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ABSTRACT
In this paper, we present an approach to generate a 3D model of an urban scene out of sensor data. The first milestone
on that way is to classify the sensor data into the main parts of a scene, such as ground, vegetation, buildings and their
outlines. This has already been accomplished within our previous work. Now, we propose a four-step algorithm to model
the building structure, which is assumed to consist of several dominant planes. First, we extract small elevated objects,
like chimneys, using a hot-spot detector and handle the detected regions separately. In order to model the variety of roof
structures precisely, we split up complex building blocks into parts. Two different approaches are used: To act on the
assumption of underlying 2D ground polygons, we use geometric methods to divide them into sub-polygons. Without
polygons, we use morphological operations and segmentation methods. In the third step, extraction of dominant planes
takes place, by using either RANSAC or J-linkage algorithm. They operate on point clouds of sufficient confidence within
the previously separated building parts and give robust results even with noisy, outlier-rich data. Last, we refine the
previously determined plane parameters using geometric relations of the building faces. Due to noise, these expected
properties of roofs and walls are not fulfilled. Hence, we enforce them as hard constraints and use the previously extracted
plane parameters as initial values for an optimization method. To test the proposed workflow, we use both several data sets,
including noisy data from depth maps and data computed by laser scanning.
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1. INTRODUCTION
1.1 Motivation
Due to the fast progress in sensor technology in the recent decades, a huge amount of high resolution sensor data of
urban terrain, such as aerial photos and videos, laser scans etc. has been captured and is available for a wide use. This is
certainly also driven by numerous applications, such as automated navigation in 3D urban terrain, urban planning, disaster
management, and reconnaissance. Semantic representations of urban terrain are needed to compress sensor data and to
create virtual models allowing interoperability and interpretation. An example of such interoperable models is given by
our previous work.1 It is shown how the data containing millions of points or several high resolution images can be
compressed to up to several dozens of surface polygons, enriched with context information, and exported into a simulation
system. Of course, while being modeled manually, these models usually look more appealing and are more accurate than
the data processed automatically because the level of detail can be arbitrarily high if sufficient man-power and/or time
for modeling is available. However, especially for time- and cost-critical applications, it is more valuable to perform a
fully-automated procedure for reconstruction in a short time accepting possible abstractions and short-comings of quality.
For a building roof, for example, one can model every chimney and every roof tile. Alternatively, one may assume that it
consists of one or several dominant planes. In a yet lesser level of detail, one is just interested about the building height
and so a roof is simplified to a plane. Which kind of representation is more appropriate, depends on the application.

Generally, any procedure of modeling, or abstraction, is a balance act between the quality, accuracy etc. of the data and
the assumptions about the model. If model assumptions are neglected and the result of a modeling procedure essentially
trusts in the data, several artifacts that are not compatible with a model can be expected. Hence, the larger the percentage of
outliers is (i.e. data severely inconsistent with the model), the harder it is – for any method – to eliminate the negative effects
caused by these outliers. Contrary, if the model assumptions are given too much weight and the data is rather unimportant,
the danger grows to end up in a fantasy world. In case of urban terrain modeling, some reasonable assumptions consider
the kinds of objects to be modeled (the two classes building and tree1 were extended, by the classes meadow, street and
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forest area in our current work), piecewise planarity/smoothness of objects, and their metric properties (size, area, elevation
etc.). Especially in case of building walls and roof details, we have and wish to exploit properties that usually characterize
man-made objects, e.g. symmetry, parallelism and orthogonality.

1.2 Contribution
This paper is dedicated to building reconstruction from a segmented point cloud. On this, we consider regular structures of
man-made objects and formulate these as a hard-constrained optimization problem. The process of building detection, i.e.
segmentation of the whole point cloud, is not a focus of our contribution, so only a brief overview will be given in Sec. 2.
The procedure of building wall/roof detail analysis is subdivided into four sub-modules because before the mentioned
constraints can be applied, plenty of preliminary work has to be done. The crucial step of this preliminary work requires
to compute dominant planes, for which we may need to subdivide too complex buildings and to identify small roof details
that degrade computation of dominant planes. Starting with the extracted dominant planes and their intersection points,
we cannot expect the models to fulfill the requirements of geometric properties. On the contrary, the consistency between
geometry and topology must be enforced by geometric reasoning.

