SYSTEMATISCHE ANALYSE UND DURCHGÄNGIGE BETRACHTUNG BESONDERER MERKMALE

Systematisch ermitteln und durchgängig betrachten, Vertiefungsseminar Stuttgarter Produktionsakademie, 23. April 2015

Dr.-Ing. Alexander Schloske

Senior Expert Quality Management

Leiter Stuttgarter Produktionsakademie

Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Telefon: +49(0)711/9 70-1890 Fax: +49(0)711/9 70-1854

E-Mail: alexander.schloske@ipa.fraunhofer.de

Internet: www.ipa.fraunhofer.de

www.stuttgarter-produktionsakademie.de

© Fraunhofer IPA

VORTRAGSINHALTE

- Systematische Analyse und durchgängigen Betrachtung von Besonderen Merkmalen
- Moderner Ansatz zur Identifikation Besonderer Merkmale
- Besondere Merkmale bei Mechatronischen Systemen
- Praxisbeispiele zu Besonderen Merkmalen

SYSTEMATISCHE ANALYSE UND DURCHGÄNGIGE BETRACHTUNG

© Fraunhofer IPA

Besondere Merkmale

Systematische Analyse der Besonderen Merkmale mit Hilfe der FMEA nach VDA 4 Kapitel 3 (2006)

Die FMEA nach VDA 4 Kapitel 3 (2006) eignet sich hervorragend zur systematischen Analyse der Besonderen Merkmale:

- Konstruktions-FMEA
 - Identifikation der Besonderen Merkmale
 - Funktionsgerechte Auslegung der Besonderen Merkmale (Ziel A=1)
- Prozess-FMEA
 - Beurteilung der Auftretenswahrscheinlichkeit in Fertigung / Montage
 - Planung von Maßnahmen zur sicheren Vermeidung und/oder Entdeckung in Fertigung / Montage (Ziel A=1 und/oder E=1)

Besondere Merkmale

Durchgängige Betrachtung der Besonderen Merkmale mit Hilfe der FMEA nach VDA 4 Kapitel 3 (2006)

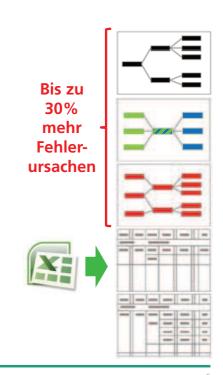
Die FMEA nach VDA 4 Kapitel 3 (2006) eignet sich hervorragend zur durchgängigen Betrachtung der Besonderen Merkmale:

- Funktions-Merkmals-Zusammenhänge (z.B. Funktionsnetze)
- Fehlerfolge-Fehlerart-Fehlerursachen-Zusammenhänge (z.B. Fehlernetze)

Moderne EDV-Tools bieten eine effektive und effiziente Unterstützung:

- FMEA-Systeme (z.B. IQ-FMEA der APIS Informationstechnologien GmbH)
- Integrierte CAQ-Systeme (z.B. BabtecCAQ R6)

Eine FMEA-Erstellung mittels EXCEL bietet i.A. keine systematische und durchgängige Vorgehensweise für Besondere Merkmale


© Fraunhofer IPA

FMEA nach VDA

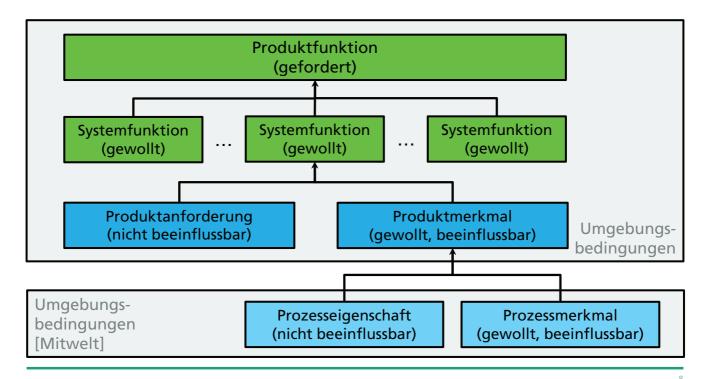
Schritte zur FMEA-Erstellung (in Anlehnung an VDA)

- System strukturieren
- Prozess strukturieren
- Funktionen und Merkmale zuordnen
- Funktions-/Merkmalsnetz bilden
- Fehlfunktionen und Fehlermerkmale ableiten
- Fehlernetz (Hypothesen) bilden
- Vermeidungsmaßnahmen definieren
- Fehlererkennung und Fehlerreaktion definieren
- Optimierung planen
- Wirksamkeit überprüfen

