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Abstract Sensor based sorting finds broad applications in min-
ing, recycling and quality control. Digital image processing
and pattern recognition are key components, as they determine
whether to keep or discard an object under inspection. In many
scenarios, the color of a material stands out as the primary sort-
ing criterion. In this paper, we present a flexible system for color
sorting of bulk materials based on semantic color features. The
features are constructed in a three stages: the color occurrence fre-
quencies of different materials are estimated and then fused to a
small number of color classes, which in turn are used to map each
color to a discrete attribute. A compact object descriptor com-
posed of the fractions of foreground pixels that share the same at-
tribute characterizes the objects under inspection. This descriptor
has many advantages: it has a very clear, intuitive interpretation,
is invariant to rotation and scale of the object and requires very lit-
tle computation. However, a major drawback are the many vari-
ables that govern the construction process. Manual fine tuning
requires a large amount of time and experience. Subtle changes
in the parameters can have strong effects on the classification per-
formance. To overcome this shortcoming, we propose a method
to automatically learn the parameters by a genetic algorithm. We
apply our method to wine grape sorting problems to show that
this approach performs at least as good a human expert. At the
same time, it takes considerably less effort on the human part and
frees the operator to attend to other tasks.
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1 Introduction

The applications of optical sensor based sorting range from mining of
precious metals and minerals over recycling of synthetics to quality
control of food stuffs. Digital image processing and subsequent pat-
tern recognition are key components, as in this stage it is determined
whether to keep or discard the objects under inspection [1]. The research
community has developed a multitude of approaches leveraging meth-
ods from computer vision. Without going into too much detail3, these
approaches usually involve extraction of low to mid-level features such
as hue histograms, Gabor-descriptors and shape models, which are then
fed into machine learning algorithms to derive a sorting decision.

However, such methods are rarely found in commercially available
systems. There are two main reasons for this: Firstly, their black box
nature prevents the operators to change classification parameters when
the sorting requirements change. Secondly, both the feature extraction
and classification algorithm often require extensive computation, which
is infeasible considering the run time requirements of automated visual
inspection.

Instead, commercial systems often combine several simple rules that
put thresholds on simple features. Scott, for example, sorts plastic waste
into two fractions by measuring the ratio of absorbances at two wave-
lengths in the infrared spectrum and comparing it to a threshold [4].
Similarly, Lee and Anbalagan put multiple thresholds on the red, green
and blue color channels, which result in multiple accept and reject zones
in the color space [5]. An object is kept if the color of its foreground-
pixels fall mostly into accept zones, otherwise it is discarded. More
recently, Blasco et al. presented their system to sort pomegranate ar-
ils [6]. Instead of directly defining decision regions in the RGB color
space, they use a single threshold on the average ratio between the red
and green color channel. This simple approach performed comparably
to LDA using the whole RGB tuple as feature vector. The advantage of
these approaches is that they can be implemented in hardware, which
enables very high sorting speeds. Furthermore, the system’s sorting cri-
teria can easily be adjusted by changing the thresholds. On the other

3 A full review is out of the scope of this paper. Interested readers are instead referred to
the encompassing surveys by Du and Sun [2] as well as Malamas et al. [3].
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hand, initial investigation to find suitable features and thresholds is a
laborious process that has to be carried out by a trained expert.

Hybrid approaches apply thresholds to high level features that are
learned from the color distribution of the materials under inspection.
This combines the easy set-up of machine-learning approaches with the
flexibility of commercial solutions. Duffy et al. detect burn marks on air
filters by estimating the probability whether a pixel shows a defect [7].
They derive a histogram that characterizes the color of burn marks by
building the difference of RGB histograms of intact and defective sam-
ples. Defects are located by back-projection and thresholding the result-
ing image. In a follow-up publication, Bergasa et al. do not estimate his-
tograms directly but instead model the color distribution of defects as a
mixture of Gaussians [8]. While slower in training, this approach proves
more robust in testing, as it accounts for underrepresented and unseen
defect appearances. Explicit modeling the color-distribution is not al-
ways needed. For inspection of color tablets in pharmaceutical blisters,
Derganc et al. find optimal decision boundaries in the color space by
employing a mode seeking algorithm [9]. In training, an operator marks
a pixel belonging to a tablet. Then, a labeling function is constructed by
determining the corresponding mode and subsequent cluster growing.