2. SOLUTION STATEMENTS
In this paper, we introduce an approach to obtain boundary representations of buildings that fulfill the conditions of or-
thogonality and parallelism. Two situations will be regarded: On the one hand, for every position (x, y), one height value
is available. In our previous publications, we worked with 2.5D digital elevation models because points observed from
considerable altitudes can be resampled into an elevation function z(x, y) without significant loss of information. This
elevation function can be interpreted as an image. On the other hand, in some cases, more than one height value can be
assigned to one position, namely at building walls or trees. In this case, we need to decide whether this 3D data becomes
rasterized into an elevation image or is treated as it is – a 3D point cloud.

In Sec. 3, we will introduce tools for processing both 3D data from airborne laser scans (ALS) and 2.5D digital elevation
models (DEM) from multi-view configurations of 2D images taken from different positions. A more detailed view to the
data is given in Sec. 5.

2.1 Detection of buildings in DEMs
The process of building detection starts by setting elevation values for a few uncovered pixels. To do it, we solve a partial
differential equation. Next, we obtain the digital terrain model (DTM) by detecting first some ground points. These are
local minima of the DEM that are found by a filtering procedure. Then, a robust 2.5D surface2 that approximates all ground
points is calculated.3

A thresholding of the difference image (DEM – DTM) according to its heights delivers elevated regions. We assume
that the larger elevated regions of this difference either correspond to buildings or to vegetation. We also assume that a
digital orthophoto is available. In order to filter out vegetation, several regions that correspond to isolated trees are used as
training data to extract their characteristic colors (or their combination, compare Normalized Difference Vegetation Index
NDVI) and to denote all pixels with similar colors to belong to vegetation.3 Isolated trees can be extracted interactively
or by using model assumptions, such as gradient distribution within neighbored pixels (rather constant for buildings while
varying for tree-like regions) or by computation of straight line segments in the (smoothed) DEM and/or orthophoto. Since
long straight lines are mostly characteristic for man-made objects, a small amount of lines within an elevated region allows
identification of the isolated trees.4

Finally, the task is to perform labeling of buildings. At first, a coherent elevated area is labeled as one building. For
a better operability of different steps of the algorithm, it is useful to separate larger building complexes into parts and
accordingly to label each part of the building complex for its own. This is done either according to exclude pixels from
consideration around jumps in elevation (step-edges5) or/and to create a temporary image by a strong morphologic erosion
followed by a new labeling and assigning a new label to the missed pixels of the original image. We refer to Sec. 3.2 for
a more detailed insight into the default method while Ref. 6 presents also several alternatives. The elevated regions are
filtered by their altitude, area and eccentricity. This is done in order to suppress false alarms. The remaining regions are
our (labeled) building hypotheses.
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The process of building outlining in case of 2.5D DEMs works in the same way as described in Ref. 1. Starting with
the minimal bounding rectangle of the binary mask of a building, the contours are refined for each blob by recursive
adding and removing rectangular subparts. If a polygon is orthogonal, the axes of the rectangle are given by the dominant
directions of the building orientation. Otherwise, a pixel-wise polygonization is performed while straightness constraints
and orthogonality constraints are imposed to improve the positions of vertices. The only difference is an assessment of
orthogonality for a building: By computing straight lines in the DEM within it, their directions modulo π/2 are stored in
a histogram. The entries of the histogram are weighted by the lengths of the line segments. The peaks of the histogram
indicate possible dominant directions. The assessment of orthogonality is carried out by calculating the quotient between
the second-best and best value of the histogram. If this value is below 0.5, the dominant direction of the building ground
plan is recalculated from the line orientations corresponding to this peak and all edges of the ground plan are set to be either
parallel or orthogonal to this direction; otherwise, there is no dominant direction. Buildings with a dominant orientation
will be considered in Sec. 4.

