have to be adapted to other cell lines. In this case, it is
necessary to repeat the labeling for cells from the new line to
achieve similarly high detection results. We try to overcome these
problems by not predicting the defects themselves, but by pre-
dicting measured quantities and by this let the CNN learn the
defect structures indirectly.

Apart from defect detection, there are other approaches that are
more closely related to the one used in this article because they
learn a compact representation by compressingmeasurement data
via a deep neural network (NN) predicting quality or process
parameters. Regarding quality rating of as-cut wafers, IV param-
eters are learned bymeans of PL images and visualized to evaluate
their quality early in the production process.[46,47] A similar model-
ing approach is shown regarding the correlation of IV curves or
process parameters and material parameters to obtain representa-
tions, which cluster into groups with similar properties.[48,49] A
feature vector is retrieved by a pretrained CNN and subsequently
used for defect classification.[50] In another work, features are
extracted by expert-designed algorithms and afterward used to pre-
dict quality variables.[51] A further related approach involves the
training of a CNN first to detect low-quality cells and then deriving
feature vectors to perform bin classification.[52]

3. Approach

3.1. Overview

We propose three sequential algorithms for solar cell quality
inspection using measurement data and expert knowledge.
First, we derive a comprehensive representation of each solar cell
by compressing themeasurement data. We explain how this EDT
can be derived only within a deep learning model in Section 3.2.
The second algorithm brings the representation into production.
We show an efficient way how the digital twin can be used for
quality inspection by defining a classification scheme with the
support of human expertise in Section 3.3. Finally, we combine
both models to allow a defect segmentation without any addi-
tional labeling effort, which is presented in Section 3.4.

3.2. Learning the EDT

We obtain a meaningful representation by deriving features from
the images that are expressive in terms of physical quality param-
eters such as IV parameters. As shown in Figure 1, we train a
regression network to predict the quality parameters on the basis
of measurement images. In general, the network consists of sev-
eral sequential convolutional as well as pooling layers and recti-
fying linear unit (ReLU) activation functions. Thus, as the
network progresses, the resolution of the images decreases
whereas the semantic increases with respect to the predicted
quantities. Our model can process multiple input data xi mea-
sured for each sample i. In this example, we design a deep learn-
ing model for EL images, IR images, and reflectance values. The
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CNN, denoted as function f θ∶x ↦ y, is used for a multivariate
regression of quality parameters, which are summarized in
the vector yi. θ holds the model’s parameters. By means of
the regression, the dimensions of the image are reduced step
by step and the measurement data are combined in a meaningful
way with regard to the quality parameters. The last neurons of the
CNN represent a vector ρi holding the relationship between
the measurement images and the quality output quantities. In
the following, we denote this vector representation of the input
data as the empirical digital twin of the solar cell.

With the EDT it is possible to quantitatively compare measure-
ment images or even combinations of measurement images.
In Figure 1, the fifth column shows the distribution of the
features ρj,i in ρi for the two cells examined. j refers to the index
within ρi and i to the corresponding cell in the dataset. Here, the
expression of image features ρj,i can be compared in a few num-
bers. For sample 1 ρ2 (cyan) and for sample 2 ρ3 (yellow) are par-
ticularly low. For these features, the extreme examples of a

considered dataset are shown below, revealing very different
defect characteristics. They correspond to certain loss patterns,
such as bad contact formation or finger interruptions. The loss
patterns also occur within the two input examples, highlighted by
cyan and yellow rectangles, thus having low values for the
corresponding feature.