FMEA nach VDA

Denken in Funktionen und Merkmalen

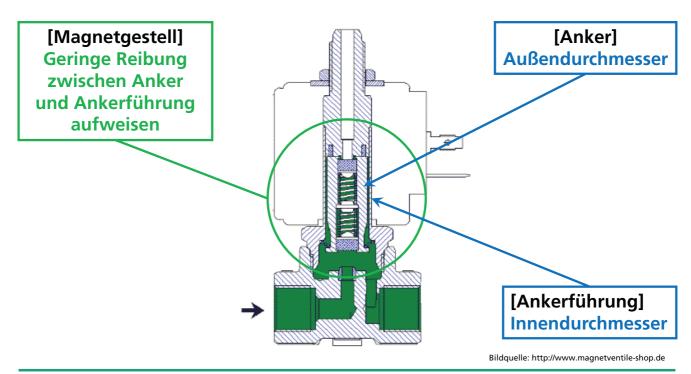
Funktion Stift: Festsitz der Kappe auf dem Grundkörper sicherstellen


Bildquelle: www.industrialpartners.eu/uploads/tx_ipprojects/Neuland_02_RE.jpg

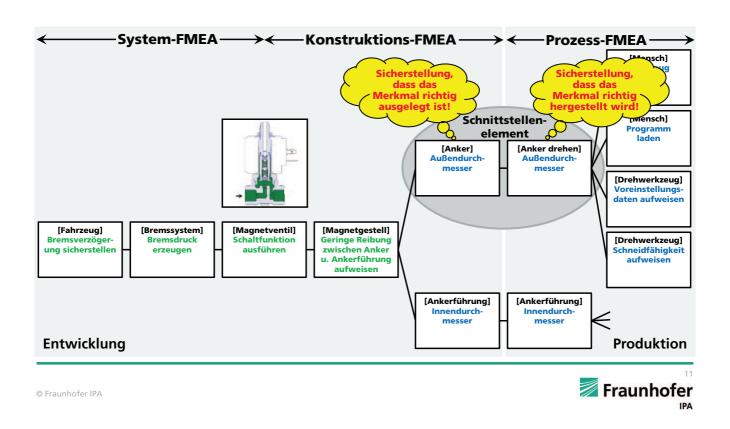
© Fraunhofer IPA

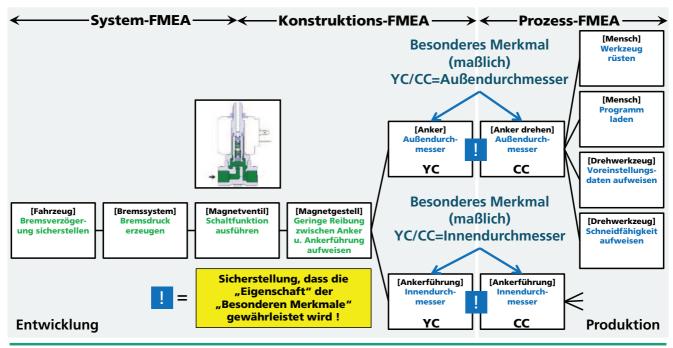
Denkmodell

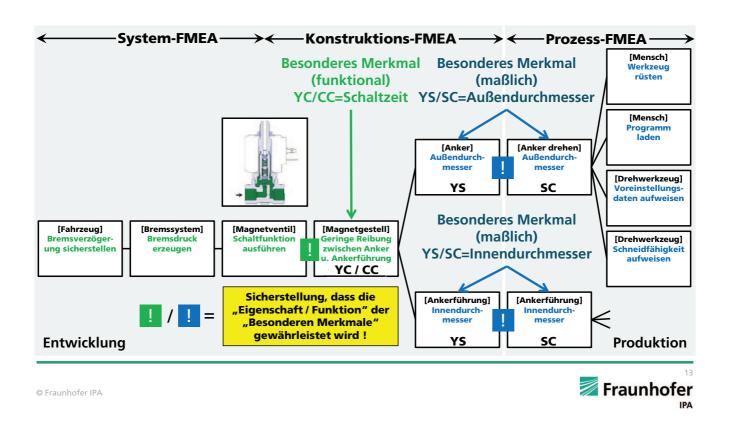
Zusammenhang zwischen Funktionen, Anforderungen und Merkmalen

