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Abstract—We present an approach for ultrasonic
non-destructive testing of adhesive bonding employing
unsupervised machine learning with autoencoders.

The models are trained exclusively on the features derived
from pulse-echo ultrasonic signals on a specimen with good
adhesive bonding and tested on another specimen with artificially
added defects.

The resulting pseudo-probabilities indicating anomalies are
visualized and presented along to the C-scan of the same
specimen. As a result, we achieved improved representation of
the defects, allowing their automatic and reliable detection.

I. INTRODUCTION

Adhesive bonding is one of the oldest manufactur-
ing and repair processes where components are bonded
surface-to-surface using adhesives. Modern adhesives are in-
dispensable in many industries and application areas, such as
automotive, aerospace and marine industry, electronics and
telecommunications, medical devices, household appliances,
furniture manufacturing, and many others. Adhesive bonding
as a joining technique has many advantages, such as homoge-
neous load distribution, electrolytic and corrosion protection,
long service lifetime, design of complex structures, sealing
properties, and a possibility to join dissimilar materials [1].

On the other hand, the disadvantages are mainly related to
the joining process itself (surface preparation, mixing, curing)
and the limitations in the service due to the temperature and
environmental factors that introduce changing properties of the
bonding over its lifetime [2]. The adhesive bonds are prone to
defects, which can occur during the joining process or later in
service due to fatigue and usage. The defects can appear in the
form of cracks, weak bonds and adhesive layers, disbonds and
voids (most prevalent [3]), porosity, and contamination [4].
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Evaluation of the quality of adhesive joints employing
non-destructive testing (NDT) methods is challenging because
they usually vary significantly in size, shape, and thickness,
even in the same specimen. The ultrasonic and vibrations
methods are the most common conventional NDT approaches
for inspecting adhesive bonds [5]. They rely on mechanical
waves, where the features of the response (echo) signal such
as the frequency, envelope (form), the amplitude are critical
parameters for assessing the adhesive bond quality [6].

They are categorized into three groups [7]: first, the pulse-
echo and through-transmission techniques are utilized for
detecting voids and disbonds. The second, acoustic resonance-
based and ultrasonic resonance spectroscopy methods have
been proposed to evaluate layered structures [3]. The third
group includes guided waves ultrasound techniques predomi-
nantly used for bond detection and sizing but are also suited
for bond strength evaluation.

Whichever method is employed, the adhesive bonding test-
ing usually involves extensive post-processing and tuning, such
as denoising, signals alignment, surface reflections removal,
and finding the proper time window of interest. In the end,
the signals are visualized as two-dimensional images of the
adhesive-bonded specimens [8]. In most cases, a trained expert
primarily sets the analysis parameters and interprets ultrasonic
scans. However, more advanced signal analysis and machine
learning algorithms can simplify the procedure, improve the
visualizations and enable automatic defect detection.

This paper presents a methodology for ultrasonic NDT of
adhesive bonds using an unsupervised machine learning ap-
proach with autoencoders (AE). The AE is trained exclusively
on pulse-echo signals recorded on an object consisting of
aluminum sheets with appropriate adhesive bonding.
The trained model is used for inference on another spec-
imen with artificial defects. The results are visualized as
two-dimensional matrices of spatially distributed pseudo-
probabilities indicating normal or anomalous bonding.



TABLE I
SPECIMENS (ALUMINUM, 4 X 2 MM, 310 MM X 150 MM)

specimen set samples defects

p31v training 4416 none

p31v validation 1104 none

p32v test 11856 cavity, adhesive strips

II. MATERIAL AND METHODS

A. Data Collection and Organization

The two specimens (Table I) used in the experiments are
constructed by adhesive bonding (3M DP760) of four AlMg3
sheets with 2 mm thickness each. Specimen p31v has no
defects, where the p32v contains artificially introduced defects
of different types: cavity and adhesive strips.

Fig. 1 presents a reference through-transmission C-Scan
obtained in a scanning acoustic microscope using two focused
ultrasound transducers with center frequencies of about 20
MHz. The artificially introduced defects emulate complete
voids (cavity) and foreign bodies (adhesive strips) and are
entirely distinguishable. Additionally, there are unintentional
defects at the object’s edges as a result of imperfect bonding
(as on the right edge of the object in Fig. 1).

The objective is to perform NDT using an ultrasonic probe
on an object from one side only. Hence, pulse-echo measure-
ments were conducted using a 5 MHz ultrasonic transducer
yielding signals with a sample rate of 25 MS/s. Each specimen
was scanned over both axes, the 310 mm and 150 mm, with a
2 mm stride, providing 11856 signals per specimen, annotated
with their position on the 156 x 76 grid.

B. Feature Analysis

As features, we use the raw transducer readings (SIG) as
analog signals A/D converted in the big-endian PCM format
and 16-bit resolution. A duration of 20 µs and a sample rate
of 25 MS/s give feature samples of a dimension of 500× 1.

The signals are re-aligned by a trigger that finds the positive
amplitude onset greater than a preset threshold (10% full
scale). That ensured consistency across the signal onsets,
compensating the distance variations between the ultrasonic
transducer and the measured object.
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Fig. 1. Reference through-transmission C-Scan of the p32v.

There are variations in the thickness of the bonding layers
across the objects and unwanted reflections from the object
edges. In order to compensate for these effects, additional
feature analysis (PFA) using the raw signals were performed.
The PFA features were created by calculating the log magni-
tude spectrum with a Blackman window with a length of 75,
yielding features with a dimension of 86× 16 per grid point.