Applications are not limited to classification though. Lee et al. grade
the maturity of dates according to the color of the fruit’s surface [10].
In their analysis, they found that the color of dates of different ripeness
fall into a thin connected region in the RGB space. Consequently, they
find a projection onto a one-dimensional manifold by solving a second
order trivariate polynomial regression problem. In a later publication,
Zhang, Lee et al. simplified the process by estimating a back-projection
table mapping RG-values to a ripeness level [11]. The table is built by
first collecting characteristic RG-histograms of four maturity grades and
fusing the histograms into a single lookup-table. Missing entries are
filled in by linear interpolation using neighboring values.

While all these approaches show good results with their respective
product, application to different problem domains is questionable. The
methods presented by Duffy et al. [7,8] leave the question how to handle
multiple defect classes. The mode finding approach by Derganc et al. [9]
works well when the surface of objects under inspection is relatively
uniform in color, but may struggle when the objects’ color distribution
is multimodal. Lee’s method [10] requires the color distribution of each
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class to be (approximately) supported on a one-dimensional connected
manifold, which is seldom the case. The back-projection approach by
Zhang et al. [11] alleviate this issue, but the construction of the lookup
table is strictly tailored to grading date maturity and not directly appli-
cable to other tasks.

With this in mind, we present a system capable of handling a large
variety of products in different settings. The method is similar to the
back-projection approaches presented above, but more general and not
tailored to a specific product4. In a two-step process, we merge color
histograms of different material fractions that may occur in the sorting
application to color classes, which are then fused to build the lookup-
table that maps RGB tuples to a discrete attribute. Objects are classified
based on the fractions of pixels that map to each attribute.

2 Methods

In this section, we first describe our classification system and then turn
our attention automatically learning the parameters that govern its be-
havior.

2.1 Classification System

Figure 10.1 shows the classification pipeline of our system. An input
image I is transformed into an attribute image using a back-projection
table that maps each RGB tuple c = (r, g, b) to an attribute,

A(c) = a ∈ {−1, 0, 1, . . . ,M} . (10.1)

Here we use the convention that the attribute A(c) = 0 signifies a
background pixel, whereas A(c) = −1 denotes an unknown color. Us-
ing blob analysis on the attribute image, single objects are extracted.
A feature vector m = (m−1,m1, . . . ,mM )

� is calculated for each object,
where each entry mi in m represents the fraction of pixels that map to
the i-th attribute. Formally, with O denoting the set of foreground pix-
els:

mi =
1

|O|
∑

(x,y)∈O
1[A(I(x, y)) = i] . (10.2)

4 In fact, we applied our method in different scenarios from recycling to food-inspection.
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Figure 10.1: Overview of the classification pipeline.

The decision whether to keep or discard an object is done by a binary
classifier H(m) = y ∈ {−1, 1} and a signal is sent to the actuating hard-
ware. The choice of classifier is arbitrary, however keeping the intended
application in mind, we typically settle for simple rule-based classifiers.

Color Attributes

Key to this classification pipeline is the mapping from color to attribute
in eq. (10.1). Figure 10.2 outlines the steps performed to derive color
classes, which are the basic building blocks of the attribute-mapping
A(c). In detail, the process is as follows:

The materials expected to be encountered during sorting are placed
into the sorting machine and images are captured as if the system was
in operation. From these images, color frequency estimates

p̂κ(c|k), k = 0, 1, . . . ,K (10.3)

are collected. As with the attribute-mapping in eq. (10.1), the index
k = 0 denotes the background. The remaining p̂κ(c|k) are estimated
only from foreground pixels. The choice of estimator is arbitrary, but
for the sake of simplicity we chose to use the joint RGB histogram.

If the ground-truth images show dirt particles or other non-target
materials, the histograms may contain non-informative entries, which
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Figure 10.2: Outline of the steps performed to derive color classes that are fused
into the attribute table. Note that the figure shows 1D-histograms, while our
system is based on dense, 3D-RGB histograms.

can be disruptive in later stages of the pipeline. Addressing this is-
sue, we drop frequencies below a user-definable threshold β ∈ [0, 1] (see
Fig. 10.2 (b)). Formally, this amounts to the following operation:

cut(p̂κ(c|k), β) =
{

1
Z p̂κ(c|k) if p̂κ(c|k) ≥ β

0 otherwise.
(10.4)

Here Z is a normalization constant so that cut(p̂κ(c|k), β) is a proba-
bility distribution. The resulting modified frequency estimates are fused
into color classes (see Fig. 10.2 (c)) by weighted averaging,

p̂μ(c|m) =

K∑
k=0

αkm cut(p̂κ(c|k), βk) , m = 0, 1, . . . ,M, (10.5)

where αkm ≥ 0 and
∑

k αkm = 1. The color classes p̂μ(c|m) represent
higher-level features and correspond to semantic groups of materials.