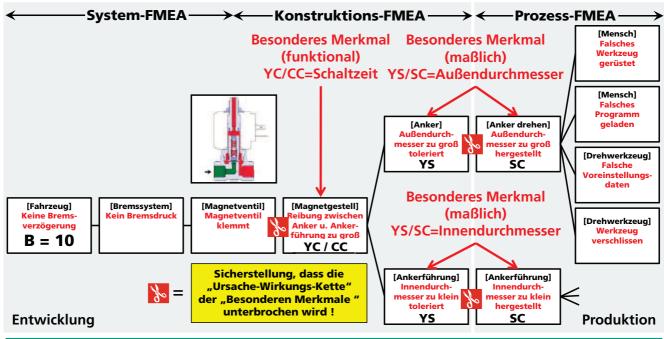


DARSTELLUNG AN EINEM BEISPIELSYSTEM


© Fraunhofer IPA


Beispielsystem Magnetventil Funktionsprinzip


Koppelung von Konstruktions-FMEA und Prozess-FMEA Systematische Ermittlung und durchgängige Betrachtung mittels Funktionsnetz über die FMEA-Arten hinweg


Koppelung von Konstruktions-FMEA und Prozess-FMEA Systematische Ermittlung und durchgängige Betrachtung mittels Funktionsnetz über die FMEA-Arten hinweg

Koppelung von Konstruktions-FMEA und Prozess-FMEA Systematische Ermittlung und durchgängige Betrachtung mittels Funktionsnetz über die FMEA-Arten hinweg

Koppelung von Konstruktions-FMEA und Prozess-FMEA Systematische Ermittlung und durchgängige Betrachtung mittels Fehlernetz über die FMEA-Arten hinweg

Besondere Merkmale

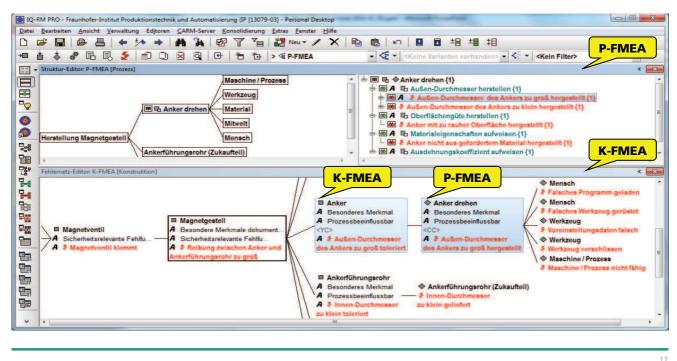
Systematische Analyse und Kennzeichnung Besonderer Merkmale über Funktionsnetz oder Fehlernetz

Funktionsnetz:

- Durchgängige Analyse von der System-/Konstruktions-FMEA über die Prozess-FMEA bis hin zum Produktionslenkungsplan und Prüfplan
- Kennzeichnung der Besonderen Merkmale auf Funktions-/Merkmalsebene
- keine explizite Verwendung der K-Spalte im FMEA-Formblatt

Fehlernetz:

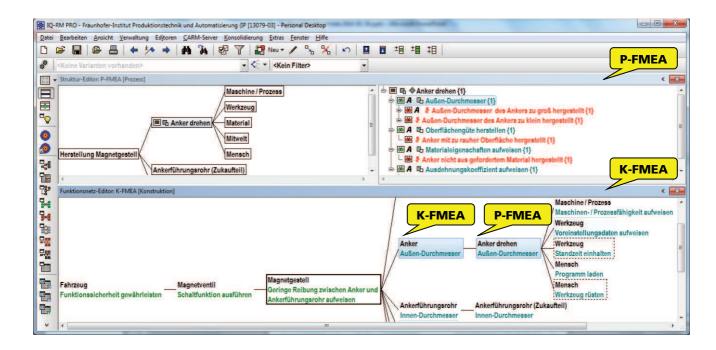
- Durchgängige Analyse von der System-/Konstruktions-FMEA bis hin zur Prozess-FMEA (über Fehlfunktionen)
- Kennzeichnung der Besonderen Merkmale auf Fehlfunktionsebene in der K-Spalte im FMEA-Formblatt (... und nicht auf der Merkmalsebene)
- Übersetzung der Fehlfunktionen in Merkmale


