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ABSTRACT
Comparing two random vectors by calculating a distance measure between the underlying probability density
functions is a key ingredient in many applications, especially in the domain of image processing. For this purpose,
the recently introduced generalized Cramér-von Mises distance is an interesting choice, since it is well defined
even for the multivariate and discrete case. Unfortunately, the naive way of computing this distance, e.g., for two
discrete two-dimensional random vectors x̃, ỹ∈ [0, . . . ,n−1]2,n∈N has a computational complexity of O(n5) that
is impractical for most applications. This paper introduces fastGCVM, an algorithm that makes use of the well
known concept of summed area tables and that allows to compute the generalized Cramér-von Mises distance with
a computational complexity of O(n3) for the mentioned case. Two experiments demonstrate the achievable speed
up and give an example for a practical application employing fastGCVM.
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1 INTRODUCTION
Applications and algorithms from different fields re-
quire to compute a distance between two random vec-
tors, respectively, between the corresponding probabil-
ity density functions in order to measure their simi-
larity [Cha07]. For example, histogram distances are
employed by content based image retrieval systems to
find images similar to the query image [MGW10, CS02,
DNK03]. Furthermore, such distance measures can be
used as an optimization criterion to obtain a Dirac mix-
ture approximation of probability distributions, for in-
terpolations, for parameter estimation or for tracking
[PHB13]. Whenever one of the two random vectors
is of discrete type, the cumulative distribution func-
tions are usually employed for further processing steps.
However, this is only possible for the one-dimensional
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case since the cumulative distribution of a multivariate
random vector is not unique.

In [HK08], the authors have introduced a novel for-
mulation of the cumulative distribution, the so-called
localized cumulative distribution. The LCD of a ran-
dom vector can be imagined as a rectangular kernel
transform of the underlying probability density func-
tion. Based on the definition of the LCD, [HK08]
introduces a generalized formulation of the Cramér-
von Mises (CVM) distance that can be used to calcu-
late distances between two (multivariate) random vec-
tors of whom one (or both) may even be of discrete
type. However, as it is shown in the following sec-
tions, the computation of the LCD and the CVM dis-
tance for two discrete two-dimensional random vectors
x̃, ỹ ∈ [0, . . . ,n−1]2,n ∈ N, as it is typical for image
processing applications, has a complexity of O(n5).

This paper shows, how the concept of so-called
summed area tables [Cro84, VJ04] can be used to ob-
tain a novel and more efficient algorithm for computing
the LCD and the CVM distance. For the mentioned
example random vectors, the proposed algorithm has a
reduced complexity of O(n3).



The paper is structured as follows: Sec. 2 lists and
discusses related work performed by other research
groups. In Sec. 3, the localized cumulative distribu-
tions and the generalized Cramér-von Mises distance
are introduced and their computational complexity is
analyzed. Furthermore, the concept of summed area ta-
bles is described. Section 4 is dedicated to the proposed
fast algorithm for the computation of the Cramér-von
Mises distance and Sec. 5 covers the performed experi-
ments and the respective results. A summary of the pa-
per and an outlook concerning further research topics is
provided in Sec. 6.

2 RELATED WORK
This section describes major work performed by other
researches in which either the generalized Cramér-von
Mises distance plays an important role or summed area
tables have been used. To the knowledge of this pa-
per’s authors, neither the concept of summed area ta-
bles nor any other acceleration technique has yet been
employed to reduce the computation time of the gener-
alized Cramér-von Mises distance.

Franklin Crow was the first to introduce the concept of
summed area tables [Cro84]. The respective paper is
concerned with the task of reducing the computational
costs of the texture mapping problem. Crow shows that
it is possible to precompute a certain data structure, a
summed area table (see Sec. 3.1), for a given image us-
ing linear time and space so that afterwards the sum of
the pixel values inside any arbitrary query rectangle can
be obtained in constant time.