2.2 Detection of buildings in airborne laser scan data
In case of the data obtained from a fusion of several airborne laser scans, the 3D data is already available. In previous
works,7, 8 the process of labeling has taken place not on the per-building but rather on the per-segment level, using a region
growing method.7 For every point, the normal vector and the curvature value are obtained by considering a small neigh-
borhood around this point. Then a local minimum of the curvature is determined and all its neighbors with approximately
the same normal vector (up to sign) are added to a cluster. After forming such a cluster, the set of inliers is deleted tem-
porarily and the process begins again. In a consequence, one can differentiate between planar structures of low curvature
like building faces and other structures that are assumed to be either vegetation or remaining surface between the buildings.
By regarding the normal vector and curvature of each point, it is possible to separate the building faces from the ground as
well as the vegetation and to cluster them with the region growing process. For building detection, one can use the results
from the region growing for segmentation instead of J-linkage clustering (see Sec. 3.3). Both techniques lead to similar
results. In the ideal case, every point cluster corresponds to a building face afterwards.

For building outlining, it is necessary to determine all point clusters that belong to the same building. This can be done
by regarding adjacent point clusters. Ideally, every group of adjacent and cohesive point clusters represents one building.
First, we determine all points that correspond to each specified cluster. The next step is to derive adjacency relations
between these clusters. The necessary condition – that allows to reduce drastically the computation time – for two clusters
being adjacent is to assert whether their bounding boxes overlap within a margin of tolerance and the shortest point distance
between the classes is smaller than a predefined threshold. To verify if these clusters are indeed adjacent, the well-known
Approximate Nearest Neighbor method9 is applied. Since we focus on the adjacency of the point clusters, we transform
the conception of a building into a graph: The vertices (also called 1-cliques in a graph) represent the point clusters and the
edges (2-cliques) connect adjacent clusters as shown in Fig. 1.
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Figure 1. Two representations of the building topology. Left: By connecting neighbored corners with edges, the building is represented
by its faces. Right: Each face depicts a vertex in a region adjacency graph. Adjacent faces are connected by edges.
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Figure 2. Considering at a time one part of the trihedron, resulting from the intersection of the top and left (left), the top and right
(middle) and the left and right (right) face. The direction of the trihedron results from the cross product of the two normal vectors. The
angle α is below 90◦, β exceeds 90◦. Thus, it is possible to orient the arm of the trihedron in the right direction. The sensor position is
the sensor position of the data point next to the intersection point.

For a first view of the building just from these adjacent point clusters, we now search for 3-cliques (three vertices
connected pairwise by edges). Each 3-clique corresponds to three regression planes (see Sec. 3.3) that are expected to
intersect in one “corner” of the building, if it is barred that these three planes form a prism adjustment. By implying
neighbored 3-cliques (that means 3-cliques that differ in exactly one of its vertices and do not form a 4-clique), we can
determine neighbored corners of the building and therewith edges between two building faces.

For example in Fig. 1 (left), the top left corner in the front results by intersecting the faces F, LW and LR. This
corresponds to the 3-cliques in the graph representation F – LW – LR. It has a neighbored 3-clique, namely B – LW – LR
that results from replacing F by B. This has the consequence that the top left corner in the front and the top left corner in
the back of the building must be connected by an edge.

Using corners and edges, we are able to trace the point clusters that belong to one building with polygons. The polygons
form a first skeleton of the buildings. The goal is now to complete the building skeleton by closing the received polygon
parts. For that, it is necessary to know about the orientation of the faces, namely inside and outside. We determine
a trihedron for each intersection point. If an intersection point does not have enough neighbors to close the polygon,
the corresponding trihedron gives us a hint which is the predominant search direction along the building surface. By
intersecting always two normal vectors of the triplet, we determine the direction of one arm of the trihedron. We need to
ensure the orientation of the arm to be close fitting to the building. This is important to decide about the orientation of
the face, where is inside and outside. To fit each arm of the trihedron close to the faces, we use the sensor position as a
reference point outside the building. As sensor position we consider the one of the data point next to the intersection point.
If the angle between the vector from the intersection point to the sensor position and the corresponding part of the trihedron
does not exceed 90◦, the trihedron is close-fitting (see Fig. 2).

By regarding these adjacency relations and the graph analysis problem, we can extract point clusters that belong to
single building faces as well as clusters that belong to one building. In the view of the building as an adjacency graph, a
building consists of one component. By picking one of these components and all points belonging to that component, we
can use the method for building outlining introduced in Sec 2.1.