Fraunhofer

© Fraunhofer IPA

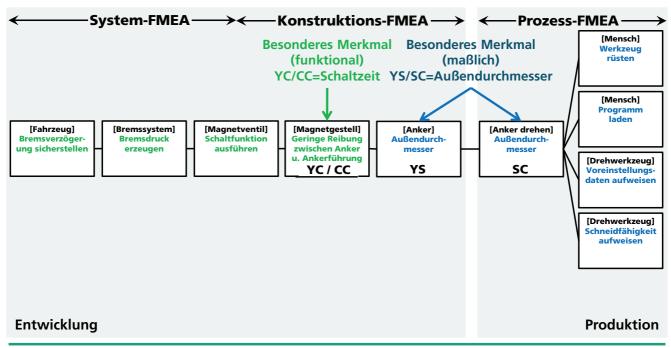
BEISPIELHAFTE ABBILDUNG IN DER IQ-FMEA DER APIS GMBH

Koppelung von Konstruktions-FMEA und Prozess-FMEA

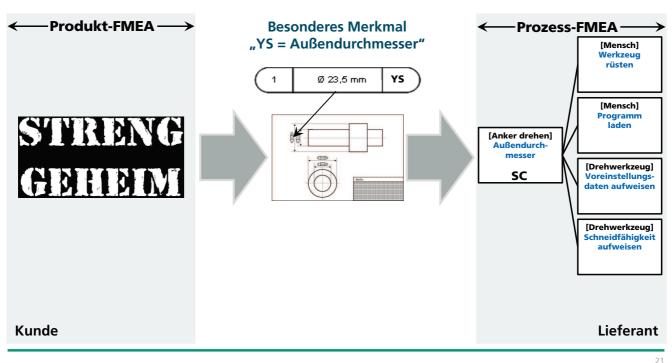

Durchgängige Betrachtung durch Verknüpfung von Fehlernetzen über die FMEA-Arten

© Fraunhofer IPA

Koppelung von Konstruktions-FMEA und Prozess-FMEA Durchgängige Betrachtung durch Verknüpfung von Funktions-/Merkmalsnetzen über die FMEA-Arten



BESONDERE MERKMALE IN DER KUNDEN-LIEFERANTEN-BEZIEHUNG


© Fraunhofer IPA

Besondere Merkmale in Kunden-Lieferanten-Beziehung Besondere Merkmale zur Kommunikation des Risikos von Produktmerkmalen zwischen Kunden und Lieferanten

Besondere Merkmale in Kunden-Lieferanten-Beziehung Besondere Merkmale zur Kommunikation des Risikos von Produktmerkmalen zwischen Kunden und Lieferanten

© Fraunhofer IPA

MODERNER ANSATZ ZUR IDENTIFIKATION VON BM S / YC

Moderner Ansatz zur Identifikation Besonderer Merkmale

Risikograph zur ASIL-Klassifizierung nach ISO 26262 (warum nicht auch anwendbar für Besondere Merkmale?)

Controllability C Exposure E

			C0	C1	C2	С3
Severity 5	S0	E0 – E4	QM	QM	QM	QM
	S1	E0	QM	QM	QM	QM
		E1	QM	QM	QM	QM
		E2	QM	QM	QM	QM
		E3	QM	QM	QM	Α
		E4	QM	QM	Α	В
	S2	E0	QM	QM	QM	QM
		E1	QM	QM	QM	QM
		E2	QM	QM	QM	Α
		E3	QM	QM	Α	В
		E4	QM	Α	В	С
	S3	E0	QM	QM	QM	QM
		E1	QM	QM	QM	Α
		E2	QM	QM	Α	В
		E3	QM	Α	В	С
		E4	QM	В	С	D

[nach ISO 26262]

Schwere (Severity)

- 50: keine Verletzungsgefahr
- geringe und mäßige Verletzungen
- ernste und möglicherweise tödliche Verletzungen
- **S3:** schwere und wahrscheinlich tödliche Verletzungen

Häufigkeit des Ausgesetztseins (Exposure)

- E1: selten: Situation tritt für die meisten Fahrer seltener als einmal pro Jahr auf
- gelegentlich: Situation tritt für die meisten Fahrer wenige Male pro Jahr auf
- E3: ziemlich oft: Situation tritt für Durchschnittsfahrer einmal im Monat oder öfter auf
- **E4: oft:** Situation die bei nahezu jeder Fahrt auftritt

Beherrschbarkeit (Controllability)

- C1: einfach beherrschbar:
 - mehr als 99% der Fahrer oder der anderen Verkehrsteilnehmer können den Schaden üblicherweise abwenden
- C2: durchschnittlich beherrschbar:
 - mehr als 90% der Fahrer oder der anderen Verkehrsteilnehmer können den Schaden üblicherweise abwenden
- C3: schwierig oder gar nicht beherrschbar:
 - weniger als 90% der Fahrer oder der anderen Verkehrsteilnehmer können den Schaden üblicherweise abwenden