In [VJ04], Viola and Jones introduce a processing
framework for face detection. They employ a large set
of features in concert with a classifier cascade trained
using the AdaBoost learning algorithm. By adapting
the idea of summed area tables to digital images, they
can achieve a fast computation of the used features.

Hanebeck et al. and Gilitschenski et al. show in
[HHK09, GH13], how the concept of localized cumu-
lative distributions and the generalized Cramér-von
Mises distance can be employed to obtain Dirac
mixture approximations of multivariate Gaussian
distributions. Such approximations are important
ingredients, e.g., for state estimation in dynamic
systems. In their presented work, the authors achieve
an efficient implementation by analytically obtaining a
closed-form solution for the LCD and the generalized
CVM distance for multivariate Gaussian densities and
Dirac mixtures. Since the approach for accelerating
the calculation of the LCD and the CVM distance
provided in this paper does not rely on any specific
form of a probability distribution, it can be used to
speed up applications, where no analytical solution can
be found.

3 PREREQUISITES
Before the details of the acceleration approach can be
described, this section introduces the necessary defini-
tions and data structures beginning with the concept of
summed area tables. For the sake of simplicity, the for-
mulas and solutions shown in this paper are often lim-
ited to the case of discrete two-dimensional probability
distributions since this is the common case for image
processing applications.

3.1 Summed Area Tables
Summed area tables denote a data structure that can
be precomputed for two-dimensional input arrays
allowing to calculate the sum of the array entries inside
arbitrary rectangular regions of the array [Cro84].
Let i(x,y) ∈ R, x,y ∈ [0, . . . ,n−1] denote a two-
dimensional array like data structure. The correspond-
ing summed area table I is defined by

I(x,y) :=

0 if min{x,y} ≤ 0 ,
x
∑

xf=1

y
∑

yf=1
i(xf,yf) otherwise .

(1)

The data structure I can be calculated in a single sweep
over i by employing the iterative formulation

I(x,y)= i(x,y)+I(x−1,y)+I(x,y−1)−I(x−1,y−1) .
(2)

By this means, the sum of array entries of i inside an
interval x ∈ [xf,xt] , y ∈ [yf,yt] can be obtained via three
arithmetic operations on I only:

xt

∑
x=xf

yt

∑
y=yf

i(x,y) = I(xt,yt) (3)

− I(xf−1,yt)

− I(xt,yf−1)
+ I(xf−1,yf−1) .

Figure 1 provides a visualization motivating the for-
mula. Since the iterative expression (2) involves only
four constant time arithmetic operations and four con-
stant time array accesses and has to be performed for
every element in i, i.e., n ·n = n2 times, the computation
of I has a complexity of O(n2) [MS08, Cor09]. By us-
ing formula (3), the calculation of a sum of array entries
of i in an arbitrary rectangular region has a complexity
of O(1). The concept of summed area tables is used in
later sections in order to accelerate the computation of
the generalized Cramér-von Mises distance.
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Figure 1: Calculating the sum of the array entries in-
side the query rectangle x ∈ [xf,xt] , y ∈ [yf,yt] (purple)
by employing a summed area table: from the red com-
ponent I(xt,yt), first the orange component I(xf−1,yt)
and the blue component I(xt,yf − 1) have to be sub-
tracted. Since the area represented by the green com-
ponent has now been subtracted twice, I(xf−1,yf−1)
has to be added.