The color frequency estimates and therefore the color classes are gen-
erally derived using a relatively small sample. As a consequence, the
estimates may not accurately reflect the underlying distribution, espe-
cially when considering natural materials, whose appearance can fluc-
tuate in time. Furthermore, external influences such as stray light can
additionally alter the perceived color of the objects. To alleviate these
problems, we apply a 3D morphological filter on the color classes:

dilate(p̂μ(c|m), δ) = max
o∈[−δ,δ]3

p̂μ(c− o|m). (10.6)

Finally, the attribute table is constructed by assigning the color class
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with the highest weighted probability for the given color,

A(c) =

{
−1 ifmaxm{Dm} = 0

arg maxm {γmDm} else,
(10.7)

where Dm=dilate(p̂μ(c|m), δm) and γm ≥ 0. Incidentally, equa-
tion (10.7) can be interpreted as a maximum a posteriori classifier that
assigns pixels to a color class, where γm encodes the class prior.

2.2 Parameter Learning

As mentioned in the previous section, the attribute table has a signifi-
cant impact on the overall classification performance, more so than the
classifier itself. However, finding the optimal configuration is a time
consuming process where seemingly small adjustments can cause no-
tably different sorting results. We therefore propose to automatically
estimate good parameter combinations. Ideally, the user should only
provide the initial color frequency estimates and the desired number
of color classes M and the computer should figure out the remaining
parameters.

One way to achieve this goal is to pose the task as optimization prob-
lem, i.e. to search the set of parameters that achieves the optimal classi-
fication performance.

Genetic Algorithms

Genetic algorithms (GA) are a well-known meta-heuristic to find a set
of parameters θ that maximize a fitness (or merit) function f(θ). GAs
have been shows to work well with large or even infinite search spaces
and are able to find the global optimum in non-convex problems [12].
However, the solution is generally only approximately optimal: With θ�

denoting the true optimum and ε > 0, a GA finds a solution θ̂ with

|f(θ�)− f(θ̂)| < ε. (10.8)

The method is modeled after the theory of natural selection: A pop-
ulation of individuals (possible solutions) produce offspring (new so-
lution candidates) through recombination. The offspring is subject to
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random mutation and the fittest individuals are selected according to
the fitness function f . The process repeats until a certain number of
iterations is reached. The following pseudo-code outlines the approach:

Input: Population size N , Number of iterations K
Output: Candidate solutions P
Randomly sample population P = {θn|n = 1, . . . , N}
for k = 1 to K:

C ← crossover(P)
C ← mutate(C)
P ← select-fittest(P ∪ C)

return P

Key components are crossover and mutate operations, which explore
the parameter-space around the existing solutions. There exists several
alternatives to perform crossover, but here we focus on tournament se-
lection with random recombination. In random recombination, the off-
spring θc of two parent individuals θp and θq is produced by randomly
choosing θ(i)c as the i-th element of either parent with equal probability.
Each parent is selected by randomly sampling two candidates from the
population and keeping the fitter one, i.e. for θp:

θp = arg max{f(θp1
), f(θp2

)}, θp1
,θp2

∈ P. (10.9)

Since crossover alone is not sufficient to fully explore the parameter
space, mutate performs a randomized local search by randomly chang-
ing elements of each θc ∈ C. Finally select-fittest ranks all θ ∈ P ∪ C
according to their fitness f(θ) and keeps only the N best-performing
individuals.

The repeated application of crossover, mutation and selection have
the effect that the population, which is initially scattered around the pa-
rameter space, converges onto a maximum of the fitness function. Due
to the inherent randomization, GAs can recover from falling into local
minima, which sets them apart from other methods such as gradient de-
scent and hill-climbing. Furthermore, constraints on the parameters are
almost trivial to implement by adjusting the crossover and mutate oper-
ations and regularization is achieved by adding an appropriate term to
the fitness function.
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Application

Due to the non-convex nature of our parameter-optimization and the
large search space, we chose GAs to find good combinations of param-
eters. We constrain the parameters according to Section 2.1, i.e.