Fraunhofer

© Fraunhofer IPA

Moderner Ansatz zur Identifikation Besonderer Merkmale Risikograph zur ASIL-Klassifizierung nach ISO 26262 (Vorschlag für Besondere Merkmale BM S / YC ab ASIL=B)

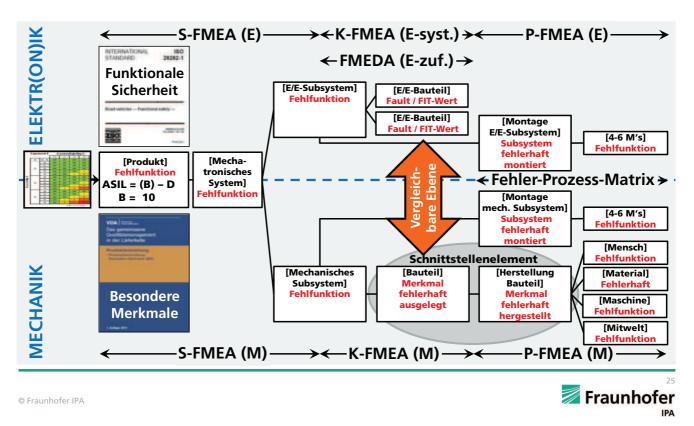
Exposure E Controllability C

			CO	C1	C2	С3
2010119	S0	E0 – E4	QM	QM	QM	QM
	S1	E0	QM	QM	QM	QM
		E1	QM	QM	QM	QM
		E2	QM	QM	QM	QM
		E3	QM	QM	QM	Α
		E4	QM	QM	Α	В
	S2	E0	QM	QM	QM	QM
		E1	QM	QM	QM	QM
		E2	QM	QM	QM	Α
		E3	QM	QM	Α	В
		E4	QM	Α	В	С
	S3	E0	QM	QM	QM	QM
		E1	QM	QM	QM	Α
		E2	QM	QM	Α	В
		E3	QM	Α	В	С
		E4	QM	В	С	D
[L ISO 2535						

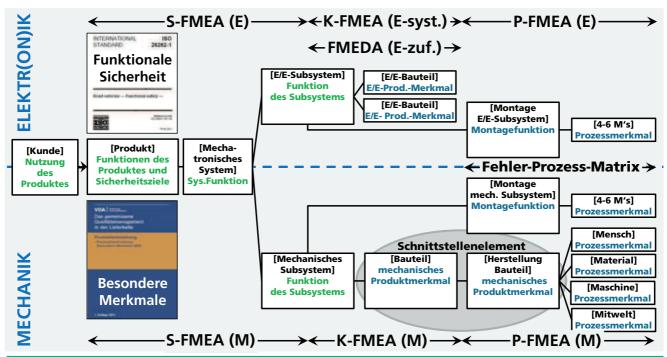
[nach ISO 26262]

Schwere (Severity)

- 50: keine Verletzungsgefahr
- geringe und mäßige Verletzungen
- ernste und möglicherweise tödliche Verletzungen
- **S3:** schwere und wahrscheinlich tödliche Verletzungen


Häufigkeit des Ausgesetztseins (Exposure)

- E1: selten: Situation tritt für die meisten Fahrer seltener als einmal pro Jahr auf
- gelegentlich: Situation tritt für die meisten Fahrer wenige Male pro Jahr auf
- ziemlich oft: Situation tritt für Durchschnittsfahrer einmal im Monat oder öfter auf
- E4: oft: Situation die bei nahezu jeder Fahrt auftritt


Beherrschbarkeit (Controllability)

- C1: einfach beherrschbar:
 - mehr als 99% der Fahrer oder der anderen Verkehrsteilnehmer können den Schaden üblicherweise abwenden
- C2: durchschnittlich beherrschbar:
- mehr als 90% der Fahrer oder der anderen Verkehrsteilnehmer können den Schaden üblicherweise abwenden
- C3: schwierig oder gar nicht beherrschbar: weniger als 90% der Fahrer oder der anderen Verkehrsteilnehmer können den Schaden üblicherweise abwenden

Moderner Ansatz zur Identifikation Besonderer Merkmale Analogie zwischen ISO 26262 und Besonderen Merkmalen sowie Zusammenhang über Risikograph und Fehlernetz

Moderner Ansatz zur Identifikation Besonderer Merkmale Einordnung von Funktionen und Merkmalen und deren Zusammenhang über das Funktionsnetz