Several measurement images and data types can be entered into
the model, from which the digital twin is calculated. In our imple-
mentation, EL and IR images are processed together with reflec-
tance measurements revealing various defects. Figure 2 shows
the architecture of the network. The two input images, i.e., the
EL xEL and the IR image xIR, are first mapped from separate
CNNs, i.e., f θEL and f θIR , respectively, to their own representation
tensors PEL and PIR. These are subsequently concatenated with
the reflectance values xrefl ¼ ðr390nmr390nmÞT at 390 and 950 nm
wavelengths, which are scaled up to a two-channel tensor Xrefl of
same spatial dimensions. The resulting tensor concatenation Xcb

is passed to the CNN f θcb , which combines the information from

Figure 1. Schematic illustration of the calculation of the EDT of the solar cell for two example cells. Input measurement images (first column) are passed
to a convolutional neural network (second column), which is to predict the quality variables y (third column). The EDT ρ can be derived from the model
(fourth column). Entries in ρ correspond to quality-describing image features ρj,i, which can be compared with each other (fifth column).

Figure 2. Overview of the model structure for sensor fusion. The EL and IR images are each passed to a model. The resulting intermediate represen-
tations PEL and PIR are concatenated with the reflectance values xrefl ¼ ðr390nmr950nmÞT to Xcb. Then, the model f θcb is supposed to combine the infor-
mation into Pcb, which is then given to further functions, one for each predicted parameter. As result, there are many vector representations for the
predicted parameters (ρVoc

, …). When concatenated, they form the empirical digital twin ρ. For the prediction of the parameters the scalar product of the
subrepresentations and a weight vector w must be calculated.
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the different sources. The out-coming representation Pcb is passed
to further functions, one for the prediction of each output, e.g., f θVoc
and f θRp . From each of these, a part of the EDT ρ is derived, which is
composed of ρVoc

, ρRp
, etc. The individual parts each have 40 entries

in our implementation, which corresponds to m ¼ 720 entries for
ρ with 18 predicted parameters. The partial representations are
directly related to the predicted quantities because only the scalar
product with the weight vectors wVoc

, wRp
, etc. is taken for the pre-

diction. The weights scale the extracted image features in ρVoc
, ρRp

,
etc. so that their sum yields the respective output quantities. The
given θ represent the parameters of the CNNs that are optimized.

The prediction vector y contains 18 quality variables, which are
listed in Table 1 in columns one and two, typical quantities such
as the open-circuit voltage Voc, short-circuit current density Jsc,
fill factor FF, and efficiency η as well as specific parameters such
as the pseudo-fill factor pFF, ideal fill factor FF0, or their differ-
ence FF0 � pFF. The different FFs and their differences are used
to have quantities that break down the individual losses. For
example, pFF contains no and pFF� FF mainly series resistance
losses. FF0 contains losses with respect to the saturation current
density at the first diode J01 and FF0 � pFF parallel resistance
and the saturation current density at the second diode J02 losses.
For the prediction of the parallel resistance Rp, the natural loga-
rithm is taken because Rp has a logarithmic distribution and thus
its influence would dominate during optimization. We have cho-
sen a large number of quality parameters to obtain a comprehen-
sive description of the measurement patterns. In general,
however, it is an open question how many and which parameters
are suitable for a good representation. Until further investiga-
tions, we suggest to use all the information accessible.

3.3. The EDT for Defect Classification with Human-in-the-Loop

We can use the EDT for quality inspection of solar cells by deriv-
ing a sorting scheme to classify samples into defect classes.
When using measurement images for defect classification,
it is necessary to have a large number of labeled images to ensure
a CNN can learn the defect structures correctly. With the EDT,
however, these structures have already been learned indirectly,
so we assume fewer labels are needed. In addition, essential
image properties are already compressed in the EDT, so there
are significantly fewer dimensions and correspondingly less
complexity, making it easier for a model to be optimized.

To efficiently incorporate expert knowledge into defect detec-
tion, we propose an iterative human-in-the-loop approach, also
referred to as “active learning.” The approach, visualized in
Figure 3, consists of four steps: 1) find a small initial selection
of EDTs that is representative for the dataset; 2) label them using
the corresponding measurement images; 3) then train an NN for
defect classification; and 4) apply the model to the remaining data
to compute its uncertainty (the orange question marks in
Figure 3) and pass the uncertain samples back to the expert

Table 1. Predicted parameters, prediction errors, and correlation
coefficients.

