

A Measurement Framework for Software
Inspections in the Quasar Context

Author:
Bernd Freimut

IESE-Report No.118.03/E
Version 1.0
September 1, 2003

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6
D-67661 Kaiserslautern

Abstract

Software inspections are accepted as a formal, effective, and efficient method
for defect detection that is applicable in all development phases. In order to
control the performance of software inspection processes the collection and
analysis of data is recommended in the literature. Suggestions have been made
for measuring selected aspects of inspections. Yet, we found no comprehensive
survey of measuring software inspections.

In this preport, we present a five-level measurement framework that includes
most applications of measurement in the context of software inspections.
Quantitative models published in the literature are collected and discussed ac-
cording to the framework’s five level structure. This collection of models is in-
tended to be a comprehensive survey of the topic. Moreover, the framework
can be applied in future projects to derive a set of models that directly serve the
intended measurement purpose.

Copyright © Fraunhofer IESE 2003 v

Table of Contents

1 Introduction 1

2 Software Inspections 3
2.1 Basics of Software Inspections 3
2.2 Inspection Activities 4
2.3 The Inspection Team 5

3 Measurement Framework 7
3.1 Why Do You Need Measurement? 7
3.2 Basics of Measuring Software Inspections 8
3.3 A Framework for Measuring Inspection Processes 10
3.3.1 Application contexts 11
3.3.2 Process Characteristics 12
3.3.3 Models 13
3.3.4 Attributes 13
3.3.5 Measures 14
3.4 Basic Attributes 15
3.4.1 Effort 15
3.4.2 Duration 16
3.4.3 Defects 17
3.4.4 Size 20
3.4.5 Complexity 21
3.4.6 Experience 21
3.5 The Basic Set of Descriptive Models 22
3.5.1 Average Cost of Finding and Fixing a

Single Defect During Inspections 23
3.5.2 Average Cost of Finding and Fixing a

Single Defect for Other Techniques 23
3.6 Literature Review 25
3.6.1 Descriptive Models 25
3.6.2 Evaluation Models 39
3.6.3 Prediction Models 42
3.7 Critique 49

4 Data Analysis in the Framework’s Context 53
4.1 Desciptive Models 53
4.1.1 Data Availability 53
4.1.2 ODC Construction 54

Copyright © Fraunhofer IESE 2003 vii

5 Conclusion 55

6 References 56

Copyright © Fraunhofer IESE 2001 viii

Introduction

1 Introduction

Defect removal by verification and validation is a crucial point during software
development, especially in the domain of embedded software developmend
such as in the automotive industry. Cost, schedule and quality are directly ad-
dressed - three factors that are determinant for the success of a software de-
velopment project. Defects must be found to ensure the desired product quality
and they must be found in time and with acceptable effort to keep the project
within its schedule and budget. This is stressed by Capers Jones [Jon97] who
wrote “the largest single identifiable cost element has been that of finding and
fixing bugs”. Stephen H. Kan [Kan95] mentioned “defect removal is one of the
top expense elements in any software project and also affects project schedul-
ing. Effective defect removal can lead to reductions in the development cycle
time and good product quality.” The basic idea is that the longer a defect re-
mains in a software system the more effort must be spent on its repair. Conse-
quently, a verification and validation program must include verification steps
throughout the development process in order to avoid passing defects into the
next life cycle phase.

A successful approach to verification that can be universally applied to the out-
come of development activities is software inspection. Following a formally de-
fined process, a peer group examines a software artifact for possible defects
ensuring that the artifact is correct and conforms to product specifications and
requirements. The purpose of software inspections is the detection and subse-
quent correction of defects.

In the course of the Quasar project inspections are tackled from two combinig
viewpoints. The first viewpoint is that of how to perfom software inspections
within the context of the Quasar approach. This entails especially how to use
reading techniques in order to find defects in documents that are structured
according to the Quasar approach. The second viewpoint, which is addressed
by this report, is that of how to quantify inspections that are performed in gen-
eral and in the Quasar context

The IEEE definition of software engineering demands three attributes of soft-
ware development approaches: systematic, disciplined, and quantifiable. Soft-
ware inspections being part of a development approach fulfil these require-
ments. The software inspection process is formally defined, its goals and re-
quirements are stated and the roles for the participants are described (cf. Chap-
ter 2). Besides, the necessity and importance of data collection is underlined in
the literature. Ackermann et al. [ABL89] wrote “the collection and analysis of
data lies at the heart of the inspection process”. Though there is a general

Copyright © Fraunhofer IESE 2003 1

Introduction

agreement in the literature on this point and experience reports on the use of
software inspections usually include an enumeration of collected data items, no
systematic approach to the quantification of results from software inspections is
presented.

Addressing this problem, the report has two goals: The first goal is to develop,
starting with the work conducted in [Fus97], a framework for measuring soft-
ware inspections following the idea of goal-oriented measurement. This frame-
work should include the applications of quantified models in the context of
software inspections, derive attributes that need to be measured from the
applications, and finally propose operationally defined measures for these at-
tributes.

The second goal is to identify and motivate activities that can contribute to the
measurement of inspections that are performed within the Quasar context.

This report is structured as follows. Chapter 2 introduces software inspections.
Chapter 3 presents the measurement framework. Chapter 4 discusses the ap-
plicability of the framework’s models in industrial settings. Chapter 5 concludes
the paper.

Copyright © Fraunhofer IESE 2003 2

Software Inspections

2 Software Inspections

This chapter provides a short introduction of software inspections. Although we
assume that the reader familiar with the Quasar context is also familiar with
software inspections, we nevertheless present the basic information on inspec-
tions here. The rationale for this is to make the report as self-containable as
possible.

The basic ideas on software inspections are discussed in Section 2.1. The soft-
ware inspection process consists of a series of activities which are described in
detail in Section 2.2. The inspection team is more than a number of technical
personnel taking part in the inspection. Several well-defined roles describe the
respective part each participant plays during the different activities. These roles
are presented in Section 2.3.

2.1 Basics of Software Inspections

Software inspections are one approach to the verification of software products,
other approaches are reviews, walk-throughs, audits and mathematical proofs.
These differ from each other in a number of factors, e.g. the method and scope
of examination, their purpose, the people that are involved, and the way how
they are involved.

The IEEE Standard for Software Reviews and Audits [IEE89] defines the objective
of software inspections as follows:

 “The objective of a software inspection is to detect and identify software ele-
ment defects1. This is a rigorous, formal peer examination that does the
following:

(a) Verifies that the software element(s) satisfy its specifications
(b) Verifies that the software element(s) conform to applicable standards
(c) Identifies deviation from standards and specifications
(d) Collects software engineering data (for example, defect and effort data)
(e) Does not examine alternatives or stylistic issues”

1 The term error is commonly used with several possible definitions. The IEEE Standard Glossary of Software Engineering Technology

[IEE90] gives these definitions:
“(a) An incorrect result. For example, a computed result of 12 when the correct result is 10.
(b) An incorrect step, process, or data definition. For example, an incorrect instruction in a computer program.
(c) A human action that produces an incorrect result. For example, an incorrect action on the part of a programmer or operator.”
We assign definition (a) to the word failure, definition (b) to the word fault, and definition (c) to the word error. In this thesis, de-
fect is used synonymously with fault as defined above.

Copyright © Fraunhofer IESE 2003 3

Software Inspections

Following Ebenau and Strauss [ES94], “inspections are a means of verifying in-
tellectual products by manually examining the developing product, a piece at a
time, by small groups of peers to ensure that it is correct and conforms to prod-
uct specifications and requirements.” Their purpose is “the detection (and
subsequent correction) of defects.” The basic concept behind inspections is
“that a small group of peers, concentrating on one part of the product, can de-
tect more defects than the same number of people working alone”.

The goals of software inspections are twofold. Inspections focus on the detec-
tion and subsequent correction of defects in software products, but the analysis
of defect data can also be helpful for continuous improvement of the software
development process. Furthermore, there are two requirements for software in-
spections: process modelling and measurement. The former is needed to iden-
tify software products to be inspected. Exit criteria of development activities de-
termine when products require an inspection. The latter is necessary to follow
the goal of product and process improvement. A complete survey on measuring
software inspections will be presented in Chapter 3.

Since Fagan’s first publication [Fag76] on software inspections, numerous varia-
tions have been proposed. The inspection process presented in the following
sections does not follow a specific approach but is a generic process trying to
capture the common aspects. Initially, inspections were used to examine design
and code documents. In the meantime, they moved upstream in the develop-
ment life cycle when the fact was recognized that the benefits of removing de-
fects are highest if defects are detected in early phases. Today, any kind of
software artefact can be subject of an inspection.

2.2 Inspection Activities

In detail, the software inspection process is as a sequence of six activities each
having its own objectives. The following description of these activities is generic
in the sense that they can be implemented in different ways for a special in-
spection process.

1. Planning
During planning, the objective is organization. The author prepares the material
for the inspection. The organizer checks whether the materials meet the inspec-
tion entry criteria. The organizer is also responsible for the selection of the in-
spection team and the assignment of the roles to its members. He schedules
the subsequent inspection activities and distributes the necessary material.

2. Overview (optional)
If an overview meeting is scheduled, its objective is education. The author gives
a presentation of the material to be inspected that is attended by all inspectors.

Copyright © Fraunhofer IESE 2003 4

Software Inspections

The presentation introduces the inspectors to the material’s function and rela-
tionships as well as to the techniques and representations that are used.

3. Detection
The objective is identification and documentation of defects. The inspectors use
a reading technique to detect any defect in the distributed material. This activity
can be implemented as individual preparation (inspectors get thoroughly famil-
iar with the material on their own) or as an inspection meeting.

4. Collection
The objective is collection of and decision about defects. Potential defects
found during detection are evaluated and if approved as defects they are added
to the inspection defect list. This can be performed in an inspection meeting or
by a single person via deposition meetings with each inspector or correspon-
dence.

5. Correction
The objective is the correction of all defects. The author edits the material and
deals with each defect on the inspection defect list.

6. Follow-up (optional)
The objective is the evaluation of the corrections made by author. After all de-
fects have been resolved and the inspection’s exit criteria are met, the modera-
tor verifies the defect resolution.

2.3 The Inspection Team

Software inspections are conducted by a group of peers, typically comprising 3
to 5 people in a small team and up to 8 people in large teams. A number of
specific roles are assigned to the participants having clear and specific responsi-
bilities. Whether a role needs to be assigned to a team member may depend on
the implementation of the inspection activities. The roles and their responsibili-
ties are:

Organizer
The organizer plans all inspection activities.

Moderator
The moderator ensures that the inspection procedures are followed and other
team members perform their responsibilities for each step. He moderates the
inspection meeting if there is one. In this case, he is the key person in a success-
ful inspection as he manages the inspection team and must offer leadership.
Special training for this role is required.

Copyright © Fraunhofer IESE 2003 5

Software Inspections

Inspector
Usually all team members are assumed to be inspectors, regardless of their spe-
cial role. Inspectors are responsible for detecting defects in the target software
artefact.

Reader
At the inspection meeting, the reader leads the team through the material in a
complete and logical fashion. The material should be paraphrased at a suitable
rate for detailed examination. Paraphrasing means that the reader should ex-
plain and interpret the material rather than reading it literally.

Author
The author is responsible for the correction of defects during rework. During an
inspection meeting, he addresses specific questions the reader is not able to an-
swer. The author must not serve as moderator, reader or recorder.

Recorder
The recorder is responsible for logging all defects in the inspection defect list
during the inspection meeting.

Collector
The collector collects the defects found by the inspectors if there is no inspec-
tion meeting.

Copyright © Fraunhofer IESE 2003 6

Measurement Framework

3 Measurement Framework

This chapter investigates the measurement of software inspections in more de-
tail. Section 3.1 justifies why measurement provides for valuable information
about software development processes. Section 3.2 discusses general aspects
of measuring inspection processes. A sample proposal for data collection during
inspections is presented and its insufficiencies are analysed. Section 3.3 pre-
sents a measurement framework that tries to structure measurement, its goals
and components on different levels. Sections 3.4 and 3.5 contain definitions for
basic attributes and models that are needed for the more complex models pre-
sented in Section 3.6. In this section, the proposed framework is applied to give
an overview over measurement of inspection processes in the literature. A
number of bibliographical references is analysed and their contents is presented
according to the framework’s structure. The findings of this overview are finally
analysed in Section 3.7.