3. EXTRACTION OF BUILDING STRUCTURES
For the extraction of the building structure and its components, we consider three substeps that are explained in the three
following subsections. For geometric reasoning, it is useful to have only a small number of planes. Hence, we first exclude
small segments, such as chimneys, from consideration and model them in a proper way. Also, we perform a decomposition
of the building in the case that it has a too complex structure. Every building is bounded by the outline of its footprint and
split this up into its components. For these modules, we will need the elevation image created from the input sensor data.
In the case of DEM available, we simply use the DEM as input; in case of laser scans we have to raster the 3D information
to determine an image representation. Finally, the single parts of the building are appropriate for plane extraction and the
refinement.



3.1 Small elevated objects
The procedure of roof detail analysis starts by extracting small elevated roof objects, for example, chimneys and dormers.
This is done first of all in order to reduce the number of plane hypotheses: From the contents of Sec. 4, it will become
clear that the desired input should consist of few big, dominant plane segments. Additionally, the computation of dominant
planes usually converges faster and yields better results if the point sets are cleaned from these outliers with respect to the
dominant planes. Last, the model benefits if small structures are detected in advance and modeled in a proper way.

The algorithm is described in a detailed way in Ref. 10. First, small elevated regions of the DEM are found by applying
a hot-spot detector, such as the MSER-operator.11 Since the input of the MSER-method must be an 8-bit image, those
parts of the DEM that were labeled as buildings are discretized in a suitable way. The hot-spot detector then searches
for fair regions on a dark background that are our chimney hypotheses. However, since (especially) the DEMs obtained
from images are noisy and produce spurious hypotheses, several filters have to be applied on the hypotheses. These filters
consider the distance to the building border (because there are many occluded areas with spurious elevation values near
building borders) and the variation of texture in the regions around hypotheses (if color images are available), but also the
height, area, and form of a chimney.

3.2 Building partitioning
As already mentioned, for various reasons (for example, to avoid ghost planes in the plane determination step; ghost planes
are planes that have inliers in different parts of a building without coherent building face) it has been advantageous to work
on single building parts, if the building itself is large and of complex structure. So we used different approaches to split up
a large and complex building.

Two different methods were tested. Splitting of a building at short diagonals is a very fast method but it is required that
the building outline is already available. In addition, the procedure has problems with very crooked buildings or complexes
that contains “holes” in their ground polygon, like atriums. An alternative approach is performed by the separation with
Random Walks.12 This method is more flexible but needs more computation time.

Partitioning with polygons. The idea is to subdivide the building along the diagonals of its ground plan polygon.
Among all diagonals that lie completely inside the building, the shortest one is selected. If it is shorter than a threshold and
both resulting polygons have an area larger than a second threshold, the polygonal chain is cut into two parts by inserting
a new diagonal. The procedure is then applied on both remaining subunits. It terminates as soon as no diagonals with
mentioned properties can be found anymore.

Partitioning with Random Walks. The alternative approach is performed on the binary level. We assume that a
complex building is connected by narrow structures. By a strong morphological erosion, the building is subdivided into
subunits. Then we consider the difference of the initial building mask and the remaining mask of the eroded image. The
“lost” pixels have now to be assigned to one of the remaining subunits. We decided to use the Random Walks method12

because it is very robust against noise, especially in DEMs extracted with photogrammetric methods, and works accurate
with even weak boundaries. At least one pixel of each subunit (and one of the background) is labeled as seed. The seeds of
the subunits are labeled with k ∈ {1, ..., n ∈N} and the seeds of the background are labeled with 0. Next, for each unseeded
pixel, a tuple (p0, p1, ..., pn) of probabilities that the pixel belongs to one group of seeds is computed. Afterwards, the
regarded pixel is assigned to the label k = argmax j={1,...,n}(p j). To compute the probabilities, the image is regarded as a
graph where the pixels represent the vertices and the weighted edges result from a 4-neighborhood. The weights indicate
a change in elevations and can be computed by a Gaussian weighting function with the pixel intensity difference as input.
A random walk along the weighted edges (e.g. weighted gradients) starts in an unseeded pixel and ends in a seeded pixel
of the DEM. The probabilities can be computed by solving the combinatorial Dirichlet problem.12 Because this method is
image-based and works with a regular neighborhood, we have to raster the 3D data of the ALS to apply the algorithm.

