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Abstract—Data are a central phenomenon in our digital
information age. They impact the way we live, work, and play and
provide unprecedented opportunities to simplify our daily life and
behavior. They implicate enormous potential and impact society,
economy, and science. Due to the advancement of cyber-physical
systems and Internet of Things technologies, it is expected that
the majority of real-time data will be generated from devices
interconnected within the Internet of Things by the year 2025.
In this paper, we tackle the problem of managing Internet of
Things data in an efficient way. To this end, we introduce the
metric approach for storing and querying Internet of Things
data and investigate the ability of pivot-based tables for indexing
and searching this type of data. Along with the introduction of
two real-world, large-scale Internet of Things datasets from the
EU projects COMPOSITION and MONSOON (under grant no.
723145 and 723650), we show that the metric approach facilitates
efficient data access in the Internet of Things.

Index Terms—Internet of Things, Big Data Management,
Metric Indexing

I. INTRODUCTION

Data are a central phenomenon in our digital information
age. They impact the way we live, work, and play and
provide unprecedented opportunities to simplify our daily life
and behavior. They implicate enormous potential and impact
society, economy, and science.

Digitizing data and algorithmizing their inherent informa-
tion are among the great challenges of our time. The continu-
ous data evolution is going to reach a volume of 163 zettabytes
by the year 2025, that is ten times the volume of data generated
in the year 2016 [1]. Not only the volume of data is supposed
to increase, but also the velocity. Due to advanced and efficient
technologies of embedded systems and Internet of Things, we
are supposed to interact with digital devices several thousand
times per day, generating a high variety of data in a massive
scale. In addition, intelligent algorithmic analyses of historical
and live data are predicted to be applied on a data volume of
more than 5 zettabytes by the year 2025 [1].

The problem of managing and analyzing big data becomes
even more obvious in the industrial sector. Nearly all industry
segments are accelerating the adoption of cyber-physical sys-
tems and Internet of Things technologies in order to improve
any kind of processes. Reinsel et al. [1] expect that the
majority of real-time data will be generated from devices
interconnected within the Internet of Things by the year 2025.
While gaining insight into data acquired from the Internet of

Things and managing the discovered knowledge in a structured
way is a non-trivial issue that has been addressed differently
in the literature, cf. Section II, we are focusing on managing
Internet of Things data in an efficient way. Since this a
core operation for nearly any algorithmic analysis, we believe
that efficient access to Internet of Things data is of crucial
importance for any further data-driven investigation.

In this paper, we propose the metric approach [2], [3] for
storing and querying Internet of Things data. To this end,
we investigate the family of pivot-based tables [4], which are
considered to be the most fundamental metric access methods,
and study their abilities of indexing and thereupon searching
Internet of Things data. Along with our methodological in-
vestigation, we introduce two real-world, large-scale Internet
of Things datasets acquired within the scope of two different
EU projects COMPOSITION and MONSOON. These datasets
will provide a novel standard for researchers and practitioners
in the field of Internet of Things and will help to study and
advance methods for big data management and analytics. To
sum up, our contributions are two-fold:
• We introduce and investigate the metric approach to data

from the Internet of Things.
• We propose and make available two real-world, large-

scale Internet of Things datasets.
The paper is structured as follows. In Section II we out-

line related work, before we introduce the principles and
approaches of metric indexing in Section III. The data sets are
described in Section IV. The methodology and results of our
performance study are given in Section V. We finally conclude
this paper with an outlook on future research directions in
Section VI.

II. RELATED WORK

The automotive, consumer, health, and manufacturing sec-
tors are among the most promising application segments of
the Internet of Things. A general overview of enabling tech-
nologies, protocols, and applications is given in the work of
Al-Fuqaha et al. [5], while Dı́az et al. [6] provide an additional
survey of platforms and infrastructures when integrating the
Internet of Things with cloud-based solutions. An overview
about the state of the art in data mining methods for the
Internet of Things including classification, clustering, as well
as association and time series analysis is given, for instance,



in the works of Tsai et al. [7] and Chen et al. [8]. A more
data-centric overview about techniques and methods for the
Internet of Things including data stream processing, data
storage models, complex event processing, and searching is
given in the work of Quin et al. [9]. The work of Abu-Elkheir
et al. [10] highlights different data management solutions and
design primitives. While the work of Fathy et al. [11] provides
a holistic overview of the state of the art on indexing, discovery
and ranking of Internet of Things data, the work of Kardeby et
al. [12] is more focused on indexing methods for the Internet
of Things.