3.1 Why Do You Need Measurement?

Imagine a software quality assurance manager who wants to introduce soft-
ware inspections into a development project. After carefully selecting the in-
spection process and the people to participate, he provides them with training
on software inspections if necessary. He assigns them to the appropriate roles
for a first inspection (e.g., of a requirements document), schedules the inspec-
tion activities, and distributes the necessary documents. Some days or weeks
later, the organizer reports that the activities have been performed according to
their description. Thus, the inspection process is completed.

Now what do the participants know about the success of the conducted soft-
ware inspection? Do they know how good they performed? Do they have a
precise understanding of what is “good”? Do they know how many defects
were detected and, maybe more important, how many defects might not have
been detected? Do they know which costs were associated with the inspec-
tion? Do they know if the inspection outperformed other verification and vali-
dation techniques in terms of effectiveness and efficiency?

By simply following instructions for software inspections one is able to detect
and remove defects for sure, but one cannot provide for detailed information in
order to answer questions like the ones stated above.

As a key concept to getting quantitative results in software engineering, meas-
urement was integrated into the discipline’s set of methods. Basili et al.

Copyright © Fraunhofer IESE 2003 7

Measurement Framework

[BCR94b] performed a complete survey of measurement where the importance
of measurement for software development is emphasized:

“Lord Kelvin’s statement that “one does not understand what one cannot
measure” is at least as true for software engineering as it is for any other engi-
neering discipline. Measurement has been recognized as an indispensible pre-
requisite to introducing engineering discipline to the development, mainte-
nance and use of software products.”

It is not only about engineering discipline during different stages of the soft-
ware life cycle, but measurement can also support different purposes, as
pointed out by Briand et al. [BDR96]:

“Measurement is introduced in software organizations to gain quantitative in-
sight into the development processes and the developed products. This is im-
portant in order to understand better the development process, to identify
problems and improvement opportunities.”

For these reasons, collecting additional information about the development
process through a measurement program is useful and should be considered by
project managers.

In general, we do know that inspections are a valuable part of a software de-
velopment process. There is a lot of evidence that supports this, cf. the experi-
ence reports compiled by Wheeler et al. [WBM96]. However, inspections when
implemented have a large amount of variation in their effectiveness and effi-
ciency. With measurement one is able to optimize inspection performance -
both maximizing the effect gained and minimizing the effort spent.

3.2 Basics of Measuring Software Inspections

The importance of applying measurement to software inspections is stressed in
most of the related publications, e.g., expressed by Gilb in a humorous manner
[Gil88]:

“The statistics principle: Inspection without statistics is like night driving with-
out headlights; you may not see obstacles or opportunities until it is too late.”

A lot of questions about software inspections can be answered by measure-
ment. A few examples were given in the introduction to this chapter. In order
to find answers to these questions, it is necessary to determine the purpose of
measurement and decide which data needs to be collected. As an example, we
have a look at the measurement program for software inspections that is pre-
sented by Ebenau and Strauss [ES94]. In general, they describe the possibilities
and requirements of measuring software inspections to be:

Copyright © Fraunhofer IESE 2003 8

Measurement Framework

“Inspection data analysis provides the ability to measure and control the per-
formance of the inspection process, the quality of the emerging product, and
the effectiveness of the development process. Accomplishing this depends on
the collection and analysis of data about the identity of the work products that
are inspected, the performance of the inspections, and the defects that are
found.”

In detail, they propose to collect the following data:

“During an inspection three types of data are recorded as an integral part of
the process: project identification data, inspection performance data, and
product defect data. This data provides a profile of the work product inspec-
tions, and is composed of

− Project identification data
− Project name (and any other relevant organizational information)
− Work product name (this may also include items such as release, account,

etc.)
− Work product status (new, tested, modified, etc.)
− Moderator
− Meeting type (inspection, reinspection, overview)
− Inspection type (e.g., requirements, code, test plan)
− Inspection performance data
− Size of the work product (e.g., lines, pages)
− Date of the meeting
− Preparation time (hours)
− Examination time (hours)
− Number of inspectors
− Estimated rework (hours)
− Actual rework (hours)
− Rework completion date
− Work product disposition (e.g., accept, conditionally accept, rein-spect)
− Product defect data: Defect data classifies the problems identified in the

product by the inspection meeting. (...) This data is composed of
� Location of the defect (e.g., line #)
� Description of the defect
� Defect type (documentation, interface, logic, etc.)
� Defect class (wrong, missing, extra)
� Severity (major, minor)

When this information is collected and stored for each inspection, the result is a
base of cumulative knowledge about the project, the product as a whole, each
product component, and each inspection type.”

Though a lot of data items are recommended to be collected, sole data collec-
tion should not be seen as sufficient. To extract valuable information from the

Copyright © Fraunhofer IESE 2003 9

Measurement Framework

collected data, it needs to be analysed. Yet, the proposal of Ebenau and Strauss
lacks guidelines on how to perform this analysis. Besides, the purpose of data
collection and the results that can be derived from the data are not clearly de-
fined. Lacking this information their set of measures has to face the critique ex-
pressed by Basili et al. [BCR94b] with reference to the early days of software
development:

“During the sixties, seventies and early eighties software measurement was in
its primitive stage. This is reflected by the fact that measurement goals were
neither explicit nor comprehensive. Implicit goals reflected the “production”
view that there was a common set of goals shared by the entire software
community. People disagreed over the usefulness of measures and measure-
ments without realizing that they had different goals in mind. How else could it
be possible that entire papers were devoted to discuss the usefulness of indi-
vidual measures out of context.”

Therefore, the framework that is to be developed in the following section has
to mirror the aspect of purpose and goal of measurement, thus providing a
context for the interpretation of collected data. As the focus of this thesis is on
the performance of software inspections, measurement is concentrated on
those aspects that Ebenau and Strauss listed as inspection performance data
and product defect data. The organizational context provided by project identi-
fication data is important to identify sets of data that belong to a particular in-
spection, but is not subject of discussion here.

3.3 A Framework for Measuring Inspection Processes

This section describes a framework that is developed as a top-down approach
for measuring software inspection processes. The rationale for the structure
and components of the framework is basically the experience with measure-
ment. Our framework can be interpreted as an application of the
Goal/Question/Metric paradigm [Bas92, BCR94a]. However, the framework is
tailored to the specific topic of measuring software inspections in contrast to
the generic approach of GQM. Thus, we develop a framework in order to fit ex-
isting literature on measuring inspections into it.

The framework consists of 5 levels: application contexts, process characteristics,
models, attributes, and measures. These levels are intended to provide guid-
ance in the choice of measurement if they are used like a decision tree. By tak-
ing a sound decision on each level starting with the application context, it is
possible to derive a set of models, attributes, and measures that address directly
the intended purpose of measurement.

At the highest level, the proposed framework identifies groups of measurement
applications that are used for a common purpose. Measurement applications

Copyright © Fraunhofer IESE 2003 10

Measurement Framework

for individual aspects of inspection processes are described on the second level
whereas models, attributes, and measures that are essential to get quantitative
results are covered on the lower levels. In detail, these levels are defined in the
following way:

3.3.1 Application contexts

[Mer95] explains context as “the interrelated conditions in which something ex-
ists or occurs”. At the framework’s first level, an application context groups to-
gether a number of process characteristics. These are interrelated in the sense
that the gained information is used for a specific purpose which the characteris-
tics have in common. The measurement of inspection processes can be divided
into the following three application contexts:

(a) Assessment of inspections
Several arguments qualitatively confirm that software inspections are an impor-
tant activity during software development (cf. Section 1.1). However, the ef-
fects of conducting inspections in a software development project should be
evaluated on a quantitative basis. Quantitative results on their costs and bene-
fits and their impact on product quality and project schedule are needed. For
example, it may be interesting to compare inspections to different testing
strategies.

(b) Guidance for inspections
While conducting software inspections, guidelines for planning and monitoring
them are necessary. The description of software inspections in Chapter 2 only
includes the activities to be performed and the responsibilities of the people in-
volved but, for example, no instructions at which rate a document should be in-
spected. Information is needed on how to integrate inspections into the project
schedule, how many people should participate in the inspection, which qualifi-
cations they should have, how to perform inspection activities, which size an in-
spected document should have, and if inspections are performed in confor-
mance to the guidelines. Besides, it must be decided if a reinspection of a
document is necessary after the defects have been corrected.

(c) Improvement of inspection processes
After inspections have been implemented in an organization and its develop-
ment projects, experience of conducting inspections is aggregated and im-
provement possibilities can be identified in order to maximize the benefits of in-
spections. Therefore, continuous improvement of the inspection process is es-
sential, e.g., the guidelines for the inspection process have to be observed and,
if necessary, corrected. Several other parameters can be varied in order to im-
prove inspection performance like the number of inspection sessions (during
detection), the number of participants, and the reading technique.

Copyright © Fraunhofer IESE 2003 11

Measurement Framework

3.3.2 Process Characteristics

A process characteristic describes a single property of the inspection process
that is evaluated by measurement. It delivers a special type of information that
is needed in one of the described application contexts.

(a) Effectiveness
Effectiveness describes the ability of software inspections to detect defects.

(b) Efficiency
Efficiency characterizes the cost-effectiveness of detecting defects by inspec-
tions.

(c) Document quality
Software inspections help to improve the quality of the inspected document.
After completion of the inspection process, the resulting document should have
a certain quality level, e.g., with respect to the density of remaining defects.

(d) Impact on project schedule
Inspections need to be scheduled during a development project. The inspection
activities consume additional effort and increase development time. Scheduling
a meeting may even cause delays during a project.

(e) Status of inspection process
During a development project, the status of the inspections (i.e., the portion of
documents that have already been inspected) may be of interest.

(f) Implementation of inspection activities
The generic inspection process as described in Chapter 2 offers the possibility of
adapting the implementation of inspection activities to the project environ-
ment, e.g., conducting an inspection meeting or conducting a meeting-less in-
spection.

(g) Reading technique
Inspectors try to detect defects by using a specific technique, e.g., ad hoc,
checklists, or perspective-based reading.

(h) Participants
While planning an inspection, the number of participants and their recom-
mended qualification have to be decided.

(i) Guidelines
The participants of an inspection should follow guidelines for their work, e.g.,
with regard to the effort they spent on detection or the rate at which the
document is inspected.

Copyright © Fraunhofer IESE 2003 12

Measurement Framework

(j) Stopping criterion
A stopping criterion defines precisely when the detection activity should be
ended.

(k) Reinspection
At completion of an inspection it is necessary to decide whether the inspected
document needs a reinspection, e.g., because numerous changes have been
made in order to correct the detected defects.

3.3.3 Models

A suitable explanation for model in [Mer95] is “a system of postulates, data,
and inferences presented as a mathematical description of an entity or state of
affairs”. Focusing on the mathematical aspects, a model is defined by Bender
[Ben91] to be “an abstract, simplified, mathematical construct related to a part
of reality and created for a particular purpose”.

In accord with these definitions Lehman [Leh94] states that apart from mathe-
matics “the term model, while widely applied, is generally less clear and rarely
formally defined. Nevertheless the underlying concept holds good. A model re-
flects the properties of a theory and, thereby of some reality of which that the-
ory is an abstract description. Loosely speaking one says that a model reflects
some aspect or view of reality in the domain of discourse. Any number of such
models can be created. Each will have been constructed by careful choice of
axioms or assumptions to represent a particular viewpoint”.

In this sense, a model is a mathematical description for a process characteristic
that is based on certain assumptions and designed to reflect some aspect of
reality in a particular environment. For any model, these assumptions have to
be defined carefully as a model may only be used when its assumptions hold.