Name Parameter Absolute
error

Corr.
coefficient

Open-circuit voltage Voc 0.69mV 0.93

Short-circuit current density Jsc 0.06mA cm�2 0.62

Fill factor FF 0.55% 0.88

Efficiency η 0.16% 0.88

Pseudo-fill factor pFF 0.52% 0.86

Ideal fill factor FF0 0.02% 0.91

Difference: pseudo fill factor
and fill factor

pFF � FF 0.16% 0.98

Difference: ideal and pseudo-fill factor FF0 � pFF 0.53% 0.86

Suns open-circuit voltage suns Voc 0.65mV 0.94

Pseudoefficiency pη 0.15% 0.86

Saturation current density D1 J01 0.01 pA 0.96

Saturation current density D2 J02 2.6 nA 0.94

Reverse current density @ �12 V Jrev,1 1.05mA cm�2 0.88

Reverse current density @ �15 V Jrev,2 1.15mA cm�2 0.89

Grid resistance front Rgrid,fr 3.56Ωm�1 0.93

Grid resistance rear Rgrid,re 1.05Ωm�1 0.53

Series resistance Rs 0.02Ωcm2 0.98

Parallel resistance Rp 0.29Ωcm2 0.83

Figure 3. Schematic representation of the human-in-the-loop approach. After the EDTs of the cells have been calculated, 1) a representative initial
selection in EDT space is chosen, which is then 2) labeled by experts. Based on this 3), an NN is trained toward a sorting scheme. Afterward, the
uncertainty per EDT is calculated for the remaining dataset so that the most uncertain ones can be labeled in turn by the expert. Steps (2–4) are repeated
iteratively.
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for labeling only those. It is expected that the NN can learn the
most from those uncertain samples. Steps (2–4.) can be repeated
several times to efficiently optimize the NN.

In the following, we describe the steps in more detail. For the
initial and representative selection of some EDTs (1), we use a k-
means clustering[9] with ncl clusters. Then, for each cluster, the
centroid is computed and that EDT ρ closest to the centroid in
high-dimensional space is selected for labeling in (2) using the
corresponding measurement images, respectively. For training
and uncertainty calculation in steps (3) and (4), we use the uncer-
tainty approximation based on dropout.[53,54] Here, the NN
described by g∶ρ ↦ pd ∈ ½0, 1�, gets the EDT vector ρ as input
to predict the defect probability pd. Based on this, the entropy
H can be calculated as in Equation (1)

HðρÞ ¼ �ðpd log2 pd þ ð1� pdÞ log2ð1� pdÞÞ (1)

By applying dropout,[55] meaning with some probability some
activations in the NN are randomly set to 0 (are dropped), and
multiple submission of the same (ith) EDT ρi, the result is an
entropy distribution. As can be seen in Equation (2), we use
the mean value of the entropy distribution as the uncertainty
value U

UðρiÞ ¼
1
T

XT
t¼1

HðρiÞ (2)

T is the number of inputs of the same EDT.

3.4. Defect Segmentation with Human-in-the-Loop

To perform a spatially resolved defect segmentation without any
additional labeling, we propose to use the calssification scheme
from Section 3.3 on spatially resolved feature maps in a weakly
supervised fashion. The procedure is shown in Figure 4. For
computing the EDTs, the global average is taken from the feature
maps computed in the CNNs f θVoc , f θRp , etc. Following, the sort-

ing scheme can be learned based on the EDTs according to
Section 3.3. The same sorting scheme can be applied per pixel
of the feature maps before aggregation to the EDT has taken
place. In this way, the defect area can be segmented in defect

and nondefect areas at a coarse resolution. The condition for this
method is that the defect-typical feature distributions must be
similar for the global and the local representation. This should
be given if a single type of defect or defect combination occurs in
the image and dominates the classification training. If different
defects are distributed over the sample, the spatially resolved
representation of the sample deviates from the EDT.