Although recent research activities are tackling the chal-
lenge of efficient big data management and access in the
Internet of Things, none of the approaches included in the
aforementioned surveys are utilizing metric access methods.
To what extent the metric approach facilitates efficient index-
ing and searching of Internet of Things data is investigated in
this paper. For this purpose, we summarize the basic principles
behind metric indexing in the next section.

III. METRIC INDEXING

Fundamental to all metric approaches is a metric space that
abstracts from a concrete application domain. A metric space
(U, δ) comprises a data space U and a distance function δ :
U × U → R+ which satisfies the metric postulates for all
elements x, y, z ∈ U:

δ(x, y) = 0⇔ x = y (identity)
δ(x, y) ≥ 0 (non-negativity)

δ(x, y) = δ(y, x) (symmetry)
δ(x, y) ≤ δ(x, z) + δ(z, y) (triangle inequality)

Among these metric postulates, the triangle inequality is
then frequently used to derive lower bounds of the exact
distances between a query q ∈ U and a data object o ∈ U
via a finite set of pivot elements P ⊆ U as follows:

δ4(q, o) := max
p∈P
|δ(q, p)− δ(p, o)| ≤ δ(q, o).

Following the triangle lower bound and indexing the exact
distances δ(o, p) of all data objects o ∈ U to the pivots
elements p ∈ P gives us the first principle of metric indexing,
namely pivoting [13]. The idea of precomputing and storing
distances prior the query processing leads to the concept of a
pivot table, which was originally introduced as AESA [14]
respectively LAESA [15]. These approaches belong to the
family of pivot-based tables [4], while the utilization of further
metric principles, such as ball partitioning and generalized
hyperplane partitioning [13], lead to more complex and often
hierarchically organized structures. Overviews about funda-
mental metric principles and indexing techniques can be found
for instance in the works of Hetland [13] and Chen et al. [4].

IV. INTERNET OF THINGS DATASETS

In this section, we introduce two real-world, large-scale
Internet of Things datasets acquired within the scope of
different EU projects COMPOSITION and MONSOON. The
datasets and their characteristics are briefly described below.

A. COMPOSITION Dataset

The first IoT dataset is collected within the EU project
COMPOSITION1. The goal of this project is to develop an
integrated information management system which optimizes
internal production processes by exploiting existing data,
knowledge and tools to increase productivity and dynamically
adapt to changing market requirements.

This IoT dataset is based on a production process of pace-
makers. Within this production process, we collected time-
annotated sensor measurements in combination with additional
process information over a period of more than seven years.
More specifically, we gathered the sensor measurements based
on five minute intervals about the set and observed temperature
as well as the power consumption of individual fans inside
a reflow oven. The resulting dataset comprises 619,909 data
records with 57 real-valued attributes.

B. MONSOON Dataset

The second IoT dataset is collected within the EU project
MONSOON2. The goal of this project is to establish a data-
driven methodology to support identification and exploitation
of optimization potentials by applying model-based predictive
controls so as to perform plant and site-wide optimization of
production processes.

The IoT dataset is based on a production process of coffee
capsules, where the production is performed by an injection
molding method. That is, the coffee capsules are produced by
first heating the raw material and injecting it into a mold. After
the holding pressure phase and the cooling phase the mold is
opened again and the coffee capsules are extracted. The core
of this process is the injection molding machine. We gathered
sensor measurements about the machine’s internal states such
as temperature and pressure values as well as timings about the
different phases within each production cycle. The resulting
dataset comprises 357,383 data records with 16 real-valued
attributes.

In order to give a first hint into the structure of both datasets,
we sampled and visualized each dataset by means of the t-
Distributed Stochastic Neighbor Embedding (t-SNE) [16] in
Figure 1. This dimensionality reduction technique allows us
to visualize high-dimensional data in a low-dimensional space
by preserving the data’s inherent structure. As can be seen
in the figure, both datasets are showing a naturally inherent
structure comprising several clusters and outliers. While the
clusters arise due to the different production procedures and
parameters of the machines, the outliers might indicate po-
tential misbehavior of the machines and thus anomalies in

1www.composition-project.eu
2www.spire2030.eu/monsoon



(a) COMPOSITION (b) MONSOON

Fig. 1. The introduced Internet of Things datasets at a glance.

(a) COMPOSITION (b) MONSOON

Fig. 2. Correlation matrices of both datasets. Attributes are sorted according
to the first principal component order.

production. Although these concrete structures are not the
topic of our analysis, they imply a first hint on the indexability
of the datasets. Since the data seems to be naturally grouped in
both datasets, we expect a positive impact on the indexability.
Before we investigate the indexability in Section V, we first
investigate the correlation among the datasets’ attributes. For
this purpose, we evaluated the Pearson correlation coefficient
between all pairs of attributes in order to determine their
pairwise linear correlation.