Following Briand et al. [BDR96], three different kinds of models are necessary to
be developed for different process characteristics: Descriptive models are used
to study characteristics of the software artifact or process that is examined. If a
particular attribute needs to be evaluated and one of several alternative deci-
sions has to be taken, an evaluation model is needed. As process characteristics
may include prediction purposes, prediction models are the third category of
models. The output of all three kinds of models is computed based on input
variables, which we refer to as attributes.

3.3.4 Attributes

An attribute captures an abstract property of a software engineering artifact or
a software process that is used in a model on the next higher level of the
framework. Attributes do not have an operational definition as for example the

Copyright © Fraunhofer IESE 2003 13

Measurement Framework

attribute “document size” may have different meanings for a requirements
document and a code document. The model’s assumptions determine how to
operationally derive a value for the attribute by selecting the appropriate meas-
ure.

3.3.5 Measures

Eventually, measures determine the value of attributes in an operational way.
This can be derived easily from the following definition by Basili et al. [BCR94b]:
“A software measure is a mapping from a set of objects in the software engi-
neering world to a set of objects in the mathematical world. Objects in the
software engineering world may be projects, products and processes. Objects in
the mathematical world may be numbers or vectors of numbers. These map-
pings can be defined on different scales such as nominal, ordinal, interval, or
ratio.”

The framework is intended to be a means for structuring existing literature on
measuring inspection processes. As application contexts and types are concepts
that can be discussed without referring to a bibliographical reference, levels 1
and 2 of the framework are only described in detail in this section. The frame-
work’s lower levels will be covered in Section 3.6.

Process characteristics can be used in combination with more than one applica-
tion context. For example, the characteristic effectiveness can be used within
application contexts assessment, guidance, and improvement. Therefore, the
framework need not eventually have a tree-like structure. Table 3.1 shows the
possible combinations of application contexts and characteristics. Entries for the
table cells will be made in Section 3.7. There, Table 3.2 fits the models that are
discussed in Section 3.6 into the scheme given by Table 3.1.

 Assessment of
inspections

Guidance for
inspections

Improvement of in-
spection processes

Effectiveness
Efficiency
Document quality
Impact on project schedule
Status of inspection process not applicable not applicable
Implementation of inspec-
tion activities

Reading technique
Participants
Guidelines
Stopping criterion
Reinspection

Table 3.1: Application contexts and process characteristics

Copyright © Fraunhofer IESE 2003 14

Measurement Framework

3.4 Basic Attributes

This section presents a set of basic attributes of inspection processes. The litera-
ture review in Section 3.6 takes into account more complex models which are
composed using the basic attributes presented in this section. Thus, the defini-
tions given here serve as a common baseline in order to present the informa-
tion in the next sections in a consistent form. Otherwise, misinterpretations due
to different definitions or notations could be possible. The set of basic attrib-
utes includes effort spent on inspections, duration of an inspection, number of
defects, size and complexity of inspected products, and experience of the par-
ticipants.

For the definitions, two conventions are used:

1. Some of the attributes that are defined in this section will be indexed,
e.g., identifying a single inspection. When an attribute captures an ag-
gregate value, e.g. the summation of an attribute of all inspections con-
ducted, “+” replaces the index over which the summation is performed.

2. Sets are displayed in bold, for other variables the default font is used.

As the total number of inspections is needed for the definition of several basic
attributes, we define it first. Let:

Definition 3.1

ki ...1= , where k is thetotal number of inspections conducted

3.4.1 Effort

When evaluating inspections, it is necessary to have a precise understanding of
the effort consumed by the inspection process. Therefore, the effort spent on
single inspection activities and on the process as a whole is to be recorded. The
focus of this thesis is on measuring software inspections after they have been
introduced into a software development organization. Hence, we do not con-
sider the effort for this introduction, e.g., for management meetings or train-
ing.

Let:

Definition 3.2

qr ...1= , where q is the total number of participants of the inspection

Copyright © Fraunhofer IESE 2003 15

Measurement Framework

We define the effort that a participant r spends in an inspection i on a single
activity a as:

Definition 3.3

rai ,,ε = effort spent on activity a by participant r during inspection i [person

hours], where:

Definition 3.4

{ }upFollow,CorrectionCollecton,Detection,Overview,Planning, −∈a

The effort spent on inspection activity a by the whole inspection team is then
defined as:

Equation 3.1

∑=+
a

raiai ,,,, εε

In analogy, the effort spent on a single inspection i as a whole is defined as:

Equation 3.2

∑ +++ =
a

aii ,,,, εε

3.4.2 Duration

Inspections do not only consume effort, but they also have an impact on the
product’s development cycle time. Inspection activities are scheduled in a way
that all people involved can really participate and fulfil their role. Thus, the in-
terval for the completion of all activities will range from at least a few days up
to a few of weeks. During this period, other work that relies on the artifact to
be inspected is delayed and in extreme cases, developers may spend their time
waiting for the inspection to be completed. If time to market is a critical issue
during development, the effects of inspections on the development interval
should be considered when discussing efficiency of inspections. For example,
Votta discusses the effects of time loss due to meeting scheduling delay caused
by people not being available at the same time [Vot93]. He advises to substitute
inspection meetings by other forms of defect collection. According to his find-
ings, meetings are not as beneficial as managers and developers think they are.

The duration of an inspection is defined as the interval between the availability
of the material for inspection and the completion of the inspection process:

Copyright © Fraunhofer IESE 2003 16

Measurement Framework

Definition 3.5

d = interval beteen the availability of material and completion of inspection
[days]

In terms of inspection activities, this can be expressed as:

Equation 3.3

d = end date of follow-up – start date of planning [days]

3.4.3 Defects

The major goal of inspections is defect detection, collection, and correction.
During detection, inspectors read a document with the goal of locating defects.
During collection, the individual results of the detection activity are combined
into a list of unique defects found during the detection step. During correction,
the author removes the defects from the document following this list.

Optionally, for analysing the defects in detail, they may be classified according
to a finite number of defect types. It is assumed that the defect types are mu-
tual exclusive, i.e., that a defect has a unique defect type and that different in-
spectors consistently classify a defect as having the same defect type. Thus, an
orthogonal defect classification scheme is assumed.

Defect data is central to evaluating effectiveness and efficiency of inspections as
well as being necessary to control product quality. In the following, definitions
for the sets of defects existing in the document prior to inspection and found
during inspection with respect to inspection activity, inspector, and defect type
are given.

As not all participants r necessarily take part in defect detection, we define the
number of inspectors who conduct defect detection as:

Definition 3.6

lj ...1= , where l is the total number of inspectors

With respect to defect classification we define:

Definition 3.7

ut ...1= , where u is the number of defect types used

The set of all defects that exist in a document is in general neither known be-
fore nor after inspecting the document. Usually, only a subset of all defects will

Copyright © Fraunhofer IESE 2003 17

Measurement Framework

be detected by an inspection. However, the set of all unique defects is needed
for evaluation purposes. Consequently, we define the set of unique defects of a
special type t existing in a document prior to inspection i as:

Definition 3.8

} inspection in doucment inspected the in exists that type defect a is x |{, ixti =α

The set of unique defects of all defect types existing in a document prior to in-
spection is defined as:

Equation 3.4

U tii ,, αα =+

The cardinality of this set can be expressed as:

Equation 3.5

=+,iα total number of defects that exist in the inspected document prior to in-

spection i

It has to be considered that these defects may have different sources. Let us as-
sume a waterfall process model consisting of requirements definition, design,
coding, and testing. For example, if a defect is detected while inspecting a code
document, this defect may have been introduced during coding, but it may
have slipped through a previous design inspection. Thus, the origin of a defect
does not need to be the phase where it is detected.

During detection, a subset of the total number of defects will be detected. We
define the set of unique defects of a special type t found by inspector j during
detection in inspection i as:

Definition 3.9

}i inspection in detection during j inspectorby found t type of defect is x|{,, xtji =β

The set of unique defects of all defect types found by inspector j during detec-
tion in inspection i is defined as:

Equation 3.6

U
t

tjiji ,,,, ββ =+

Copyright © Fraunhofer IESE 2003 18

Measurement Framework

The set of unique defects of a special type t found by all inspectors during
detection in inspection i is defined as:

Equation 3.7

U
j

tjiti ,,,, ββ =+

The set of unique defects of all defect types found by all inspectors during
detection in inspection i is defined as:

Equation 3.8

U
j

jii +++ = ,,,, ββ

The cardinality of this set can be expressed as:

Equation 3.9

=++,,iβ number of unique defects found during detection in inspection i

Following detection, collection is the next inspection activity to be performed.
We define the set of unique defects of a special defect type t logged during
collection in inspection i as:

Definition 3.10

}i inspection in collection during logged t type of defect a is x|{, xji =λ

and, as before, the set of unique defects of all defect types logged during col-
lection in inspection i as:

Equation 3.10

U
t

tii ,, λλ =+

The cardinality of this set can be expressed as:

Equation 3.11

=+,iλ number of unique defects of all types logged during collection in inspec-

tion i

Copyright © Fraunhofer IESE 2003 19

Measurement Framework

3.4.4 Size

Size is an important factor in order to characterize the document being in-
spected. It can be useful while determining how much effort should be spent
on inspecting a document or if a document needs to be divided into several
parts for inspection purposes.

Different kinds of documents will be produced during software development,
e.g., requirements documents, design documents, test plans, and code. Due to
the different structures of these document types various size measures have
been proposed. Some of them consider more physical aspects of the document,
e.g., the number of pages of a document or the number of lines of code,
whereas other measures address logical aspects, e.g., the number of modules a
system is composed of during design or the number of function points.

A general size measure that is applicable to any kind of document is the num-
ber of pages:

Definition 3.11

sphysical = number of pages in a document

It has to be considered that the amount of information on a page can vary tre-
mendously between documents of different types and even documents of the
same type.

Especially for code documents, “lines of code (LOC)” is proposed most often as
a size measure (e.g., [Hum95]). This measure needs to be defined carefully in a
particular environment because it can be a source of controversies, which lines
to count (e.g., empty lines, commentary lines, or multi-statement lines).

Definition 3.12

scode -= number of lines of code (LOC)

As there is no LOC count e.g., for a design document at the time of inspection,
an analysis of inspections using LOC as a consistent size measure must be post-
poned. Therefore, some authors propose to use an estimated LOC count based
on historical data [Hum95].

An example of a size measure that is based on logical aspects of a document is
the function point measure [Jon97]: “A function point is a synthetic metric that
is comprised of the weighted totals of the inputs, outputs, inquiries, logical files
or user data groups, and interfaces belonging to an application.” The idea be-
hind function points was to create a measure that deals with external features
of the software that are important to business owners and users. Therefore, the
measure is available early in the development life cycle and can be used for

Copyright © Fraunhofer IESE 2003 20

Measurement Framework

planning the development project. Besides, it stays constant independent of the
programming language, design technology, or development skills involved
[Alb94].

Definition 3.13

slogical = number of function points

3.4.5 Complexity

To detect defects inspectors must understand the artifact being inspected. De-
pending on its contents this task may be more or less demanding. This may in-
fluence the result of the inspection. For example, if a document is hard to un-
derstand, inspection effectiveness may decrease because defects remain unde-
tected due to a lack of understanding.

When talking about the understandability of software, systems, and the related
documents, the term complexity is often used though an exact definition is dif-
ficult as explained by Zuse [Zus94]:

“Complexity is both difficult to define precisely and to quantify. However, we
can say that the complexity of an object is some measure of the mental effort
required to understand that object.”

It is worth mentioning that this definition refers to the psychological complexity
of an artifact in contrast to other facets of complexity like computational com-
plexity of software, which is a machine-oriented view of a program’s algo-
rithmic complexity. Thus, complexity measures must reflect what is complex for
humans. Numerous complexity measures have been proposed, for a detailed
discussion cf. [Zus94]. Jones [Jon97] gives a good overview on different forms
of complexity. He describes 20 varieties of complexities and their respective
measures if available.