4. Experimental Section

The dataset used herein consisted of 1600 Cz-Si industrially proc-
essed passivated emitter and rear cells (PERCs) of size 156�
156mm2 sorted out during production due to electrical and opti-
cal defects. Accordingly, they contained a large number of differ-
ent defects, including shunts, finger interruptions, microcracks,
overfired regions, scratches, poor contacts, and combinations of
the aforementioned. The dataset was further randomly divided
into three subdatasets: 70% of the cells were assigned to the
training dataset, 10% to the validation dataset, and 20% to the
test dataset. For each cell, EL and IR measurements were per-
formed with a system from h.a.l.m. electronic GmbH. The cells
were excited with 20 A, the integration time of the Si CCD cam-
era was 50ms, and a gain factor of 3 was applied. In addition,
reflectance at 390 and 950 nm wavelengths and the parameters
listed in Table 1 were measured.

A variation of DenseNet[56] was used as the CNN. A DenseNet
consists mainly of a sequence of DenseBlocks and
TransitionBlocks. DenseBlocks are characterized by a number
of convolutional layers (length). Their outputs are passed to all
following layers of this DenseBlock (not only the next one) so
that they can access all previous information. The number of fea-
ture maps added per layer in the DenseBlock is called the growth
rate. This structure can possibly be memory-consuming, which
is why several DenseBlocks are connected by TransitionBlocks,
which are supposed to compress the information of a
DenseBlock by a reduction factor.

The paths for processing EL and IR images, respectively
(f θEL , f θIRÞ, consisted of three DenseBlocks of length 5 and a
growth rate of 24. The combining function f θcb was a
DenseBlock with the same parameters. The TransitionBlocks
had a reduction factor of 0.8. The output prediction functions

Figure 4. Schematic visualization for spatially resolved detection of defects using EDTs. The classification scheme from Section 3.3 is applied to the
feature maps before global average pooling, so that per pixel classification can be performed.
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were each DenseBlock with length 6, growth rate 30, followed by
1� 1 convolution with 40 output channels (feature maps in
Figure 4), global average pooling (resulting in the EDTs), and
a linear layer for output regression.

4.1. Experiment 1: CNN Training and Prediction Quality

To investigate whether the quality parameters listed in Table 1
can be predicted, a CNN was trained as described in
Section 3.2, which received EL and IR images and reflectance
values as input. The images were scaled to a size of
224� 224 px2, standardized using mean and standard deviation,
and randomly rotated by multiples of 90� and flipped horizon-
tally and vertically. The model was optimized with an Nvidia
GeForce RTX 2080 Ti for 250 epochs with a batch size of 40
on the training dataset. For this purpose, the Adam optimizer[57]

and the mean absolute error were used, testing different learning
rates between 10�3 and 10�4 and decays between 10�3 and 10�10

by means of a grid search. The learning rate was reduced by a
factor of 10 during training by a plateau scheduler if the relative
error on the validation dataset did not decrease over 20 epochs.
Then, based on the validation dataset, the best model was
selected and tested on the test dataset to ensure that there
was high prediction quality before examining the EDTs.

4.2. Experiment 2: Explorative Analysis of the EDT

To investigate whether the EDTs are meaningful in terms of pro-
cess defects, the entire data set was labeled. For this purpose, all
measurement images were assessed by an expert so that the
main losses were known for each cell. Some defects such as
shunts, minor local hotspots, and edge isolation defects were well
visible in the IR image. Others such as finger interruptions, over-
firing defects, or scratch and stripe patterns were better seen in
the EL image. Afterward, the EDTs of the whole dataset were
computed and exploratively examined.