3.3 Extraction of building faces
After the process of simplification described above, we strive to extract the single faces as well as their parameter vectors.
For that, one can use RANSAC methods as introduced in Ref. 13. A reasonable alternative is to use the J-linkage method14

that partly compensates insufficiences of the multi-model RANSAC. For example, by preferable choice of neighboring
points to form a hypothesis and by clustering all the hypotheses afterwards, the presence of ghost planes can be significantly
reduced though not completely excluded. Since the idea of J-linkage method is similar to global RANSAC approaches, the



best way to exclude ghost planes lies in a reasonable decomposition of buildings as described in the previous section. The
more a building can be decomposed into its core parts, the less ghost planes occur and the results produced with RANSAC
are similar to the results of J-linkage.

In the case of the DEM data, we use the J-linkage method on the one hand to cluster the points in one building (part)
to building faces and on the other hand to compute a regression plane for each cluster of points. In the ALS data, we can
decide whether we want to dispose again the points belonging to one building into clusters or to use the initial segmentation
of the region growing and use J-linkage just for the regression part. In our case, we generally used the available results from
the region grwoing process but completed them - if necessary - by J-linkage clustering. In each case, the final regression
plane is estimated and optimized for the inliers of the results of the J-linkage clustering.

Now, a polyhedral is available and can be used as a first result. But because the obtained planes have an unlimited
extension, we need an additional semantic on superposition of several planes. Furthermore, because of numerical insuffi-
ciencies, the estimated planes do not necessarily fulfill the usual attitudes of a building, namely parallelism and orthogo-
nality or uniqueness of a cutting point of four planes that corresponds with a corner of the building. Hence, the final step
of the workflow is to refine the received plane parameters to enforce orthogonality and parallelism and furthermore use the
aforementioned view of a building skeleton.

4. GEOMETRIC REASONING WITH PLANES
To take the uncertainty of the noisy observations into account, we exploit uncertain projective geometry15 for the reasoning
process. This refers to both, the generation and testing of hypotheses for geometric relations as well as the subsequent
optimization process. For efficiency, we apply a two-step procedure: After extracting bounding planes, we perform the
geometric reasoning with the estimated plane parameters only. Alternatively, a parameter estimation with constraints for
observations and parameters can be applied.16 To enforce the required consistency, we formulate and apply hard constraints
only. The following explications are focused on the formulation of the constraints and the optimization process.

4.1 Geometric Constraints
Empirical investigations show the dominance of orthogonality and parallelism in buildings.17 Since parallelism of planes
can be enforced by multiple orthogonality constraints, we restrict ourselves to orthogonality. Additionally, we add the
intersection of four planes in one point as a constraint to close gaps in boundary representations. Examples for such a
constructions are the corners of a hip roof or a saddle-back roof with T-junctions.

More elaborated, we used the flowing constraints:

• To make the homogeneous representation A of a planeA unique, a spherical normalization is introduced by requiring
A⊤i Ai = 1 for all planesAi.

• The orthogonality Ai ⊥ A j of two planes Ai and A j is enforced by A⊤ih A jh = 0 with the homogeneous vectors
A = (A⊤h , A0)

⊤ split into a homogeneous part Ah and Euclidean part A0.

• Intersection of four planes in one point X = Ai ∩ A j ∩ Ak ∩ Al: Bearing in mind that points and planes are
dual entities, the formulation of the corresponding constraint is straightforward. Four 3D points are collinear if the
determinant of their corresponding homogeneous vectors is zero. Consequently, four planes intersect in one point
if det ([Ai, A j, Ak, Al]) = 0 holds,15 a relation which is exploited for the formulation of trifocal constraints for
multi-view geometry, too.