3.4.6 Experience

When looking at a software development process, the experience of the par-
ticipants is another issue of interest. Their knowledge and familiarity with the
relevant methods and techniques, e.g., software inspections, are important fac-
tors determining effectiveness and efficiency of process enactment. However,
experience is far more difficult to measure, as it has neither a physical represen-
tation nor a general definition. Thus, the kind of experience that is to be meas-
ured needs to be defined precisely in combination with an appropriate model.
Often, these models are built on subjective ratings and ordinal scales of meas-
urement are used.

Copyright © Fraunhofer IESE 2003 21

Measurement Framework

For example, Basili [Bas92] presents a characterization of the experience of a
team with regard to a particular process. After defining the steps of an educa-
tion and training program, the experience is measured by a subjective rating
per person as follows:

− 0 - none
− 1 - have read the manuals
− 2 - have had a training course
− 3 - have had experience in a laboratory environment
− 4 - have used on a project before
− 5 - have used on several projects before
− x - no response”

In another example, the report analyses a system test process. One of the as-
pects that are characterized is the familiarity of the system domain to the tester:

− 0 - domain new to me
− 1 - have had a course in the subject domain
− 2 - have built or tested one system in this domain
− 3 - have built and tested at least one system in this product line
− 4 - have built and tested several systems in this domain
− 5 - have tested and built several systems in this product line”

Analysing software inspections, the experience of the people participating in
the inspection with

− the inspection process itself,
− the application domain of the product being developed, and
− the techniques used in the artifact being inspected

may be issues of interest.

3.5 The Basic Set of Descriptive Models

Building on the basic attributes defined in the previous section this section in-
troduces descriptive models that will be used when discussing models in the lit-
erature. Models for the average cost of finding and fixing a defect during in-
spections and for other defect detection techniques are presented. In general,
the average cost would be calculated by collecting the individual cost of finding
and fixing a number of defects, summarizing these costs, and divide the sum by
the number of defects. Since we collect data for costs at the level of inspection
activities, this procedure is not applicable here. Therefore, the total costs for an
inspection (or another defect detection technique) are normalized by the num-
ber of defects found in order to calculate the average cost for the scope of this
thesis.

Copyright © Fraunhofer IESE 2003 22

Measurement Framework

3.5.1 Average Cost of Finding and Fixing a Single Defect During Inspections

We assume that the cost of finding and fixing defects during inspection is equal
to the effort spent on inspection because effort is the largest cost driver for
conducting inspections. As explained earlier, we only consider this cost, not
other expense factors that may be related to inspections, e.g., training or exter-
nal consultants.

Using the definitions for effort (Equation 3.2) and defects (Equation 3.11), the
average cost of finding and fixing a single defect during an inspection i is de-
fined as:

Equation 3.12

=

+

++

defect
hours-person

,

,,
,

i

i
iinspection λ

ε
ε

Generalizing this value over the inspections conducted within an organization,
the average cost of finding and fixing a single defect during k inspections for an
organization is defined as:

Equation 3.13

=

∑
+ defect

hours-person,

, k
i

iinspection

inspection

ε
ε

3.5.2 Average Cost of Finding and Fixing a Single Defect for Other Techniques

In general, it is a valid assumption that the software development process of an
organization includes other defect detection techniques than software inspec-
tions. Usually, these will follow after inspections have been conducted and may
include testing and maintenance of the product. For evaluating the benefits of
inspections and comparing them with other defect detection techniques, it is
necessary to define the sets of defects detected by other techniques and the ef-
fort spent for detecting these defects.

Let f be a defect detection phase (excluding software inspections) of a software
development process. In analogy to the definitions concerning inspections, we
define:

Definition 3.14

}f phase to prior document examined the in exists that t type defectof a is x|{, xtf =α

Copyright © Fraunhofer IESE 2003 23

Measurement Framework

Thus, the set of unique defects of all defect types existing in the examined
document prior to phase f is defined as:

Equation 3.14

U
t

tff ,, αα =+

The set of defects of defect type t found during defect detection phase f is de-
fined as:

Definition 3.15

}f phase detection defect during found t type defectof a is x|{, xtf =λ

Thus, the set of all defects found during defect detection phase f is defined as:

Equation 3.15

U
t

tff ,, λλ =+

With εf representing the effort spent on finding and fixing these defects, the
average cost of finding and fixing defects for a single defect detection phase is
defined as:

Equation 3.16

=

+ defect
hours-person

,f

f
f λ

ε
ε

The average cost of finding and fixing a single defect using other defect detec-
tion techniques than software inspection for an organization is then defined as:

Equation 3.17

=

∑
+ defect

hours-person
~
k

fε
ε

where k
~

 is number of defect detection phases analysed.

Copyright © Fraunhofer IESE 2003 24

Measurement Framework

3.6 Literature Review

The framework presented in Section 3.3 is now used to give a structured over-
view of measurement of inspection processes in the literature. A number of
bibliographical references will be analysed according to that framework. For
each reference, a description of the proposed model is given in three parts:
First, the model is characterized along the framework as complete as informa-
tion is available. The model and its respective attributes and measures are or-
ganized according to the framework’s levels 3, 4 and 5 and the mapping be-
tween adjacent levels is described. Where possible, the model is given using the
terms originally used by the author and re-expressed using the definitions of
this thesis. In addition, the process characteristc and context are determined.
Second, the underlying assumptions of the model are defined. Third, a discus-
sion concludes the description and may provide various pieses of information
about the model, e.g., on the environment where the model was developed,
the purpose it was designed for, and the experience made. Table 3.2 shows
how the models can be used for the application contexts and characteristics
presented in Table 3.1.

3.6.1 Descriptive Models

In this section, quantitative models are discussed that operationalize abstract at-
tributes of inspection processes. We present models for the effectiveness of in-
dividual inspection activities, the effectiveness of the inspection process as a
whole, and the efficiency of inspection processes.

3.6.1.1 Effectiveness of Individual Inspection Activities

Depending on the actual implementation of detection, collection, and correc-
tion during an inspection, the effects of the individual activities can be evalu-
ated as all of them have an impact on the results of the inspection.

Meeting Loss and Meeting Gain

If the collection activity of the inspection process is implemented as a meeting,
the collection of the defects is more than simply merging the individual findings
of the inspectors. Synergy effects of working collaboratively in a meeting have
to be considered [Vot93]. Defects that no inspector found during detection may
be found during the meeting (so-called meeting gain). On the other hand, in-
spectors may not mention some of the defects they found during detection (so-
called meeting loss). Based on the previous definitions we can define meeting
gain and meeting loss for inspection i:

Copyright © Fraunhofer IESE 2003 25

Measurement Framework

Definition 3.16

I)(\ ,,,,,,, ++++++ = iiiiLossM βλβ

Definition 3.17

I)(\ ,,,,,, +++++ = iiiiGainM βλλ

and if we are only interested in defects of a certain type t, then:

Definition 3.18

I)(\ ,,,,,,, titititiLossM ++= βλβ

Definition 3.19

I)(\ ,,,,,, titititiGainM += βλλ

False Positives

After collecting the defects found by the inspectors, λI,+ is the set of unique de-
fects that are assumed to be in the inspected document. As the inspectors are
not as familiar with a document as the author is, and defects are just logged
but not discussed at an inspection meeting, it is possible that λI,+ contains issues
that are not real defects. The author will discover these issues during correction.
Issues that are logged as defects but turn out not to be defects are called false
positives. False positives cause unnecessary effort during correction because the
author will spend some time on checking the logged issue before uncovering it
as a false positive.

With Equations 3.5 and 3.11 we define the number of false positives as:

Definition 3.20

)(positives false of number ,,i, +++ ∩−= ii αλλ

Bad fixes

During correction the author of the inspected document has to resolve all de-
fects that were logged during collection. Each element of λI,+ that is no false
positive forces a correction or fix in the document. This activity itself may be er-
ror-prone because it cannot be assumed in general that all fixes are correct, i.e.,
a correction may not resolve the detected defect or introduce other defects. A
faulty correction is called bad fix. Thus, an inspection may remove fewer defects
than detected. Bad fixes cause trouble because resulting defects may slip into

Copyright © Fraunhofer IESE 2003 26

Measurement Framework

the next development phase if the document is not reinspected after correc-
tion. However, for this thesis we do not consider the possibility of bad fixes as
no evaluation of their impact is presented in the literature.

3.6.1.2 Effectiveness of an Individual Inspection

In order to characterize the effectiveness of an individiual inspection, i.e., the
complete set of inspection activities, typically information about defect number
and defect type is used.

Chillarege et al., “Orthogonal Defect Classification (ODC)” [CBC+92]

Application context

Assessment of inspections, Guidance of inspections

Process characteristic

Effectiveness

Model

},...,{ onDistributi Defect ui,i,1 αα=

Attributes

(a) The number of defects for each defect type
Measures

(a) ti ,α for all t

Assumptions

In the application of their ODC model, Chillarege et al. use a specific defect
classification model in order to characterize the defects found. Particularly the
defect classification attribute “Trigger” is used for analyzing inspection defects.
The rationale underlying the definition of these types is that each defect type
represents the issue that the inspector was thinking about when detecting the
defect. Each defect type is related to a specific aspect of experience that is re-
quired to detect that defect. Thus, an analysis of the defect distribution can re-
veal, what trigger detected many defects and what triggers detected only few
defects. This information can help to estimate, whether the right kinds of de-
fects have been detected or whether certain types of defects might still be un-
detected. For example, re-inspection decisions can be made interpreting this
model.

Copyright © Fraunhofer IESE 2003 27

Measurement Framework

Discussion

The model based on the defect classification attribute has been reported in a
case study [CHBC93]. Here it is an open question to which extent the scheme
can be adapted in a different context, or to which extent the rationale of the
ODC scheme can be transferred into other contexts allowing for the same kind
of analysis.

Ebenau and Strauss, Defect Density [ES94]

Application context

Assessment of inspections, Guidance of inspections

Process characteristic

Effectiveness

Model

s
i +=

=

,

Size
defects of Number

Density Defect Detected

λ

Attributes

(a) Number of detected defects
(b) Size of instected document

Measures

(a) +,iλ

(b) s Size

Assumptions

When comparing detected defect densities of different processes it has to be
taken into account that the initial defect density influences the detected defect
density. Therefore, the model assumes that factors impacting this initial quality
of the document such as language, complexity, domain, etc are constant when
comparing different processes.

Copyright © Fraunhofer IESE 2003 28

Measurement Framework

Discussion

This model is often used, as its measures can be determined after completion of
the collection step.

3.6.1.3 Effectiveness of the Inspection Process as a Whole

When looking at effectiveness of an inspection as a whole, its ability to detect
and remove defects is to be evaluated. The effects of individual inspection ac-
tivities are only taken into account in an aggregated form. The following mod-
els present various approaches to effectiveness of inspections.

Fagan, “Design and code inspections to reduce errors in program development” [Fag76]

Application context

Assessment of inspections

Process characteristic

Effectiveness
(Though Fagan uses the term “error detection efficiency”, effectiveness is more
appropriate, as the aspect of cost is not included in his model.)

Model

100

100
inspection before product in defects total

inspection anby found defects

,

, ×=

×=

+

+

i

i

fM

α

λ

Attributes

(a) Defects found in a product during inspection
(b) Total defects in the product before inspection

Measures

(a) +,iλ

(b) +,iα

Copyright © Fraunhofer IESE 2003 29

Measurement Framework

Assumptions

Fagan’s model can only provide for precise values after completion of product
development or even after extensive field usage as the total number of defects
is not known at the time of inspection.

Discussion

Fagan introduces error detection efficiency in order to evaluate detailed-design
inspections, code inspections, and unit test inspections.