3.2 Localized Cumulative Distribution

As mentioned before, cumulative distributions are of-
ten employed in order to be able to calculate a distance
between two random vectors. However, the conven-
tional definition of the cumulative distribution is not
unique for the multivariate case. This issue is tack-
led by the so-called localized cumulative distribution
LCD introduced in [HK08]. For a given random vector
x̃ ∈ RN ,N ∈ N and the corresponding probability den-
sity function f : RN → R+, the respective LCD F(x,b)
is defined as

F(x,b) := P
(
|x̃−x| ≤ 1

2
b
)
, (4)

F(·, ·) : Ω→ [0,1] ,Ω⊂ RN
+×RN

+,

b ∈ RN
+ ,

with x ≤ y, x,y ∈ RN
+ denoting a component-wise re-

lation that only holds if ∀ j ∈ [1, . . . ,N] : xi ≤ yi. The
LCD F(x,b) can be imagined as an integral transform
with the rectangular kernel b providing the limits of the
integration for the different dimensions. Based on the

probability density function f (x) corresponding to x̃,
the respective LCD F(x,b) is calculated by

F(x,b) =



x+ 1
2 b∫

x− 1
2 b

f (t)dt , if x̃ continuous,

min{xmax,x+b 1
2 bc}

∑

t=max{0,x−b 1
2 bc}

f (t) , if x̃ discrete ,

(5)

with 0 = (0, . . . ,0)T denoting the zero vector, xmax de-
noting the vector representing the upper limit of the spa-
tial support and max{x}, min{x} and bxc denoting el-
ementwise operations. In contrast to the conventional
definition of the cumulative distribution function, the
LCD of a multivariate random vector is unique. Since
this paper is especially focused on the case of discrete
random vectors, the discrete case of Eq. (5) will be con-
sidered in further sections.

3.2.1 Complexity of localized
cumulative distribution evaluation

In order to determine the computational complexity of
one evaluation of the LCD F(x,b) for a given probabil-
ity density function of a discrete random vector x̃∈RN ,
the kernel vector b is considered to hold the same value
in all dimensions, i.e., b = (b, . . . ,b)T, what is always
the case for its usage in the context of the generalized
Cramér-von Mises distance. Since evaluating F(x,b)
requires b array accesses and summation operations
along each dimension, the corresponding complexity is
O(bN) and hence O(b2) for the two-dimensional case
common in image processing applications.

3.3 Generalized Cramér-von
Mises Distance

Based on the introduced localized cumulative distribu-
tion (4), the generalized Cramér-von Mises distance be-
tween two multivariate random vectors can now be de-
fined employing their LCDs as shown in [HK08]. For
the LCDs F(x,b),G(x,b) corresponding to the proba-
bility density functions f (x),g(x) of two random vec-
tors x̃, ỹ ∈ RN ,N ∈ N, their generalized Cramér-von
Mises distance is given by

D( f ,g) :=
∫
RN

∫
RN
+

(F(x,b)−G(x,b))2 dbdx . (6)

In the case of discrete random vectors, the integrals are
replaced by summations resulting in:

D( f ,g) = ∑
x∈Ωs

bmax

∑
b=0

(
F(x,(b, . . . ,b)T) (7)

−G(x,(b, . . . ,b)T)
)2
,



with Ωs denoting the spatial support of the probabil-
ity density functions and bmax representing the absolute
maximum component value of Ωs, i.e., the maximum
kernel size necessary to capture the whole probability
density function.

3.3.1 Complexity of generalized
Cramér-von Mises distance calculation

This section deals with the computational complexity
of the calculation of the discrete CVM distance (7).
As it is the most important case for image processing
applications, the CVM distance for two discrete two-
dimensional random vectors x̃, ỹ ∈ [0, . . . ,n−1]2 and
the corresponding probability density functions f ,g is
considered and the resulting complexity is determined
in successive steps. As shown in Sec. 3.2.1, one eval-
uation of the LCD F(x,b) has a complexity of O(b2)
and thus every loop of the inner summation of Eq. (7)
also has a complexity of O(b2). Since b is increased by
1 from 0 to n− 1, the computation of the whole inner
sum of Eq. (7) requires a number of

n−1

∑
b=0

b2 =
n3

3
− n2

2
+

n
6

(8)

computations and hence has a complexity of O(n3).
Conclusively, as all these computations have to be per-
formed over the whole spatial support of the underlying
probability density functions, i.e., a total of n2 times,
the overall complexity of the computation of D( f ,g) is
in O(n5):

D( f ,g) = ∑
x∈Ωs

n−1

∑
b=0

∈O(b2)︷ ︸︸ ︷(
F(x,(b,b)T)−G(x,(b,b)T)

)2

︸ ︷︷ ︸
∈O(n3)︸ ︷︷ ︸

∈O(n5)

.