4.2 Optimization
For the optimization, we consider P extracted and spherically normalized planes p = (A⊤1 , A⊤2 , . . . , A⊤P)

⊤, their estimated
block-diagonal covariance matrix Σpp, and the constraints h(̂p) = 0 for the adjusted parameters p̂ derived by hypothesis
generation and verification. A solution of the problem is given by an adaption of the Sequential Quadratic Programming.18

Alternatively, by considering the extracted planes as given observations, the solution is equivalent to the adjustment with
constraints for observations only.19

Linearization of the constraints yields the first order expansion h(̂p) = h(p0) + H∆̂p with the Jacobian H =

(∂h(̂p)/∂∆̂p⊤). The adjusted parameters p̂ can be found by correcting given approximate values p0 by ∆̂p, or by adding



a correction v̂ of the unconstrained parameters p, thus p̂ = p+ v̂ = p0 + ∆̂p holds and the linearized constraints are
h(̂p) = p0 + Hv̂ = 0 with h0 = h(p0) + H(p− p0). The Lagrangian is then

L =
1
2

v̂⊤Σ+
pp̂v + µ⊤(h0 + Hv̂) (1)

with the Lagrangian multipliers µ. Because of the spherical normalization of the unconstrained parameters, the null space
K of the covariance matrix Σpp is given by the estimated, unconstrained plane parameters. Thus ΣppK = 0 holds and the
pseudo inverse in (1) can easily be computed by

Σ+
pp =

(
Σpp + KK⊤

)−1 − KK⊤ (2)

taking K⊤K = I into account. Setting the partial derivatives of (1) equal to zero yields the normal equation system[
Σ+

pp H⊤

H 0

] [
v̂
µ

]
=

[
0
−h0

]
(3)

to be solved. Within the iterative estimation procedure, the update of the parameters is simply p̂ = p+ v̂.

The constraints derived by hypothesis generation and verification can be linearly dependent or even contradicting due
to the noise in the observations. However, finding a set of linearly independent and non-contradicting constraints is a
prerequisite for the application of the adjustment presented above.20 A simple greedy algorithm can be used to compile
such sets by selecting one constraint after the other and putting it into the minimum set if it is independent on the previous.
To make decisions, we keep track on the rank and condition number of the normal equation matrix at hand.

5. EXPERIMENTS
To expose the functionality of the introduced workflow, we will show the results for the 2.5D data set from depth maps
obtained from areal surveys and a 3D data set from a laser scan. For the DEM data, we regard a little town in Southern
Germany, named Vaihingen. For the ALS data, fusion of airborne laser scans of the village Abenberg (another small town
in Germany) is considered.

5.1 2.5D data
We consider the point cloud obtained from the multi-view configuration of seven images showing the village of Vaihingen.
This is ISPRS WG III/4∗ benchmark on urban area reconstruction and we will prove here the principle of our algorithm
by showing just a few buildings. The particular challenge are many shadowy areas that make dense reconstruction from
images more complicated. Also, because of a high building density, is it hard to separate buildings and roof details from
each other and preserve topology.

Some results of the extraction of small elevated objects can exemplarily be seen in Fig. 3. Up to 75% of the small
elevated objects can be extracted in the whole scene. More detailed results are given in the original paper.10

We consider only a small number of airborne images in which most of the walls are hidden by other buildings and
trees or just have an insufficient resolution because of the Nadir view. So, we only consider the rooftops of the buildings
for reconstruction and refinement. In the case one wants the building to be complete, there is a possibility to include
synthetic walls along the outline of the building ground plan. While just focusing on the roof planes, the number of
possible constraints is limited.

The image shows that for the building the heights of the roof ridges are identical, cf. Fig. 4 (second from the left).
Therefore, we can apply the constraint det([Ai, A j, Ak, Al]) = 0 leading to the result depicted in a cutout of the intersection
point in Fig. 4 on the right.
∗ISPRS test project on 3D building reconstruction http://www.commission3.isprs.org/wg4/
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Figure 3. Detection of chimneys. Left: Ortho view, middle: DEM, right: Binary mask of detected chimneys.10

Figure 4. Reasoning for a data set obtained by photogrammetric surface reconstruction. From left to right: Rotated orthoview with vege-
tation boundary (yellow) and building outlining (green); Point clusters of inliers concerning the generated roof planes and unconstrained
cutlines; Close-up of the area around the coincidence of the two ridge parts for the unconstrained cutlines; Close-up of this area after
constrained optimization.

Figure 5. Detection of chimneys in the 3D dataset. All chim-
neys (denoted by rectangles) in that cutout could be detected.