Humphrey, “A Discipline for Software Engineering”, Chapter 8 [Hum95]

Application context

Assessment of inspections

Process characteristic

Effectiveness

Model

100

100
inspection of time the at document in defects of number total

inspection during removed defects of number
Yield

,

, ×=

×=

+

+

i

i

α

λ

Attributes

(a) number of defects removed during inspection
(b) total number of defects in the inspected document at the time of inspec-

tion

Measures

(a) +,iλ

(b) +,iα

Assumptions

Humphrey states that yield “cannot be precisely calculated until after the re-
viewed program has been thoroughly tested and extensively used. Even then,

Copyright © Fraunhofer IESE 2003 30

Measurement Framework

there could be some latent defects still to be discovered.” The total number of
defects known to be in a document may change after every defect detection
phase as defects from all previous development phases can be detected. There-
fore, it is assumed that it can be decided for a detected defect when it was in-
jected. This information is necessary to calculate yield correctly.

However, Humphrey argues that useful early approximations can be made pro-
viding for upper limits of yield. These approximations could also take into ac-
count historical data, e.g., on the proportion of design defects that were gen-
erally missed in design inspections, but detected in later defect detection
phases.

Discussion

Yield as proposed by Humphrey is similar to the effectiveness model proposed
by Fagan. Additionally, Humphrey addresses the problem of calculation by dis-
cussing the effects of multiple defect detection phases and shows how the yield
measure may change its value after each phase.

Kan, “Metrics and Models in Software Quality Engineering”, Chapter 6 [Kan95]

Application context

Assessment of inspections

Process characteristic

Effectiveness

Model Defect Removal Effectiveness (DRE)

%100

%100
tdevelopmen during injected Defectsentry phase on existing Defects

phase) tdevelopmen of end (at removed Defects

,

, ×=

×
+

=

+

+

i

i

DRE

α

λ

Attributes

(a) defects removed by inspection at the end of the development phase
(b) defects existing on entry of development phase
(c) defects injected during development phase

Copyright © Fraunhofer IESE 2003 31

Measurement Framework

Measures

(a) +,iλ

(b) + (c) +,iα

Assumptions

Kan assumes a development process that is divided into different phases. For
the development phases before testing, the development activities themselves
are subject to defect injection, and the inspections at the end of the phase ac-
tivities are the key vehicle for defect removal. For defects detected during in-
spections or testing, he emphasizes another possibility of injecting defects by
faulty corrections (so-called bad fixes).

To derive an operational definition, defects need to be classified in terms of the
development phase in which the defects are found (and removed) and the
phases in which the defects are injected. Kan proposes the use of a matrix to
trace this phase information. Thus, calculations of effectiveness measures are
straightforward.

Discussion

Kan performs a literature review on effectiveness models discovering that these
differ little from one to another. However, he thinks that the subtle differences
could become significant if there are separate phases of development and in-
spections before code integration and testing. He argues that when the inspec-
tion of an early phase took place, the defects from later phases could not have
been injected in the product yet (and therefore could not be detected by an in-
spection following the early phase). Thus, he proposes a phase-based model of
effectiveness.

Briand et al., “Building Resource and Quality Management Models for Software Inspec-
tions” [BLW97]

Application context

Assessment of inspections

Process characteristic

Effectiveness

Copyright © Fraunhofer IESE 2003 32

Measurement Framework

Model

s
i +=

=

,

document inspected of Size
defects detected of Number

essEffectiven

λ

Attributes

(a) Number of detected defects
(b) Size of inspected document

Measures

(a) +,iλ

(b) s = number of operations specified

Assumptions

This model makes a major assumption: All inspected documents have a similar
actual defect density. The actual defect density is the total number of defects of
a document per unit size. The authors argue that they could make this assump-
tion because all inspections they analysed were conducted in the same organi-
zation, within the same application domain, and during a short period of time.

Discussion

The authors look for an effectiveness model that does not use the total number
of defects in a document, as this number is not known in general. Therefore,
they decide to measure effectiveness as the density of defects detected. Thus,
they are at least able to compare different inspections though depending on
how close to reality the assumption above is.

3.6.1.4 Efficiency

Efficiency characterizes the cost-effectiveness of detecting defects by software
inspections. The following models present various approaches to efficiency of
inspections.

Copyright © Fraunhofer IESE 2003 33

Measurement Framework

Collofello and Woodfield, “Evaluating the Effectiveness of Reliability-Assurance Tech-
niques” [CW89]

Application context

Assessment of inspections

Process characteristic

Efficiency

Model

process theby consumed Cost
process theby saved Cost

=CM

Attributes

(a) Costs saved by the process
From their point of view, the costs saved by an inspection “would be the
amount of resources (some combination of time, money, etc.) that would
have been expended” to handle the defects that were removed due to
inspection during development. It is stated that a good estimation for this
attribute is needed. Therefore, the need for data collection is stressed.

(b) Costs consumed by the process
The costs consumed by an inspection “correspond to the resources spent
in handling errors.” This includes their detection and removal.

Measures

(a) cf. Assumptions for the model
(b) εI,+,+

Assumptions

The model assumes that an organization has n reliability-assurance processes,
1,…n , that are applied sequentially. Based on this assumption, the costs saved
by some reliability-process v is calculated as the sum of the costs associated
with having to use processes (v+1) to n to handle the defects detected by proc-
ess v. The costs associated with handling defects in a process w, where

nwv ≤< , can be calculated as the average resources to detect and fix a defect
in process w times the expected number of defects detected by process w. The
average resources for detecting and fixing a defect in process w must be based
on historical data. The expected number of defects detected by process w can
be calculated as the defect-detectin effectiveness of the wth process times the

Copyright © Fraunhofer IESE 2003 34

Measurement Framework

number of defects from process v which still have not been detected. The de-
fect-detection effectiveness of a process is also based on historical data with an
assumption that the defect-detection effectiveness of process n is 1. The num-
ber of defects detectable by process v is calculated based on the error-detection
effectiveness of the processes that precede process w.

Additionally, this calculation of the costs associated with handling the defects
by following defect-detection processes assumes that each defect that is de-
tected by process v is related to exactly one defect that would be detected by
process w.

Discussion

Collofello and Woodfield extend previous work on inspection effectiveness.
They are convinced that a reliability-assurance technique can have low defect-
detection effectiveness but still be considered worthwhile because it can save
money. Therefore, they develop ideas on “cost effectiveness”.

The results of a case study show that code inspections were more effective at
finding defects than design inspections. At the opposite, design inspections
proved to be far more efficient than code inspections though these still showed
a return on investment.

Kusumoto, “Quantitative Evaluation of Software Reviews and Testing Processes” [Kus93]

Application context

Assessment of inspections

Process characteristic

Efficiency

Model

testingi

inspectionitestingi

tt

rt
k CC

CC
M

εα

ελελ

×

×−×
=

∆+
−∆

=

+

+++

,

,,,

The model depends on three attributes: Cr, the actual cost of inspections, Ct,
the actual cost of testing, and ∆Ct, the reduction of the testing cost compared
to the virtual testing cost. Kusumoto defines virtual testing cost as the cost of
detecting and removing all defects in the test phase provided no inspection is

Copyright © Fraunhofer IESE 2003 35

Measurement Framework

executed. Using this term, he assumes that the testing cost is reduced by ∆Ct
compared to the virtual testing cost because the defects that have been found
by inspections generate no effort during testing.

“Intuitively, is a ratio of the reduction of the total costs to detect and remove all
faults from the design documents and program code using design and code re-
views in a project to the virtual testing cost (of the program code).”

Attributes

(a) Cost of inspections
The cost spent on inspections during a project. It is calculated as the
product of the number of defects found and removed during design and
code inspections and the average cost of detecting and removing a de-
fect during inspections. (Measures: c, d, e)

(b) Reduction of testing cost compared to virtual testing cost
The cost that is not spent on testing because defects were removed dur-
ing inspections. It is calculated as the product of the number of defects
found and removed during inspections and the average cost of detecting
and removing a defect during testing. (Measures: c, d, e)

(c) Virtual testing cost
The cost of detecting and removing all defects during test provided no in-
spection is performed during the project. It is calculated as the product of
the number of defects introduced into design and code documents and
the average cost of detecting and removing a defect during testing.
(Measures: a, b, e)

Measures

(a) +,iα where i a design inspection

(b) +,iα where i a code inspection

(c) Number of defects detected and removed during design inspections:

+,iλ , where i is a design inspection

(d) Number of defects detected and removed during code inspections: +,iλ ,

where i is a code inspection
(e) Average cost to detect and remove a defect during inspections: +,inspectionε

(f) Average cost to detect and remove a defect during testing: testingε , where

testing is the only other defect detection technique considered for the
calculation of the average cost

Assumptions

Before introducing his efficiency model Kusumoto states his assumptions about
the development process. A standard waterfall model consisting of six phases
(concept exploration and feasibility analysis, requirement specification, design,

Copyright © Fraunhofer IESE 2003 36

Measurement Framework

implementation, testing, and maintenance) is simplified as follows: Starting
from an error-free specification that is not changed during development it is as-
sumed that defects are introduced in the subsequent design and implementa-
tion phases. Inspections are performed at the end of these phases and detect a
number of defects that are removed. Finally, the product passes a test phase.
Supposedly all defects from design and implementation are detected and re-
moved during testing.

Discussion

In his dissertation, Kusumoto addresses the need to “evaluate and prove the ef-
fectiveness of software reviews with respect to software development cost” by
proposing a new model for the quantitative analysis of inspections with respect
to their efficiency (which he calls “cost effectiveness”). He criticizes that other
models (like Collofello/Woodfield) do not take into account the total cost to de-
tect and remove all defects from a product by inspections and testing. To ad-
dress this task, he introduces the concept of virtual testing cost.

Grady and van Slack, “Key Lessons In Achieving Widespread Inspection Use” [GS94]

Application context

Assessment of inspections

Process characteristic

Efficiency

Model

costs time ngengineerit
benefits time gengineerin

=ROI

Attributes

(a) engineering time benefits
(b) engineering time costs

Measures

(a) cf. Assumptions for the model
(b) ++,,iε

Copyright © Fraunhofer IESE 2003 37

Measurement Framework

Assumptions

In [Gra92], a number of detailed calculations is presented applying this model.
Historical data from sample organizations is used to calculate the necessary pa-
rameters, e.g., average number of design defects, average number of defects
found per inspection hour, ratio of cost to find and fix defects during test to
cost during design. The costs for inspections include not only the cost of con-
ducting inspections, but also training and start-up costs. It is pointed out that
“potential added revenue from faster time to market improves the ROI even
more.”

Discussion

Grady and Van Slack present a sample cost-benefit analysis for design inspec-
tions yielding a ROI of 10.4. They argue that this value is a much better return
than that of many other R&D investments. From their point of view, there are
two additional advantages: They assume that little risk is involved in investing
into inspections, and initial investments are said to pay off quickly. Besides, they
mention that training and start-up costs occur only once per team.

The calculations concerning engineering time benefits and costs only include
the time to detect defects, but do not consider the time to fix a defect. There-
fore, the ROI model does not mirror that fixing a defect during testing may be
more expensive than fixing it earlier in the development cycle.

Briand et al., “Building Resource and Quality Management Models for Software Inspec-
tions” [BLW97]

Application context

Assessment of inspections

Process characteristic

Efficiency

Model

+

+

×
=

×
=

,,

,

Effort nPreparatio document inspected of Size
defects detected of Number

Efficiency

npreparatioi

i

s ε

λ

Copyright © Fraunhofer IESE 2003 38

Measurement Framework

Attributes

(a) Number of detected defects
(b) Size of inspected document
(c) Preparation effort

Measures

(a) +,iλ

(b) s = number of operations specified
(c) +,, npreparatioiε

Assumptions

The authors develop this model using the effectiveness model presented in Sec-
tion 3.6.1.4. Therefore, the same major assumption is made: All inspected
documents have a similar actual defect density. The actual defect density is the
total number of defects of a document per unit size.

Discussion

The authors define efficiency by normalizing effectiveness by the amount of
preparation effort spent. They argue that this would capture the detection cost-
effectiveness, the “amount of effectiveness” achieved per unit of effort spent
on defect detection. Effort spent on other inspection activities, e.g., correction,
is not considered for this model.

3.6.2 Evaluation Models

Evaluation models are needed to evaluate a software inspection and compare
its performance with other inspections or other defect detection techniques.
We present models that can be used to evaluate the effectiveness and effi-
ciency of an inspection.