Because the 720D EDTs cannot be viewed directly, a dimen-
sional reduction by the t-distributed stochastic neighbor embed-
ding (t-SNE) algorithm to two dimensions was performed
exclusively for visualization so that groupings of EDTs could
be examined.[58] Here, points that had a small distance in
high-dimensional space were also close to one another in low-
dimensional space. However, larger distances in the lower
dimensional space cannot be directly compared with each other,
so they have a lower significance.

4.3. Experiment 3: Defect Detection and Human-in-the-Loop

In this experiment, possibilities for defect detection as well as the
human-in-the-loop approach were investigated. Based on
the images, the complete dataset was labeled by an expert into
the defect classes finger interruptions, poor edge isolation, over-
fired regions, and hotspots and shunts. Samples with multiple
class assignments were possible. First, to generally investigate
defect detection based on EDTs, a fivefold cross-validation was
used to train an NN for defect classification. Subsequently, this
supervised reference was compared to the human-in-the-loop
approach from Section 3.3, also with fivefold cross-validation,

to investigate how many labeled samples are necessary for a
comparably effective defect detection. For this purpose,
ncl ¼ 100 samples were selected initially and the same model
was trained on them. Then, the uncertainty U of each unused
EDT in the training dataset was calculated by Equation (2) with
T ¼ 200, whereupon the 100 most uncertain samples were
appended to the 100 initially selected samples and the NN could
be fine-tuned. These steps were repeated until 1000 samples
were reached.

After each iteration, the results were compared with those of
the supervised reference. The following parameters were used to
judge the prediction quality of the classification models: if a
defect was correctly predicted, it was called “true positive”
(TP) and if a defect was incorrectly predicted, it was called “false
positive” (FP). If a nondefect was correctly predicted, it was
called “true negative” (TN) and if a nondefect was incorrectly
predicted, it was called “false negative” (FN). Some quantities
can be derived from this. The precision is defined in
Equation (3) and indicates how many defect predictions were
actually defects.

Precison ¼ TP
TPþ FP

(3)

The recall, defined in Equation (4), is a measure of how many
defects were found of all defects.

Recall ¼ TP
TPþ FN

(4)

The F1-score, defined in Equation (5), is the harmonic mean of
precision and recall.

F1-score ¼ 2
Precision ⋅ Recall
Precisionþ Recall

(5)

The accuracy is not used due to the unbalanced defect class
distributions, which would lead to noncomparable results.

4.4. Experiment 4: Spatially Resolved Defect Detection

For the four trained NNs from experiment 3, some example cells
were qualitatively examined with respect to the defect classes fin-
ger interruptions, poor edge isolation, overfired regions, and hot-
spots and shunts. A quantitative investigation is not possible
because no spatially resolved labels are available.

5. Experimental Results

5.1. Experiment 1—Results: CNN Training and Prediction
Quality

The cell’s quality parameters can be accurately derived from the
measurement images of the cells by the trained CNN. In Table 1,
the absolute error and the correlation coefficient between the pre-
dicted and measured value can be seen for all cell parameters.
The correlation coefficients for most of the parameters are above
0.8 and sometimes up to 0.98. However, the short-circuit current
density Jsc and the grid resistance on the rear side Rgrid,re are
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exceptions. Therefore, in Figure 5 the predictions over the mea-
sured values are shown in a 2D histogram for these two param-
eters as well as for Voc and η. The respective number of samples
per bin can be seen in the color bar and in the histograms at the
edges. In an ideal prediction, all points would lie on the black
diagonal. In (a) and (c) it can be seen that the prediction for
Voc and η works well as for most of the other parameters.
The prediction for Jsc in (b) also distributes around the diagonal.
The distribution for Rgrid,re is also close to the diagonal, but there
is a region at 13Ωm�1 that is not well predicted, so the correla-
tion coefficient is low in this case.