Figure 6. Two views of the extracted point cloud representing
a single building with two saddleback roofs, arranged in a
L-shape.

Figure 7. Unconstrained (left) and constrained (right) planes corresponding to the data set depicted in Fig. 6. One clearly sees the gaps
and unbalances in the unconstrained model.



5.2 3D data
The “Abenberg 2009” data set is an accumulated point cloud captured by airborne laser scanning.8 The test site has
been approached by a helicopter in a cross pattern, which results in overlapping point clouds. The co-registration and
accumulation of the stripes led to a reference data set which features building facades and an average point density of
21 pts/m2.

For the detection of chimneys, it is necessary to raster the data points into an equally spaced grid, because the presented
method is image-based. The resolution has to correspond to the ground sample distance. In that case the input is not the
original DEM but a conditioned DEM with several scaling parameters. We chose a little cutout of the whole scene to
demonstrate the results (see Fig. 5). All chimneys in this part of the scene could be detected without false alarms.

From the data set, a second subset representing an L-shaped building with a saddle back roof has been extracted,
see Fig. 6. In the present example, this leads to subsets representing the eleven planes being the bounding surfaces of
the building. Subsequently, the corresponding plane parameters and their corresponding covariance matrices have been
estimated. Figure 7 (left pair) shows the unconstrained surface representation of the building with gaps where four planes
should intersect.

For the geometric reasoning according to Sec. 4.2, we set up 15 independent constraints: One constraint for the four
planes intersecting in one point (det([Ai, A j, Ak, Al]) = 0), and 14 constraints for pairs of planes that are supposed to be
orthogonal (A⊤ih A jh = 0). The result of the geometric reasoning is depicted in Fig. 7 (right pair). The gaps are closed, the
eaves are parallel to the bottom plane and the roof ridges orthogonal and parallel respectively to the walls.

6. CONCLUSION AND OUTLOOK
The presented approach allows determining a skeleton or face model of a building out of point clouds collected by various
sensor data. We are able to decompose complex buildings into more local parts and therewith enhance the accuracy of the
estimated planes that form the faces of the building. Small elevated objects are treated separately in order not to oversmooth
them as well as not to falsify the plane estimation. With the terminal refinement of the initial planes, the model fulfills
the well known aspects of building faces to be either orthogonal or parallel to each other. The method is suitable both for
2.5D DEMs and for 3D data gained by airborne laser scans and the modular composition of the whole procedure allows
to switch on and off the single parts as well as to replace them by other methods, if wished. The results of the substeps
of the introduced procedure can be used to develop a view from a rough model (by concerning just the building outlining)
via a detailed skeleton (with chimneys and other small elevated objects) to a model that fulfills also the requirements of
orthogonality and parallelism of the building edges. This is not only an advantage with regard to optical viewing but also
helps to close holes caused by four planes that otherwise would not intersect in one point and is therewith a benefit when
it comes to texturing the received surfaces.

For the future work, also the aspect of symmetry shall be included. Furthermore, we will need to automate the deter-
mination of the constraints that are necessary for the optimization in the refinement step. Additionally, the optimization of
the generated plane hypotheses is dependent from the initialization at the moment. We need to assure that the optimized
model still fits to the input data by statistical tests.

In the performed clustering step for the 3D data, not all walls and roofs were detected. Some point clusters exhibit
too little planarity and were not identified. Probably, these faces are covered with vegetation or are spuriously filtered out
because of distortions in the co-registration. At the moment, every wall that has not sufficient planarity is assigned to the
class vegetation or other surface. So, the clustering methods need to be adapted to deal with insufficient planarity in order
to reduce the number of undetected building faces.

One further issue of our future work includes considering characteristic edges in images near the cut-lines of the planes
representing building faces. Each of the constraints according to Sec. 4 is formulated in 3D and reduces the number of
degrees of freedom for all planes by one. By introducing constraints on plane parameters such that these pairs of lines
coincide in 2D, we move into the direction of a mixed 2D/3D approach and provide constraints that reduce the number of
degrees of freedom by two.

Acknowledgement. We wish to thank Marcus Hebel for providing the Abenberg data and the segmentation of the
scene by the region growing algorithm.
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