3.6.2.1 Effectiveness

Ebenau and Strauss, “Statistical Process Control” [ES94]

Application context

Guidance for inspections, improvement of inspection processes

Copyright © Fraunhofer IESE 2003 39

Measurement Framework

Process characteristic

Effectiveness

Model

UCL LCL

UCLDensity DefectLCL

. ≤≤⇔

≤≤

+

s
iλ ; where

)
)max(s

3max(0,LCL
i

µµ ×−=

and

s
3UCL

µµ ×+=

and

∑

∑

=

=
+

=
k

i
i

k

i
i

s
1

1
,λ

µ

Attributes

(a) For a set of inspections: Size of each inspected document
(b) For a set of inspections: Number of detected defects

Measures

(a) si = Size of each inspected document
(b) +,iλ

Assumptions

One major assumption of this model is that all documents have a similar initial
defect density.

Copyright © Fraunhofer IESE 2003 40

Measurement Framework

Discussion

This model assumes that the inspection process is stable and operates with a
given performance indicated by its average detected defect density. Single in-
spections that deviate too much from this average performance are candidates
for which the process might have failed and are therefore to be investigated.
Operationally, upper and lower control limits (UCL and LCL) are determined. If
the defect densisty from the inspection under investigation is above the upper
or below the lower control limit, then this inspection has to be investigated
more closely.

3.6.2.2 Efficiency

Briand et al., “Building Resource and Quality Management Models for Software Inspec-
tions” [BLW97]

Application context

Assessment of inspections, guidance for inspections, improvement of inspection
processes

Process characteristic

Efficiency

Model

cs b
npreparatioi

a ××=

××=

+,,

ba cEffort nPreparatioSizeEfficiency

ε

Attributes

(a) Size of inspected document
(b) Preparation effort

Measures

(a) s= number of operations specified
(b) +,, npreparatioiε

Copyright © Fraunhofer IESE 2003 41

Measurement Framework

Assumptions

As for their descriptive model, the authors make the major assumption that all
inspected documents have a similar actual defect density. The actual defect
density is theb total number of defects of a document per unit size.

Discussion

Analysing inspection data from customer projects, the authors found that “effi-
ciency decreases exponentially with both document size and preparation ef-
fort”. Performing a regression analysis, they developed a linearized multivariate
model based on standardized data. The constants a, b, and c for the exponen-
tial model above can be derived from the linear model.

For performing the evaluation of an inspection, the authors propose to calcu-
late the actual efficiency value using their descriptive efficiency model (cf. Sec-
tion 3.6.1.4) and the predicted efficiency value using this model. A scatterplot
then shows predicted vs. actual efficiency. By locating the inspection on this
scatterplot, it can be evaluated if the inspection performed like a typical inspec-
tion (within a given confidence interval). If located outside the confidence inter-
val, the inspection performed more or less efficient than expected. Thus,
changes to the inspection process, e.g., the introduction of a new reading
technique, can be evaluated.

3.6.3 Prediction Models

A prediction model defines precisely a functional relationship between
independent and dependent variables. Data on the independent variables is
used to calculate a predicted value for the dependent variables. In this section,
we present a prediction model for inspection efficiency.

3.6.3.1 Efficiency

Briand et al., “Building Resource and Quality Management Models for Software Inspec-
tions” [BLW97]

Application context

Guidance of inspections

Process characteristic

Efficiency

Copyright © Fraunhofer IESE 2003 42

Measurement Framework

Model

cs b
npreparatioi

a ××=

××=

+,,

ba cEffort nPreparatioSizeEfficiency

ε

Attributes

 (a) Size of inspected document
 (b) Preparation effort

Measures

 (a) s= number of operations specified
 (b) +,, npreparatioiε

Assumptions

As for their descriptive model, the authors make the major assumption that all
inspected documents have a similar actual defect density. The actual defect
density is the total number of defects of a document per unit size.

Discussion

The authors assume an increasing exponential relationship with decreasing
slope between effectiveness and preparation effort. In addition, they assume a
decreasing exponential relationship between effectiveness and the number of
specification operations. Following the same procedures as for their efficiency
evaluation model, the authors derive both the exponential model above and
the values for the parameters.

The model is proposed to be used “for planning purposes, i.e., to predict the
preparation effort before an inspection is conducted, or for control purposes,
i.e., to achieve a higher level of document quality”.

3.6.3.2 Effectiveness (Capture-Recapture Models)

In biology, capture-recapture models are used to estimate the size of animal
populations. The basic idea of combining these models and inspections is that a
capture-recapture model can be used to estimate the number of defects that
remain in a document after inspection. By comparing the number of defects
that were detected during inspection with the estimated number of total de-
fects, the number of remaining defects can be estimated. Taking into account
this number and the accuracy of the capture-recapture model used, it can be
decided whether the inspection can be stopped or whether the document has

Copyright © Fraunhofer IESE 2003 43

Measurement Framework

to be reinspected. The overall objective of this approach is to maximize the
proportion of defects that are found before releasing the document to the next
phase. For a detailed discussion of capture-recapture models cf. [Fre97] and
[BEFL00].

3.6.3.3 Effectiveness (MARS)

Briand et al. 2003, “Using Multiple Adaptive Regression Splines to Support Decision Mak-
ing in Code Inspections”, [BFF03]

Application context

Guidance of inspections

Process characteristic

Effectiveness

Model

3028

272514

11941Defects

98

765

43210

BFaBFa

BFaBFaBFa

BFaBFaBFaBFaa

×+×+
×+×+×+

×+×+×+×+=
, with

 BF1 = max(0, EFFORT - 30.000);
 BF4 = max(0, PARTICIP - 10.000) * BF1;
 BF9 = max(0, DLOC - 3000.000) * BF1;
 BF11 = max(0, SESSIONS - 4.000) * BF1;
 BF14 = max(0, 0.250 - RATE) * BF1;
 BF19 = max(0, EFFORT - 3600.000);
 BF21 = max(0, EFFORT - 2100.000);
 BF24 = max(0, 4200.000 - EFFORT);
 BF25 = max(0, PARTICIP - 9.000) * BF24;
 BF27 = max(0, LOC - 29.999) * BF19;
 BF28 = max(0, DLOC - 4.000) * BF21;
 BF30 = max(0, 0.433 - RATE) * BF21;

Attributes

(a) Size of inspected document in LOC (LOC)
(b) Size of inspected document in DLOC (DLOC)
(c) Effort (EFFORT)
(d) Number of participants (PARTICIP)
(e) Inspection rate (RATE)
(f) Number of Sessions (SESSIONS)

Copyright © Fraunhofer IESE 2003 44

Measurement Framework

Measures

(a)+(b) s= Size of docuument
(c) ++,,iε

(d) ++,,iε

(e) qi

(f)
i

npreparatioi

s
+,,ε

(g) the number of meetings held

Assumptions

none

Discussion

The authors use data mining techniques in order to reveal relationships be-
tween the number of defects and other, independent variables, such as effort,
size, and others. The relationships are expressed as linear splines, upon which a
linear regression is performed.

The model is proposed to be used for planning purposes, i.e., to plan important
parameters before an inspection is conducted, or for control purposes, i.e., to
achieve a higher level of document quality.

3.6.3.4 Causal Factors for Effectiveness and Efficiency

This section gives an overview of hypotheses on driving factors for effectiveness
and efficiency of software inspections. These hypotheses try to predict causal
relationships between one or more independent variables (the driving factors)
to one or more dependent variables (effectiveness and efficiency). In order to
improve effectiveness and efficiency, it may be valuable to analyse these
relationships and consider the important factors while implementing the
inspection process. The factors are organized with respect to the dependent
variable.
Effectiveness

− Number of participants
Porter et al. [PSV95] argue that an inspection team that is composed of
several reviewers allows a wide variety of defects to be found since each
reviewer relies on different expertise and experiences when inspecting.
The larger and more varied the team, the better the coverage of the in-
spected document. Thus, effectiveness should increase with increasing
team size.

Copyright © Fraunhofer IESE 2003 45

Measurement Framework

− Number of sessions
Porter et al. [PSV95] identify the number of inspection sessions the arti-
fact undergoes in the inspection process as another factor influencing ef-
fectiveness. In their opinion, multiple-session inspections, possibly with
different teams of inspectors, will find more defects as long as some im-
portant or subtle defects escape detection by any one inspection session.
They also propose that splitting one large team inspection into multiple
sessions with smaller teams might be more effective. The effect of using
multiple inspections led to the N-fold inspection method [SMT92].
For multiple-session inspections, the way of conducting the sessions is
another option. Sessions can be scheduled in parallel - with each session
inspecting the same version of the artifact - or in sequence - with defects
found in one session being repaired before going on to the next session.
Porter et al. [PSV95] argue that parallel sessions will be more effective
only if different teams find few defects in common. Sequential sessions
may find more defects since cleaning out old defects might make it easier
to find new ones.
Porter, Votta, Siy, and Toman [PVST95] ran an experiment at AT&T on a
project that is developing a compiler and environment to support devel-
opers of the AT&T 5ESS telephone switching system. The subjects were
all of the team’s six members plus five other developers. All were experi-
enced, and all had received training on inspections within five years of
the experiment. The project conducted more than 100 code inspections
during which three independent variables were manipulated: the team
size, the number of inspections sessions, and the coordination sessions.
The results showed the following: There was no difference in effective-
ness neither between small teams and large teams nor between 2-session
inspections held in parallel and those held in sequence. 2-session, 2-
reviewer inspections were more effective than 1-session, 4-reviewer in-
spections, but 2-session, 1-reviewer inspections were not more effective
than 1-session, 2-reviewer inspections.

− Collection technique
Porter et al. [PSV95] discuss the effects of using different collection tech-
niques during the inspection process. A collection meeting may be held
(group-centered) or not (individual-centered). Votta [Vot93] shows that
meetings do not create as much synergy in finding defects as previously
believed.

− Qualification of participants
In their article, Porter et al. [PSV95] present a number of case studies and
experiments that deal with the costs and benefits of inspections.
In one of these case studies, Rifkin and Deimel suggest teaching program
comprehension techniques during code inspection training classes in or-
der to improve program understanding during preparation and inspec-
tion. Based on historical data, they argued that while inspections reduced
the number of defects discovered by testing, they did not significantly

Copyright © Fraunhofer IESE 2003 46

Measurement Framework

decrease the number of customer-identified defects. To test this hy-
pothesis, they collected data from three software development groups,
each composed of 30 to 35 professionals. One group was given 1.5 days
training in program reading comprehension. The data showed that the
number of customer-reported defects dropped by 90% after the inspec-
tors received this training, while results of the two other groups of re-
viewers showed no change.

− Inspection rate
Buck [Buc81] conducted a study at IBM to identify variables that would
differentiate high quality inspections from low quality ones. His idea was
that the number of defects found in an inspection is not an adequate in-
dicator because it is influenced by the quality of the artifact being in-
spected. He collected data from 106 code inspections of a single piece of
Cobol source code. The collected data showed that code inspections
conducted at a rate of less than 125 NCSL (non-commentary source code
lines) per hour found significantly more defects. There was no difference
in defect detection capability between teams of 3, 4, and 5 inspectors.
Effectiveness was also independent of major defects found per hour, but
additional preparation resulted in more defects being found. Thus, the
study suggests that quality inspections are a result of following a low in-
spection rate.
Ebenau [Ebe94] applies the means of statistical process control to inspec-
tion data from a project that enhanced the features of a local telephone
switching system. During the project, 25 detailed design and code in-
spections were conducted. Ebenau states three factors that are known to
affect the detection of defects: examination rate, preparation rate, and
work product size. Using charts, he shows that defect density of the
documents inspected depends on the examination rate. Besides, he
demonstrates that examination and preparation rate as well as prepara-
tion rate and work product size are directly related. Therefore, Ebenau
recommends to conduct inspections in the analysed project at prepara-
tion and inspection rates of 150 lines per hour, inspecting less than 200
hundred lines of material at a time.
Christenson et al. [CHL90] use statistical quality control, too. They applied
them to code inspections during AT&T’s 5ESS Switch project. The factors
they found to correlate well with the density of defects detected were
the amount of preparation effort, the inspection rate and the size of the
unit of code. The authors found the density of discovered defects to have
an inverse relationship to the inspection rate.