(9)

4 FAST GENERALIZED
CRAMÉR-VON MISES DISTANCE

For the case of two two-dimensional discrete random
vectors, the calculation of the generalized CVM dis-
tance can be accelerated. Therefore, the concept of
summed area tables is employed in the evaluation of
the localized cumulative distribution (5). Since for the
referenced case, equation (5) represents a summation
over a rectangular region, a summed area table can be
precomputed for f (x) in order to speed up the evalua-
tion of F(x,b). Algorithm 1 lists the pseudo code for
the proposed fast calculation of the generalized CVM
distance. After building the summed area tables f,g for
the discrete input probability density functions f and

g, the squared difference between the localized cumu-
lative distributions of f and g are computed for every
spatial position (i, j)T and for every sensible kernel size
b ∈ [0, . . . ,n−1]. The LCDs are evaluated by Algo-
rithm 2 that employs Eq. (3) in concert with the pro-
vided summed area table s, the spatial position (i, j)T

and the kernel size (b,b)T to obtain the summation of
the values of the probability density function inside the
respective rectangle.

Algorithm 1 Fast algorithm for calculating the gen-
eralized Cramér-von Mises distance for two two-
dimensional discrete random vectors x̃, ỹ represented
by their corresponding probability density functions
f (t),g(t).

fastGCVM
(

f (x), g(x)
)

f← generateSummedAreaTable( f (x))
g← generateSummedAreaTable(g(x))
D← 0
for i = 0, . . . ,n−1 do

for j = 0, . . . ,n−1 do
for b = 0, . . . ,n−1 do

D← D+(
fastLCD

(
f,(i, j)T,(b,b)T

)
−

fastLCD
(
g,(i, j)T,(b,b)T

) )2

end for
end for

end for
return D

Algorithm 2 Algorithm for evaluating the localized
cumulative distribution LCD((i, j)T,(b,b)T) of a two-
dimensional discrete random vector at position (i, j)T

with kernel sizes (b,b)T based on the summed area ta-
ble s of the underlying probability density function.

fastLCD
(
s, (i, j)T, (b,b)T

)
xf←max{0, i−b 1

2 bc}
xt←min{xmax, i+ b 1

2 bc}
yf←max{0, j−b 1

2 bc}
yt←min{ymax, j+ b 1

2 bc}
return s(xt,yt)− s(xf−1,yt)− s(xt,yf−1)

+s(xf−1,yf−1)

4.1 Complexity of fastGCVM Algorithm
The fastGCVM algorithm shown in the listing Algo-
rithm 1 has three nested loops with n iterations each.
The inner loop calculates a squared difference between
the results of two evaluations of the fastLCD algorithm
shown in listing Algorithm 2. Since fastLCD requires
only a constant number of max, min, array lookups and
arithmetic operations, it has a constant complexity of
O(1). Consequently, the complexity of the inner loop



Table 1: Execution times resulting from the performed experiment. The size of the input histograms is denoted by
n and tnaiv, tfast represent the mean measured execution times in milliseconds ± standard deviation for the naive,
respectively, the fast algorithm.

n = 10 20 30 40 50 60 70 80 90 100
tnaiv 7.2 183.5 1,311 5,379 16,145 49,379 105,820 201,940 375,010 634,180

in ms ± 0.6 ± 0.3 ± 2 ± 4 ± 36 ± 138 ± 218 ± 1,550 ± 1,433 ± 390
tfast 0.23 0.75 2.18 4.96 9.7 16.29 25.7 38.35 54.6 75.1

in ms 0.02 0.01 0.01 0.02 0.3 0.06 0.1 0.08 0.2 0.1

of Algorithm 1 is in O(1) too. As the three loops run
n iterations each, the algorithm fastGCVM has a total
complexity of O(n3).