5.2. Experiment 2—Results: Explorative Analysis of the EDTs

The trained model has converged as described in Section 5.1, so
the EDTs can be calculated and studied. The EDTs contain infor-
mation about quality-relevant process defects. Figure 6 shows the
low-dimensional embedding of the dataset. The x- and y-axes
describe the values computed by the t-SNE algorithm and are
unitless. Each point is colored according to its efficiency η.
Several clusters can be identified showing a reduced efficiency

and a cluster, which occupies a big amount of space. The clusters
contain cells with the same defect type, which is highlighted by
the annotations. The individual clusters are examined in more
detail subsequently.

The three smaller clusters in the lower right of Figure 6 con-
tain finger interruptions, overfired regions, and stripes and
scratches, and the cluster directly above contains shunts. The
clusters clearly separate from each other and show reduced effi-
ciency. In Figure 7, typical EL and IR images of the four clusters
are shown on the left. Finger interruptions, overfired regions,
and stripes are clearly distinguishable in the EL image, and
the shunt can be seen in the lower left of the IR image. The
EL image shows the microcrack that caused the shunt. The
t-SNE graph also indicates a progression in efficiency within
the clusters; e.g., worse finger interruptions are further down
in the cluster than less severe ones.

The larger cluster in the upper right area contains cells with
large-area defects, such as poor edge isolations and diffuse tem-
perature distributions appearing in the IR image. Here, a pro-
gression in size can be seen so that larger edge defects are
found further to the outside of the cluster, which is also reflected
in lower efficiency. In Figure 7 in the first row of the right col-
umn, a typical example can be seen, where the left and upper
edge of the cell is heated up in the IR image. Within this group
are also samples with diffuse temperature distributions, which
can be seen in the row below. In this case, the IR image shows
an increased temperature over a larger area of the wafer.

The rest of the large cluster contains mostly smaller hotspots
or mixed defects of shunts and overfired regions. There are cells
that have overfired regions and shunts in conjunction, which can
be found in a separate cluster. Example images are shown in
Figure 7 in the right column row four. The large cluster on
the left side contains smaller hotspots that do not have a large
impact on efficiency. It splits up into two major regions, with
the cells in the upper region having an increased bow. Above
the cluster, there are three cells, in which the busbar region
in the EL image shines brightly, which can be seen in
Figure 7 in the right column, third row.

5.3. Experiment 3—Results: Defect Detection and
Human-in-the-Loop

As a reference to the human-in-the-loop approach, four networks
were trained in a supervised fashion, which can detect the

(a) (b) (c) (d)

Figure 5. Comparison of measured and predicted quantities. In the graphs, the measured value is shown on the x-axis and the predicted value on the
y-axis. a) The Voc, b) the Jsc, c) η, and d) the grid resistance on the rear side Rgrid,re.

Figure 6. Low-dimensional representation of empirical digital twins.
Groups of cells with similar properties, such as losses due to shunts, finger
interruptions, etc., are formed. Several groups are highlighted by
annotations.
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process defects finger interruptions, edge isolation defects,
shunts, and overfiring defects. The small NNs consisting of three
linear layers, each followed by ReLU activation functions and
dropout, were trained to perform a binary classification of the
mentioned defect types from the EDTs ρ received as input.
For the quantitative evaluation of the defect classification, a five-
fold cross-validation was performed. In Table 2, the F1-score,
recall, and precision for these defect types can be found in
columns 2–4. Concerning the F1-score, best values are achieved
for the defect class finger interruptions (0.972) followed by hot-
spots and shunts (0.959), poor edge isolation (0.861), and firing
defects (0.762).

With the human-in-the-loop approach, described in
Section 3.3, equal or even slightly improved results can be
achieved with significantly fewer labeled EDTs. The same
NN as from the supervised reference was used. Iteratively,
100 labeled EDTs were added to the training dataset based on
their uncertainty UðρÞ from Equation (2). These results are also
fivefold cross-validated. In Figure 8, the F1-score is plotted over
the labeled samples for the targeted defect classes. The super-
vised reference (Sup. Reference) has the filled symbols for each
defect, with 1250 labeled samples. A horizontal line showing
the F1-score of the supervised reference approach is plotted
for each defect as a guide to the eye. The empty data
points represent the results of the human-in-the-loop approach.