− Preparation effort
Christenson et al. [CHL90] report on experience from inspections where
the inspectors prepare individually for the inspection meeting by studying
design and code documents. The authors found preparation effort to
have high positive correlation with the density of defects found.

Copyright © Fraunhofer IESE 2003 47

Measurement Framework

− Size of inspected document
Christenson et al. [CHL90] also emphasize that the size of the code
document being inspected was the major factor influencing the inspec-
tion rate and preparation effort. In their environment, larger units of
code tended to receive proportionally less preparation and were in-
spected at a higher rate. This resulted in a lower density of discovered de-
fects for larger units of code.

− Defect detection technique
Porter et al. [PSV95] explain that defect detection techniques range in
prescriptiveness from intuitive, nonsystematic procedures (such as ad hoc
or checklist techniques) to explicit and highly systematic procedures (such
as scenarios or correctness proofs). Other defect detection techniques in-
clude reading by stepwise abstraction, defect-based reading, and per-
spective-based reading. The choice of a defect detection technique may
have an impact on effectiveness as well. For example, more systematic
techniques may help inexperienced inspectors.

− Tool support
Perry et al. [PPVW96] hypothesize that the effectiveness of any tool sup-
porting the software inspection process depends on how well the tool
co-exists with the process it supports. If it is congruent with the process,
then they assume a chance that the process is enhanced. If not, the tool
may be a severe hindrance. With respect to HyperCode, a collaborative
inspection tool they developed, they suppose that HyperCode inspections
will be no less effective than traditional inspections. The authors an-
nounce that they are conducting an experiment to evaluate this hypothe-
sis.

Efficiency

Porter et al. [PSV95] show several factors that have an impact on the effort that
is spent on inspecting a document.

− Number of participants
Larger teams require more effort since more people analyse the artifact
which may be unfamiliar to them. This also reduces the time they can
spend on other development work. Besides, it is more difficult for every-
one to contribute fully during the meeting because of limited air time.

− Number of sessions
The inspection effort will increase as the number of inspection sessions
conducted during the inspection process grows.
Conducting multiple sessions in parallel will increase the effort slightly
because the author needs to collect the reports and sort out which issues
from different reports actually refer to the same defect in the artifact.

− Collection technique
Using meetings as the technique for collecting the defects from the in-

Copyright © Fraunhofer IESE 2003 48

Measurement Framework

spectors increases the effort compared with other collection techniques
(cf. [Vot93]).

− Post-collection meeting
Finally, Porter et al. [PSV95] discuss the use of post-collection feedback.
Some authors argue that a brainstorming meeting should be held after
the inspection meeting to determine the root cause of each issue re-
corded in the meeting. Doing so, the development team may learn why
defects were made, and how they could have been avoided. However,
the additional meeting will increase the effort.

− Tool support
Perry et al. [PPVW96] argue that tool-based inspection will require no
more human effort than traditional inspections, but will incur fewer indi-
rect costs (e.g., travel, conference calls, photocopying).

3.7 Critique

Finally, this section analyses the results of the literature review. A general cri-
tique of the framework is performed. The effectiveness and efficiency models
are discussed in more detail as the following chapters of this thesis concentrate
on these models.

The Framework in General

The framework proved its usefulness as a means for fitting existing literature on
measuring software inspections into it. Though models are not described con-
sistently in different bibliographical references, the necessary information for
each framework level can be extracted. The presentation of all models using
the framework and the definitions from Sections 3.4 and 3.5 makes a compari-
son of strengths and weaknesses easier.

Table 3.2 gives an overview over all models included in Section 3.6 and shows
how they relate to the two highest levels of the framework, application con-
texts and process characteristics. For two reasons, Table 3.2 is only sparsely
filled. First, some process characteristics are discussed in the literature, but not
formulated as quantitative models. Second, other process charateristics are of
interest in our point of view, but are not discussed in the reviewed literature at
all. It should be considered that the literature review could not be comprehen-
sive though more literature was considered than listed in the bibliography. Be-
sides, the framework may evolve over time as more process charatcersitics are
identified because of more experience with measuring inspection processes.

Copyright © Fraunhofer IESE 2003 49

Measurement Framework

 Assessment of
inspections

Guidance for in-
spections

Improvement of
inspection proc-
esses

Fagan Chillarege et al.
Humphrey Ebenau and Strauss
Kan Briand et al. 2003

Effectiveness

Briand et al.
Collofello/Woodfield Briand et al. 1997 Briand et al., 1997
Kusumoto

Efficiency

Grady/van Slack
Document quality Capture/Recapture Chillarege et al.
Impact on project
schedule

Status of inspec-
tion process

 not applicable not applicable

Implementation of
inspection activi-
ties

Reading technique
Participants
Guidelines
Stopping criterion Capture/Recapture Ebenau and Strauss

Capture/Recapture Ebenaus and Stauss Reinspection
 Chillarege et al.

Table 3.2: How models address application contexts and process characteristics

Before analysing the effectiveness and efficiency models in detail, we want to
state some prerequisites for all quantitative models in the context oft software
inspections:

− A model should be usable soon after completion of an inspection.
− Therefore, data collection for the necessary measures should be feasible.
− Where information is missing, the estimation of values should be explained.

Effectiveness Models

The effectiveness models can be separated into two groups: On the one hand
the model of Briand et al., on the other hand the models of Fagan, Humphrey
and Kan. The major difference between the model of Briand et al. and the
other models is the assumption that all inspected documents have a similar ac-
tual defect density. This assumption must hold whenever the model of Briand
et al. is to be used. Thus, it may be especially difficult to compare results from
different environments with this model.

The models of Fagan, Humphrey, and Kan are similar to each other as they re-
late the number of defects detected to the total number of defects. These mod-
els face the problem that the total number of defects in a document is not

Copyright © Fraunhofer IESE 2003 50

Measurement Framework

known in general. Fagan’s article is the oldest related publication. He uses the
effectiveness model for the assessment of inspections after completion of the
development project. Thus, the model cannot be used right after an inspection
is completed. He does not discuss the usage of the model thoroughly, maybe
due to the fact that the potential of measurement was not recognized in the
mid 1970’s.

Humphrey and Kan try to provide a solution to the problem of early availability.
Humphrey explains how to calculate a preliminary yield value after completion
of inspection. This value can be used as an upper limit for yield. The value may
be adjusted when more defects are found in later defect detection phases that
slipped through the original inspection of the document. Hence, the total
number of (known) defects increases and yield decreases. However, the origin
of a defect has to be identified for this purpose as explained by Kan. Therefore,
a specific level of traceability between documents that are produced in different
phases has to be established. For example, if a defect found during code in-
spection is diagnosed as being introduced during design, the respective design
document must be identifiable in order to adjust its effectiveness.

As another way of determining effectiveness right after completion of the in-
spection process, Humphrey proposes to estimate the number of total defects
using the number of defects detected as input. He advises the use of defect
profiles based on historical data, e.g., a profile “that shows that generally one
more defect is later found in integration test, system test, or customer use for
every three defects found in compile and unit test”. Though this procedure may
work in the context of a personal software process where only small documents
(e.g., the code for a module) are inspected, it is not clear if the procedure will
scale up to development projects.

Efficiency Models

Similar to the effectiveness models, the descriptive models for assessing the ef-
ficiency of software inspections can be separated in two groups: On the one
hand the model of Briand et al., on the other hand the models of Kusumoto,
Grady/van Slack, and Collofello/Woodfield. Again, the major difference is the
assumption of similar actual defect density for the model of Briand et al.

The other group of models relates in different ways the costs spent on the in-
spection process to the costs that are potentially saved. Hence, these models in-
terpret efficiency as “cost-effectiveness”, i.e., the effect that is achieved by
conducting inspections. They do not simply calculate efficiency as cost per de-
fect.

In order to determine the costs potentially saved by inspections all models as-
sume that the defects detected by an inspection would be found in another de-
fect detection phase if the inspection had not been conducted. The models of

Copyright © Fraunhofer IESE 2003 51

Measurement Framework

Kusumoto and Grady/van Slack use testing as the only other defect detection
technique and assume that all defects found during inspection would also be
found during testing. In general, this assumption does not hold because testing
is not perfect - defects may slip through into maintenance.

The most detailed description of how to calculate the costs potentially saved by
inspections is given by Collofello and Woodfield. They simply assume a number
of defect detection phases in general. Besides, they consider varying effective-
ness levels for these phases, i.e., the probability that a defect would be de-
tected may change from phase to phase. The need for historical data is empha-
sized for all three models. Besides, all models assume that a defect detected by
inspection will result in exactly one defect in a later defect detection phase. This
is questionable as, for example, a design defect that is passed into coding may
cause several defects in the code. In addition, the models do not use defect
classification. Distinguishing between defects of various defect types would
make the efficiency models more precise as the variation of the costs for find-
ing and fixing a defect in a phase may be captured better by grouping defects
to defect types.

Copyright © Fraunhofer IESE 2003 52

Data Analysis in the Framework’s
Context

4 Data Analysis in the Framework’s Context

The preceding framework synthesized the available quantitative models for
measuring inspection processes. Thus, they discuss how to define operationally
important properties of the inspection process. However, in order to apply
these models successfully, appropriate data collection and analysis is necessary.

In this section we will discuss for selected models, what prerequisites in terms
of data collection and analysis have to be available.

4.1 Desciptive Models

The descriptive models in Section 3.6.1 define, how to operationally measure
aspects of the inspection process. In order to apply these models it is necessary
to collect data to the required measures.

Here we identify two open problems: the collection of these data, which we
discuss in Section 4.1.1, and the definition of the right measures in the context
of the defect types, specifically the Orthogonal Defect Classification Scheme (cf.
Section 3.6.1.2), which we discuss in Section 4.1.2.

4.1.1 Data Availability

The models of Fagan, Humphrey, Kan, Collofello/Woodfield, Kusumoto, and
Grady/van Slack assume that a detailed data collection exists across the entire
development life-cycle.

For example, the models of Fagan, Humphrey and Kan rely on the measure

+,iα . In order to obtain this measure it is necessary to classify defects in defect

detection activities that follow the inspection process with respect to their ori-
gin. The efficiency models of Collofello/Woodfield, Kusumoto, and Grady/van
Slack require this data as well and moreover require effort data from both the
inspection and testing process.

Such data, however, are often not collected in industral settings. Therefore one
has to take the decision, whether to use other, maybe less appropriate models,
or wheter missing data has to be obtained from other sources.

Briand et al. [BFF00] proposed an approach, in which a combination of project
data and expert opinion is used in order to apply these models. (Originally, their

Copyright © Fraunhofer IESE 2003 53

Data Analysis in the Framework’s
Context

approach was applied using the Kusumoto model. However, the approach can
also be used to detemine the other models as well.)

4.1.2 ODC Construction

As indicated in Section 3.6.1.2, the ODC model is an interesting idea to meas-
ure the effectiveness of an inspection or set of inspections. However, it assumes
that an appropriate set of defect types (i.e. defect classification scheme) is used.
The defect types used in the contexts reported in the literature depend strongly
on the reading techniques used during the inspection process and the domain
of the inspected product.

Therefore it is necessary to adapt the set of defect types if other reading tech-
niques and products are to be used. However, it is an open question, how this
adaptation can be performed and whether similar interpretations can me made.

Copyright © Fraunhofer IESE 2003 54

Conclusion

5 Conclusion

This report presented a measurement framework of software inspections that
contained decisions to be taken in the inspection process and quantitative mod-
els that support these decisions.

One benefit of this report is therefore to act as a reference document, of how
various characteristics and attributes of the inspection process can be meas-
ured. In addition, this report identifies areas in this framework where quantita-
tive support is still lacking or where it is difficult to readily implement the pro-
posed models in industrial settings, such as the automotive domain in the con-
text of the Quasar context.