5 EXPERIMENTS
Two experiments have been designed in order to
demonstrate the effectiveness of the proposed speed-up
technique. In the first experiment, multiple pairs of
two-dimensional histograms with numbers of bins
ranging from 102 to 1002 have been randomly gener-
ated and used as the discrete input probability density
functions. Between each pair, the generalized Cramér-
von Mises distance has been calculated using a naive
implementation of Eq. 7 and the proposed fastGCVM
method shown in listing Algorithm 1. The algorithms
have been implemented in C# using the Accord.NET
framework [Sou14] and by not making use of any
parallelism. The measured execution times are listed in
Table 1. The results clearly show that the fast algorithm
fastGCVM outperforms the naive implementation even
for the case of small problem instances. For the largest
employed example histogram with 100×100 = 10,000
bins, the naive implementation requires more than
10 minutes for calculating the desired result whereas
fastGCVM needs only about 75 milliseconds.

For the second experiment, the code of an existing
application has been extended by the fastGCVM al-
gorithm. In [MLB16a, MLB16b], so-called light de-
flection maps are processed in order to visually in-
spect transparent objects for material defects. Deflec-
tion maps are spatially resolved data structures similar
to discrete histograms containing information about the
angles by which light rays get deflected while propagat-
ing through a transparent test object. Strong spatial dis-
continuities between adjacent deflection maps provide
an indication of present scattering material defects that
lead to changes in the distribution of the light’s prop-
agation direction. Such discontinuities cause high val-
ues of the generalized Cramér-von Mises distance be-
tween spatially adjacent deflection maps. In the context
of the second experiment, the execution time was mea-
sured that has been required for processing the deflec-
tion maps [MLB16a] of a transparent cylindrical lens
using both the naive and the fast implementation. For
each input data set, the generalized CVM distance had

to be calculated 3042 times between histograms having
9× 9 = 81 bins. Figure 2 shows the resulting inspec-
tion images in pseudo colors. The naive implementa-
tion of the generalized CVM had an execution time of
15,750 ms ± 2 ms and the fastGCVM algorithm fin-
ished after 180 ms ± 2 ms.

LowHigh

Defect-free

Generalized Cramér-von Mises distance

Two scattering
defects

Figure 2: Pseudo color inspection images for plano-
convex cylindrical lenses resulting from calculating the
generalized Cramér-von Mises distance for spatially ad-
jacent deflection maps. The left image corresponds to
a defect-free test object instance and the right image
corresponds to a test object instance affected by two
scattering surface defects. The two defects are clearly
indicated by the two regions of higher intensities in the
image’s upper left corner.

In summary, the experiments show that using the naive
implementation of the Cramér-von Mises distance is
not suitable for any practical application where execu-
tion time plays a critical role. Especially for visual in-
spection systems—as shown in the second example—
which often have to fulfill real-time requirements, the
fastGCVM algorithm allows to employ the generalized
Cramér-von Mises distance in the image processing
pipeline due to its reduced computational complexity.

6 SUMMARY
The generalized Cramér-von Mises distance is a help-
ful tool for comparing multivariate random vectors.
However, for the frequent case of two discrete two-
dimensional random vectors x̃, ỹ ∈ [0, . . . ,n−1]2,
n ∈ N, the naive implementation of the CVM distance