This approach achieves comparable F1-scores as the supervised
baseline approach based on only 200–400 labeled samples.

The human-in-the-loop approach not only requires fewer
labeled samples, but also provides better detection rates com-
pared to the supervised reference. As shown in Figure 8, the
F1-scoress of the human-in-the-loop approach stabilize
above the respective supervised reference. The corresponding
F1-score, recall, and precision values can be found in
Table 2 in columns 4–6. For the respective defect types finger
interruptions, poor edge isolation, hotspots and shunts, and fir-
ing defect, F1-scores of 0.991, 0.897, 0.963, and 0.782 could be
achieved. On average, the F1-score could thus be increased
by 2%.

Figure 7. Exemplary EL and IR images of the defect clusters shown in Figure 6.

Table 2. Defect detection results for the supervised reference and the
human-in-the-loop approach.

Supervised reference Human-in-the-loop

Process defect F1-score Recall Precision F1-score Recall Precision

Finger interruptions 0.972 0.946 1 0.991 0.982 1

Poor edge isolation 0.861 0.812 0.919 0.897 0.874 0.922

Hotspots and shunts 0.959 0.970 0.949 0.963 0.965 0.961

Firing defect 0.762 0.643 0.950 0.782 0.689 0.884

Figure 8. Comparison of the F1-scores of the supervised reference (Sup.
Reference) and the human-in-the-loop (HitL) approach with respect to the
number of labeled samples for the defects finger interruptions, poor edge
isolation, hotspots and shunts, and firing defect.
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5.4. Experiment 4—Results: Spatially Resolved Defect Detection

The trained models from experiment 3 can be used for very dis-
tinct defects for local spatially resolved defect segmentation as
described in Secion 3.4. Figure 9 shows four typical measure-
ment images for the respective defect classes finger interrup-
tions, firing defect, poor edge isolation, and shunts and
hotspots. The region that the models from experiment 3 assesses
as a defect is circled in red.

Defects of the classes finger interruptions and firing defect can
be coarsely detected in a spatially resolved manner. In Figure 9a,
b, the defect regions are enclosed quite accurately in the EL
images. In both cases, there is still a gap between defect and
nondefect regions. Material defects such as in the upper left
quarter of the cell in (a) are not missclassified as defects.

Edge isolation problems can be detected with spatial resolu-
tion, whereas a spatially resolved detection of shunts by the mod-
els from experiment 3 failed within our experiments. Figure 9c,d
shows example IR images for edge-isolation defects and shunts.
In (c), it can be seen that the edge isolation defect is well detected
at the left edge, but there are further regions in the center and
right corners that are detected as false positives. Spatially
resolved detection of shunts fails using this approach, as can
be seen in (d).

6. Discussion

We have shown that a CNN can derive quality parameters from
measurement images so that the EDT can be trained to capture
information from the EL, IR, and reflectance data. The influence
of individual input data and predicted parameters on the repre-
sentation has not yet been studied. For an exploratory analysis of
the EDTs, the 720D feature vectors were visualized in a low-
dimensional embedding space. Here, clusters were found con-
taining cells with similar defects. This indicates that the EDTs
are meaningful representations of the measurement images.
The EDT can be used to quantitatively compare measurement
images in terms of visible defects and cell properties. The net-
work design, the selection of input and output data, and the size
of the digital twin should be optimized in follow-up studies. In
particular, the influence of the number of entries in the EDT
should be examined. Also, the effect of the individual predicted

parameters on the representation and how many and which
ones are necessary for a meaningful digital twin should be
investigated.