Therfore, we conclude that, in order to contribute to the Quasar Project, it is
useful to tackle the problem of applying the identified models in industry. Two
problems have been identified in this context: the availability of data collection
in industrial settings, and the availability of appropriate defect typologies for
the ODC-Model. While the first problem has been addressed by some other
work, the second one is seen as fuitful to explore in the Quasar context. For an
elaboration of this problem, the interested reader might want ot refer to
[FD03].

Copyright © Fraunhofer IESE 2003 55

References

6 References

[ABL89] A. Frank Ackerman, Lynne S. Buchwald, and Frank H. Lewski. Soft-
ware Inspections: An Effective Verification Process. IEEE Software,
6(3):31–36, May 1989.

[Alb94] Allan J. Albrecht. Function Points Analysis. In John J. Marciniak, edi-
tor, Encyclopedia of Software Engineering, volume 1, pages 518–
524. John Wiley and Sons, Inc., New York, 1994.

[Bas92] Victor R. Basili. Software Modeling and Measurement: The
Goal/Question/Metric Paradigm. Technical Report CS-TR-2956, In-
stitute for Advanced Computer Studies, Department of Computer
Science, University of Maryland, College Park, MD 20742, Septem-
ber 1992.

[BCR94a] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Goal
Question Metric Paradigm. In John J. Marciniak, editor, Encyclope-
dia of Software Engineering, volume 1, pages 528–532. John Wiley
and Sons, Inc., New York, 1994.

[BCR94b] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Meas-
urement. In John J. Marciniak, editor, Encyclopedia of Software En-
gineering, volume 1, pages 646–661. John Wiley and Sons, Inc.,
New York, 1994.

[BDR96] Lionel C. Briand, Christiane M. Differding, and H. Dieter Rombach.
Practical Guidelines for Measurement-Based Process Improvement.
Technical Report ISERN–96– 05, Fraunhofer Institute for Experimen-
tal Software Engineering, Sauerwiesen 6, D– 67661 Kaiserslautern,
Germany, 1996.

[Ben91] Edward A. Bender. An Introduction to Mathematical Modeling.
Krieger Publishing Company, Malabar, Florida, reprint edition,
1991.

[BLW97] Lionel C. Briand, Oliver Laitenberger, and Isabella Wieczorek. Build-
ing Resource and Quality Management Models for Software Inspec-
tions. Technical Report ISERN– 97–06, Fraunhofer Institute for Ex-
perimental Software Engineering, Sauerwiesen 6, D–67661 Kaiser-
slautern, Germany, 1997.

Copyright © Fraunhofer IESE 2003 56

References

[BEFL00] Lionel C. Briand Khaled El-Emam, Bernd Freimut, and Oliver Laiten-
berger, A Comprehensive Evaluation of Capture-Recapture Models
for Estimating Software Defect Content, IEEE Transactions on
Software Engineering, vol26, no. 6, pp. 518-540, 2000.

[BFF00] Lionel C. Briand, Bernd Freimut, Ferdinand Vollei, Assessing the
Cost-Effectiveness of Inspections by Combining Project Data and
Expert Data, Proceedings of the 11th International Symposium on
Software Reliability Engineering, pp.124-135, 2000.

[BFF02] Lionel Briand, Bernd Freimut, Ferdinand Vollei, Using Multiple
Adaptive Regression Splines to Support Decision Making in Code
Inspections, accepted for Publication in Journal of Systems and
Software, 2003.

[Bou96] Karen V. Bourgeois. Process Insights from a Large-Scale Software
Inspections Data Analysis. Cross Talk, The Journal of Defense Soft-
ware Engineering, 9(10):17–23, October 1996.

[BP94] Jack Barnard and Art Price. Managing Code Inspection Information.
IEEE Software, 11(2):59–69, March 1994.

[Buc81] F. O. Buck. Indicators of Quality Inspections. Technical Report
TR21.802, IBM Corp., Kingston, NY, September 1981.

[CBC+92] Ram Chillarege, Inderpal S. Bhandari, Jarir K. Chaar, Michael J. Hal-
liday, Diane S. Moebus, Bonnie K. Ray, and Man-Yuen Wong, Or-
thogonal defect classification -- A concept for in-process measure-
ments, IEEE Transactions on Software Engineering, vol. 18, pp.
943--956, Nov. 1992.

[CHBC93] Jarir K. Chaar, Michael J. Halliday, Inderpal S. Bhandari, and Ram
Chillarege, In-Process Evaluation for Software Inspection and Test,
IEEE Transactions on Software Engineering, vol. 19, pp. 1055--
1070, Nov. 1993.

 [CHL90] Dennis A. Christenson, Steel T. Huang, and Alfred J. Lamperez. Sta-
tistical Quality Control Applied to Code Inspections. IEEE Journal on
Selected Areas in Communcations, 8(2):196–200, February 1990.

[CW89] James S. Collofello and Scott N. Woodfield. Evaluating the Effec-
tiveness of Reliability-Assurance Techniques. Journal of Systems and
Software, 9(3):191–195, 1989.

Copyright © Fraunhofer IESE 2003 57

References

[Ebe94] Robert G. Ebenau. Predictive Quality Control with Software Inspec-
tions. Cross Talk, The Journal of Defense Software Engineering,
7(6):9–16, June 1994.

[ES94] Robert G. Ebenau and Susan H. Strauss. Software Inspection Proc-
ess. Systems Design & Implementation Series. McGraw-Hill, Inc.,
New York, 1994.

[Fag76] M. E. Fagan. Design and code inspections to reduce errors in pro-
gram development. IBM Systems Journal, 15(3):182–211, 1976.

[Fag86] Michael E. Fagan. Advances in Software Inspections. IEEE Transac-
tions on Software Engineering, 12(7):744–751, July 1986.

[Fow86] Priscilla J. Fowler. In-Process Inspections of Workproducts at AT&T.
AT&T Technical Journal, 65(2):102–112, March/April 1986.

[Fre97] Bernd Freimut. Capture-Recapture Models to Estimate Software
Fault Content. Master’s thesis, University of Kaiserslautern, June
1997.

[FD03] Bernd Freimut, Christian Denger: A Defect Classification Scheme
for the Inspection of QUASAR Requirement Documents, IESE-
Report No. 076.03/E, 2003.

[Fus97] Thomas Fussbroich. Measuring Inspection Processes. Master’s the-
sis, University of Kaiserslautern, 1997.

[GG93] Tom Gilb and Dorothy Graham. Software Inspection. Addison-
Wesley Publishing Company, Wokingham, England, 1993.

[Gil88] Tom Gilb. Principles of Software Engineering Management. Addi-
son-Wesley Publishing Company, Wokingham, England, 1988.

[Gra92] Robert B. Grady. Practical Software Metrics for Project Manage-
ment and Process Improvement. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1992.

[Gre95] Stephen Grey. Practical Risk Assessment for Project Management.
Wiley Series in Software Engineering Practice. John Wiley & Sons
Ltd, Chicester, England, 1995.

[GS94] Robert B. Grady and Tom Van Slack. Key Lessons In Achieving
Widespread Inspection Use. IEEE Software, 11(4):46–57, July 1994.

Copyright © Fraunhofer IESE 2003 58

References

[Hum95] Watts S. Humphrey. A Discipline for Software Engineering. SEI Se-
ries in Software Engineering. Addison-Wesley Publishing Company,
Inc., Reading, Massachusetts, 1995.

[IEE89] IEEE Std. 1028–1988, IEEE Standard for Software Reviews and Au-
dits, June 1989. Corrected Edition.

[IEE90] IEEE Std. 610.12–1990, IEEE Standard Glossary of Software Engi-
neering Terminology, September 1990.

[Jon96] Capers Jones. Software defect-removal efficiency. IEEE Computer,
29(4):94–95, April 1996.

[Jon97] Capers Jones. Applied Software Measurement. Assuring Productiv-
ity and Quality. Computing Series. McGraw-Hill, Inc., New York,
second edition, 1997.

[Kan95] Stephen H. Kan. Metrics and Models in Software Quality Engineer-
ing. Addison-Wesley Publishing Company, Inc., Reading, Massa-
chusetts, 1995.

[KKF86] B.A. Kitchenham, A.P. Kitchenham, and J.P. Fellows. The effects of
inspections on software quality and productivity. ICL Technical Jour-
nal, 5(1):112–122, May 1986.

[Kus93] Shinji Kusumoto. Quantitative Evaluation of Software Reviews and
Testing Processes. Dissertation, Osaka University, September 1993.

[Leh94] M. M. Lehman. Models and Modeling in Software Engineering. In
John J. Marciniak, editor, Encyclopedia of Software Engineering,
volume 1, pages 698–702. John Wiley and Sons, Inc., New York,
1994.

[McG96] Thomas McGibbon. A Business Case for Software Process Im-
provement. A DACS State-of-the-Art Report, September 1996.
URL: http://www.dacs.com/techs/roi.soar/ soar.html.

[Mer95] Merriam-Webster’s Collegiate Dictionary. Merriam-Webster, Incor-
porated, tenth edition, 1995.

 [PPVW96] D. E. Perry, A. Porter, L. G. Votta, and M. W. Wade. Evaluating
Workflow and Process Automation in Wide-Area Software Devel-
opment. In Carlo Montangero, editor, Proceedings of the Fifth
European Workshop on Software Process Technology, Lecture
Notes in Computer Science Nr. 1149, pages 188–193, Berlin, Hei-
delberg, October 1996. Springer–Verlag.

Copyright © Fraunhofer IESE 2003 59

References

[PSV95] Adam Porter, Harvey Siy, and Lawrence Votta. A Review of Soft-
ware Inspections. Technical Report CS-TR-3552, Institute for Ad-
vanced Computer Studies, Department of Computer Science, Uni-
versity of Maryland, College Park, MD 20742, October 1995.

[PVST95] Adam A. Porter, Lawrence G. Votta, Harvey P. Siy, and Carol A.
Toman. An experiment to assess the cost-benefits of code inspec-
tions in large scale software development. In Proceedings of the
Third ACM SIGSOFT Symposium on the Foundations of Software
Engineering, October 1995.

[Rus91] Glen W. Russell. Experience with Inspection in Ultralarge-Scale De-
velopments. IEEE Software, 8(1):25–31, January 1991.

[Shi92] Glen C. Shirey. How Inspections Fail. In Proceedings of the Ninth In-
ternational Conference on Testing Computer Software, pages 151–
159, 1992.

[SMT92] G. Michael Schneider, Johnny Martin, and Wei-Tek Tsai. An Ex-
perimental Study of Fault Detection in User Requirements Docu-
ments. ACM Transactions on Software Engineering and Methodol-
ogy, 1(2):188–204, April 1992.

 [Vot93] Lawrence G. Votta Jr. Does Every Inspection Need a Meeting? In
David Notkin, editor, Proceedings of the First ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, pages 107–
114. ACM Press, December 1993. Appeared as ACM SIGSOFT
Software Engineering Notes 18(5), December 1993.

[WBM96] David A. Wheeler, Bill Brykczynski, and Reginald N. Meeson, Jr.
Software Inspection: An Industry Best Practice. IEEE Computer Soci-
ety Press, Los Alamitos, CA, 1996.

[Wel93] Edward F. Weller. Lessons from Three Years of Inspection Data.
IEEE Software, 10(5):38–45, September 1993.

[Zus94] Horst Zuse. Complexity Metrics/Analysis. In John J. Marciniak, edi-
tor, Encyclopedia of Software Engineering, volume 1, pages 131–
165. John Wiley and Sons, Inc., New York, 1994.

Copyright © Fraunhofer IESE 2003 60

Document Information

Title: A Measurement Frame-
work for Software Inspec-
tions in the Quasar Context

Date: September 1, 2003
Report: IESE-118.03/E
Status: Final
Distribution: Public

Copyright 2003, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

	Abstract
	Table of Contents
	Introduction
	Software Inspections
	Measurement Framework
	Data Analysis in the Framework’s Context
	Conclusion
	References