The results are visualized in Figure 2, where negative and
positive correlations are indicated by reddish and bluish colors,
respectively. The attributes are ordered according to the first
principal component order. As can be seen in the figure, both
datasets contain positively and negatively correlated attributes
that indicate a grouping of attributes and partial redundancy of
the sensor data measurements. As there are no completely de-
pendent attributes, we include all attributes in our performance
evaluation, whose results are given in the next section.

V. EXPERIMENTAL RESULTS

In this section, we investigate the indexability of the pro-
posed Internet of Things datasets by means of the metric
approach and discuss the results of our empirical performance
evaluation.

(a) COMPOSITION

(b) MONSOON

Fig. 3. Distance distributions of both datasets.

To this end, we first quantify the indexability of both
datasets based on their distance distributions and the corre-
sponding intrinsic dimensionality [17]:

ρ(U, δ) =
E[δ(U,U)]

2 ·Var[δ(U,U)]
,



(a) (b) (c)

Fig. 4. Results for the COMPOSITION dataset: (a) number of candidates, (b) number of results, and (c) selectivity.

(a) (b) (c)

Fig. 5. Results for the MONSOON dataset: (a) number of candidates, (b) number of results, and (c) selectivity.

where E[δ(U,U)] denotes the expected distance and
Var[δ(U,U)] denotes the variance of the distance within the
data space U. The intrinsic dimensionality ρ ∈ R reflects the
indexability of a data distribution within a metric space (U, δ)
by means of its distance distribution, cf. Figure 3. The lower
the intrinsic dimensionality the better the indexability, and
vice versa. Regarding the proposed IoT datasets, we measured
the following intrinsic dimensionalities, both based on the
Euclidean distance L2:
• COMPOSITION: ρ(IoT-1,L2) = 0.306
• MONSOON: ρ(IoT-2,L2) = 1.560

The low intrinsic dimensionality of both datasets is also
reflected in their distance distributions, which are shown in
Figure 3. The distance distribution of the COMPOSITION
dataset is more compact in comparison to the one of the MON-
SOON dataset. This compactness leads to a smaller intrin-
sic dimensionality and thus a potentially higher indexability.
Whether this observation holds empirically when processing
range queries, is investigated in the next series of experiments.

In order to study the indexability of both datasets with
respect to range query processing, we make use of the metric
approach LAESA. For this purpose, we randomly selected
between 10 and 100 pivot elements and indexed both datasets
with the Euclidean distance correspondingly. We have de-
cided for a simple pivot-based table since we are aiming
at investigating the general indexability of both Internet of
Things datasets, not the highest overall performance of the
underlying metric approach. The results presented in this paper
are averaged over a query workload of 100 randomly chosen
queries. All methods are implemented in the programming
language R and are evaluated on a single-core 2.6 GHz
machine with 16 GB of main memory, without parallelization.

The results in terms of number of candidates necessary
to compute the final results of a range query, the number
of results, and the selectivity of a query are shown as a

function of the query range in Figure 4 and Figure 5 for
the COMPOSITION and MONSOON datasets, respectively.
As can be seen in the figures, both datasets show the same
tendency. Increasing the query range yiels a larger number of
candidates and thus an increase in the result size. Therefore
the selectivity increases. In addition, by increasing the number
of pivot elements from 10 to 100, the number of candidates,
and thus the selectivity, decreases. Regarding the indexability,
we observe that both datasets show an extraordinary high
performance. Processing selective range queries with less than
1,000 retrieved data objects is achieved with a selectivity of
smaller than 2% in both datasets. We thus conclude that the
metric approach is a suitable indexing model for both IoT
datasets.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the indexability of
Internet of Things data by means of metric access methods.
For this purpose, we have introduced two real-world, large-
scale Internet of Things datasets acquired within the scope of
two different EU projects COMPOSITION and MONSOON.
We have briefly analyzed the datasets’ inherent structures
and benchmarked their indexability potential. Although both
datasets are of high-dimensionality, we were able to index the
IoT data and process range queries efficiently by a simple
pivot-based table. The results of our performance evaluation
indicate the high potential of the metric approach for indexing
and searching Internet of Things data efficiently at large scale.

As future work, we plan to investigate more advanced metric
access methods as well as ptolemaic access methods [18]
in order to improve the efficiency of query processing even
further. In addition, we aim to investigate adaptive and thus
more expressive distance-based similarity models [19] such as
the Signature Quadratic Form Distance [20] and the Signature



Matching Distance [21] in combination with different multi-
step query processing algorithms [22], [23].
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