The digital twin of the solar cell can be used to derive sorting
criteria for process defects. With the human-in-the-loop
approach, an efficient method for defining sorting criteria was
presented. The experiments showed a reduction in terms of
labeling effort of a factor of 4–6 depending on the investigated
defect. Within only a few interactions, the expert knowledge is
integrated into a classification scheme and enables a user-specific
sorting procedure. Surprisingly, the detection rate was even
higher than that of the supervised reference. We suspect that
the iterative sampling procedure of uncertain samples leads to
a more balanced distribution of classes within our labeled data,
reducing biases in the training data. Another advantage of this
method is that due to the low effort, solar cell manufacturers
can define defects individually tailored to the solar cell line
and train them quickly because it is expected that the relevant
information is contained in the EDT. The iterative approach
allows the models to be continuously adaptable along the produc-
tion process. We have used NNs in conjunction with dropout for
defect prediction and uncertainty calculation; however, other
methods such as SVMs are also possible as long as they can pro-
vide an additional uncertainty output.[59,60]

The sorting schemes were applied successfully to classify the
EDTs of solar cells into different defect classes. Also, a transfer to
spatially resolved feature maps was investigated identifying local
defect structures roughly without further labeling. For the
defects finger interruptions and firing defect, we could achieve
good segmentations. Edge isolation defects could also be found,
with additional regions falsely detected as a defect. Shunts could
not be detected locally. We suspect that the errors are caused by
occurrences of mixed defects and that separate clusters in which
the defect occurs dominantly are necessary for the approach.
This is the case for finger interruptions and firing defects, but
less for edge isolation defects and hardly for hotspots and shunts.
Furthermore, at an excitation current of 20A, series resistance
defects such as finger interruptions and overfiring are easier
to identify in EL images than parallel resistance defects such
as shunts and hotspots.

Apart from the investigated properties, the digital twin of the
solar cell promises to be easily transferable between multiple cell

(a) (b) (c) (d)

Figure 9. Example spatially resolved defect detection. The detected defect areas are circled in red for a) finger interruptions in the EL image, b) firing
defect in the EL image, c) edge isolation defect in the IR image, and d) shunt in the IR image.
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lines and helpful for process optimization. As the images are cor-
related with measured quality parameters, the time-consuming,
costly, and error-prone labeling process can be bypassed. Thus,
it can be quickly adapted to new cell lines by only performing the
respective measurements before CNN training. As investigated,
the digital twin holds process-related information derived from
the images that goes beyond IV characteristics. Therefore, it
seems promising using it for process optimization and by this
incorporating image information into optimization.

7. Conclusion

We have introduced the empirical digital twin of a solar cell con-
taining quality-describing features regarding electrical quality
derived from measurement images. For this purpose, a deep
neural network is trained to correlate high-dimensional measure-
ment images with IV parameters, enabling the EDT to hold
image features regarding these quantities. As an example of this
general approach, we use electroluminescence and thermogra-
phy images as well as reflectance values to predict in total
18 parameters. The digital twins can be used for quality inspec-
tion. Because similar cells lead to similar digital twins, they form
in the high-dimensional feature space clusters of the same defect
and quality type. By this, also changes in the processing of the
cells can be made observable using measurement images.

The EDTs are suitable for deriving sorting criteria. Within a
human-in-the-loop approach, expert knowledge can be integrated
into the defect detection process with little labeling effort. The
efficient and iterative labeling process enables user-adapted sort-
ing schemes specifically for the different cell lines and defects
sought. It was demonstrated that for the considered defect types
the F1-score could be increased by �2% to 0.99 for finger inter-
ruptions, 0.96 for hotspots and shunts, 0.90 for edge isolation
defects, and 0.78 for inhomogeneous contact formation due to
the firing process compared to the supervised reference.
Finally, we have shown that the networks for defect detection
can also be applied for spatially resolved identification of the
respective defects without the need for further labeling.
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