III. EXPERIMENT SETUP

To perform NDT utilizing anomaly detection, we employed
autoencoders (AE), deep neural networks whose architecture
consists of two parts: an encoder that transforms the input to a
compressed representation and a decoder which approximately
reconstructs the input data as well as possible according to the
learned representation (under-complete autoencoder) [9].
Bottleneck hidden layer(s) force(s) the network to learn the
data’s salient features and prevents the input data from simply
passing to the output.

The AE models were trained on the ultrasonic signals using
the Keras [10], and Tensorflow [11], to reconstruct the input
samples by minimizing the mean-squared error (MSE) as the
loss function. If an anomalous sample is tested, the trained
autoencoder will fail to reconstruct it successfully, producing
a higher than expected MSE.

The MSE is considered to be a deviation score from the
“normal state” and MSE(x) ∈ [0,∞), which were trans-
formed into a pseudo posterior probability P (c1|x) ∈ [0, 1]
of the sample x belonging to the “normal” state’s class
c1. A sample is considered anomalous (class c0) if this
pseudo-probability falls below an estimated threshold [12].

Pseudo-probabilities are estimated by applying a sigmoid
function of the MSE of a sample x of the test dataset Dtest:

P (c1|x) =
1

1 + e−MSE(x)
, x ∈ Dtest. (1)

We performed a grid search over the initial network archi-
tecture with three hidden fully connected layers to estimate
optimal network layout and parameters and vary the number
of neurons in the layers. The number of units in the bottleneck
layer was kept smaller than the preceding and the following
ones. The optimal setup was determined in 10 training epochs
by the loss on the validation set (pre-selected 20% of the
training samples).

The optimal architecture consists of three hidden layers with
250, 150, and 250 neurons, correspondingly. Both encoder
and decoder layers use hyperbolic tangent activation (tanh)
function and RMSprop [13] as gradient-based optimizer.

To avoid over-fitting on such a network with relatively
small capacity, we used early stopping with the criteria of 5
epochs without an improvement in the loss on the validation
set (20%). The training and validation set were selected (in
total, 5520 samples) from the central region of the specimen
p31v where the adhesive bonding was successful and most
consistent.



TABLE II
PERCENT OF OUTLIERS WITH 95% CONFIDENCE INTERVALS

SIG PFA

5.163+0.617
−0.569 3.424+0.514

−0.464

IV. RESULTS AND DISCUSSION

First, we investigated the quality of the AE models for
each feature type (SIG and PFA). We estimated the percent
of training samples with MSE values outside a threshold θ
determined by the interquartile range rule (Q1 is the first and
Q3 the third quartile):

θ = Q1− 1.5 · IQR, where IQR = Q3−Q1. (2)

Table II presents the percent of samples of the training set
(p31v), which would be considered as outliers according to
the IQR-based threshold. That indicates inconsistencies in the
training set related to variable bonding thickness. The PFA
features, as more consistent, yielded fewer outliers than the
SIG features.

Since the trained models are tested on another specimen
with different physical properties and measurement conditions,
it would be inappropriate to use the threshold θ estimated only
on the training specimen for defects detection.

The resulting pseudo-probabilities are inferred from the
model created on the training specimen, therefore it is nec-
essary to re-scale the pseudo-probabilities and recalculate the
threshold for defect detection for another specimen. That can
be done automatically by setting the threshold using standard
statistical or clustering methods.

Fig. 2-a shows a normal pulse-echo C-scan (5 MHz trans-
ducer) where the maximum amplitude value of a certain time
interval after the surface echo is re-scaled and color-coded.
Usual post-processing includes a cut in time, focusing the
time interval of interest, mainly after the first strong echo, and
averaging over time with root-main-square (RMS) to reduce
signal fluctuations. In comparison with the reference amplitude
through-transmission C-scan (Fig. 1), the pulse-echo C-scan
(Fig. 2-a) exhibits strong echos with less transmission and
increased signal distortion due to multiple reflections.

Additionally, layers with varying thicknesses contribute to
signal fluctuations. The adhesive layer echoes merge into each
other, and some defects are not detectable, like the adhesive
strips (marked with a red rectangle).

Fig. 2-b and 2-c present the visualizations of the pseudo-
probabilities obtained with the AE trained on SIG (b) and PFA
(c) features, where the brighter spectral colors (yellow and
red) indicate a higher probability of an anomaly or defect. In
contrast to the C-scan, both exhibit better representation of the
defects, with high contrast against areas with proper bonding.
That enables any prospective defect detection or even type
classification procedure feasible.
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(a) 5 MHz pulse-echo ultrasonic C-scan.
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(b) Pseudo-probabilities with SIG features.
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(c) Pseudo-probabilities with PFA features.

Fig. 2. C-scan and pseudo-probabilities for the test specimen p32v.

V. CONCLUSION

We investigated ultrasonic NDT with autoencoders trained
on pulse-echo signals to detect and visualize defects in adhe-
sive bonding. The models are trained on signals from only one
specimen with good adhesive bonding and tested on signals
of a specimen with incorporated defects.

The process is entirely automatic and reproducible on other
specimens once the autoencoder model is trained. The pseudo-
probabilities have absolute values between 0 and 1, which are
easily interpretable and suitable for anomaly detection using
a calculated threshold for decision.

There is no need for intervention by a human expert for
setting analysis parameters, which is considered challenging
due to signal fluctuations.

Future work will aim to not only to detect defects reliably
but also to evaluate the bond strength of adhesive joints.



REFERENCES

[1] S. Budhe, M.D. Banea, S. de Barros, and L.F.M. da Silva, “An
updated review of adhesively bonded joints in composite materials,”
International Journal of Adhesion and Adhesives, vol. 72, pp. 30–42,
2017.

[2] Walter Brockmann, Paul Ludwig Geiß, Jürgen Klingen, and K Bernhard
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