αkm, γm ≥ 0, with
∑

k αkm = 1, (10.10)
0 ≤ βk ≤ 1 and (10.11)
δm ∈ N0. (10.12)

As fitness function we employ Matthews correlation coefficient [13],
which can be interpreted as the correlation coefficient between ground-
truth and prediction of the classifier H(m). With ntp, nfp, ntn and nfn
denoting the number of true positive, false positive, true negative and
false negative classifications on a validation sample it can be defined as

MCC =
ntp ntn − nfp nfn√

(ntp + nfp)(ntp + nfn)(ntn + nfp)(ntn + nfn)
. (10.13)

3 Experiments

We validated our approach by comparing the classification performance
of hand tuned parameters to parameters learnt by the GA. We consid-
ered the sorting problem of discriminating healthy wine berries from
grapes with fungal infection and unwanted parts of the plant. Exper-
iments were performed with three varieties of wine: Pinot noir, Pinot
blanc and Riesling. All images were acquired using an off-the-shelve
RGB line-scan camera. Since berries of the Pinot noir variety are very
dark and show low contrast to the black background, the blue channel
was replaced with a NIR-channel in this case. To reduce the parameter
space, we do not perform frequency thresholding (i.e. set βk = 0 for all
k) and constrain the background class to not include, and not to be in-
cluded in the other color classes by setting α00 = 1 and α0m = αk0 = 0.
Parameters were mutated by each selecting a random αkm, γm and δm
and assigning a new value in the variable’s domain with probability of
p = 0.8, p = 0.5 and p = 0.3 respectively. We chose a linear SVM as clas-
sifier H(m), since it is relatively fast to train and evaluate, and therefore
reduces the time required for the optimization.
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Grape variety # of samples MCC wrt. selection method
positive negative manual learned

Pinot noir 2416 641 0.47 0.70 ±0.12

Pinot blanc 332 291 0.86 0.86 ±0.17

Riesling 1061 235 0.88 0.86 ±0.11

Table 10.1: Overview over the results of our experiments.

Table 10.1 shows the results of our experiments. In case of learned
parameters, we performed stratified 10-fold cross-validation to estimate
the mean and standard deviation of MCC values. We did not perform
cross-validation with hand-tuned parameters. In each fold, the training
set was randomly split in two subsets, where the first one was used to
estimate parameters and the second was used to train the classifier. Es-
pecially with the Pinot blanc variety, this resulted in very few training
samples and subsequently relatively high variance of the classification
performance. Nonetheless, the classification performance is on par with
manually estimated parameters. In case of Pinot noir, the GA approach
even outperformed the human expert, who had difficulties finding an
appropriate set of parameters due to the (apparent) lack of an informa-
tive blue channel. Table 10.2 shows the learned parameters of the best
performing solution with the Pinot noir variety. While the first color
class puts more emphasis on the third and fourth color frequency esti-
mate (defects), the second color class is influenced primarily by the fifth
and sixth frequency estimate (ripe berries). This roughly corresponds
to m = 1 and m = 2 denoting defect- and accept-classes. However, both
classes consider all available color estimates (apart from the background
– which was enforced by the experimental constraints). This contrasts
with the approach of a human expert, who typically selects few color
frequency estimates to build the color classes.

4 Conclusion

In this paper we have presented both a method for color classification of
bulk materials and a method to automatically estimate the parameters
governing the classification. The system is flexible and can accommo-
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αkm k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 γm δm
m = 0 1.00 0.00 0.00 0.00 0.00 0.00 0.06 1
m = 1 0.00 0.16 0.27 0.47 0.09 0.01 1.00 3
m = 2 0.00 0.07 0.01 0.18 0.41 0.34 0.08 3

Table 10.2: Best performing learned configuration for the Pinot blanc variety.

date a wide range of materials. While manual set-up is a labor intensive
and time-consuming process, parameter learning only requires human
interaction when estimating the basic color distributions. The remain-
ing learning process is fully automatic and frees the human to attend to
other tasks. Moreover, it requires no knowledge of the inner workings
of the systems and therefore allows non-experts to bootstrap a working
classifier.

However, there is still room for improvement. In particular, one could
use kernel density estimators instead of joint RGB histograms to de-
rive the color frequencies p̂κ(c|k). Doing so would remove the need to
perform dilation (10.6) and therefore reduce the dimensionality of the
parameter space. Another modification would be to encourage spar-
sity of the αkm by including an appropriate term in the fitness function.
The resulting parameters would be more similar to configuration set
up by a human expert and thus be more open to interpretation. Lastly,
the genetic algorithm could be replaced by other heuristic optimization
procedures such as particle swam optimization, which puts a stronger
emphasis on local search, or simulated annealing, which evaluates the
merit function less frequently than a GA and thus might be faster to find
the optimum.
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