has a computational complexity of O(n5), what leads to
execution times impractical for many applications. Af-
ter introducing the reader to the idea of summed area
tables, which is a common speed up technique in the
domain of image processing, the generalized Cramér-
von Mises distance and the underlying concept of lo-
calized cumulative distributions have been introduced.
The paper then proposes to employ summed area ta-
bles in order to obtain fastGCVM, a fast algorithm
for calculating the generalized Cramér-von Mises dis-
tance with a reduced computational complexity of only
O(n3). By means of two experiments it could be shown
that fastGCVM clearly outperforms the naive imple-
mentation of the generalized CVM distance—in some
cases, fastGCVM’s execution time is four magnitudes
lower than the time required by the naive implementa-
tion. It should be mentioned, that the execution time of
fastGCVM can be further reduced by adequately em-
ploying simple parallelization techniques. As further
steps, the authors plan to provide their implementation
as an open source library and to theoretically show, how
summed area tables can be used to also speed up the
calculation of the generalized CVM for higher dimen-
sional discrete random vectors.

7 REFERENCES
[Cha07] Sung-Hyuk Cha. Comprehensive survey

on distance/similarity measures between
probability density functions. City, 1(2):1,
2007.

[Cor09] Thomas H Cormen. Introduction to algo-
rithms. MIT press, 2009.

[Cro84] Franklin C. Crow. Summed-area tables for
texture mapping. ACM SIGGRAPH com-
puter graphics, 18(3):207–212, 1984.

[CS02] Sung-Hyuk Cha and Sargur N. Srihari.
On measuring the distance between his-
tograms. Pattern Recognition, 35(6):1355–
1370, 2002.

[DNK03] Dietrich Van der Weken, Mike Nachtegael,
and Etienne Kerre. Using similarity mea-
sures for histogram comparison. In Fuzzy
Sets and Systems-IFSA 2003, pages 396–
403. Springer, 2003.

[GH13] Igor Gilitschenski and Uwe D. Hanebeck.
Efficient deterministic dirac mixture ap-
proximation of Gaussian distributions.
pages 2422–2427. IEEE, 2013.

[HHK09] Uwe D. Hanebeck, Marco F. Huber, and
Vesa Klumpp. Dirac mixture approxima-
tion of multivariate gaussian densities. In
Decision and Control, 2009 held jointly
with the 2009 28th Chinese Control Con-
ference. CDC/CCC 2009. Proceedings of

the 48th IEEE Conference on, pages 3851–
3858. IEEE, 2009.

[HK08] Uwe D. Hanebeck and Vesa Klumpp. Lo-
calized Cumulative Distributions and a
Multivariate Generalization of the Cramér-
von Mises Distance. In Multisensor Fu-
sion and Integration for Intelligent Sys-
tems, 2008. MFI 2008. IEEE International
Conference on, pages 33–39. IEEE, 2008.

[MGW10] Yu Ma, Xiaodong Gu, and Yuanyuan
Wang. Histogram similarity measure using
variable bin size distance. Computer Vision
and Image Understanding, 114(8):981–
989, August 2010.

[MLB16a] J. Meyer, T. Längle, and J. Beyerer. Acquir-
ing and processing light deflection maps
for ransparent object inspection. In 2016
2nd International Conference on Frontiers
of Signal Processing (ICFSP), pages 104–
109, Oct 2016.

[MLB16b] Johannes Meyer, Thomas Längle, and Jür-
gen Beyerer. About the acquisition and
processing of ray deflection histograms for
transparent object inspection. In IRISH
MACHINE VISION & IMAGE PROCESS-
ING Conference proceedings, 2016.

[MS08] Kurt Mehlhorn and Peter Sanders. Algo-
rithms and data structures: The basic tool-
box. Springer Science & Business Media,
2008.

[PHB13] Alexey Pak, Marco F. Huber, and Andrey
Belkin. On weak distance between distri-
butions in application to tracking. In Sensor
Data Fusion: Trends, Solutions, Applica-
tions (SDF), 2013 Workshop on, pages 1–6.
IEEE, 2013.

[Sou14] César Souza. The Accord.NET Frame-
work. http://accord-framework.
net, 2014. Accessed: March 2017.

[VJ04] Paul Viola and Michael J. Jones. Ro-
bust real-time face detection. International
journal of computer vision, 57(2):137–154,
2004.


