Process and design optimization of SiC MOSFET for low on-state resistance

Tomasz Sledziewski, Tobias Erlbacher, Anton Bauer

Fraunhofer Institute for Integrated Systems and Device Technology IISB

Europe-Korea Conference on Science and Technology, EKC 2019

Slide 1

Fraunhofer Society and Fraunhofer IISB

Fraunhofer Society

- Europe's largest application-oriented research organization
- Research according to the needs of the market

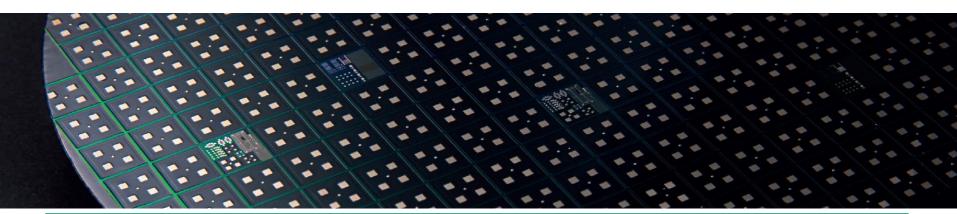
Fraunhofer IISB

- Leading SiC and power electronics institute
- Founded in 1985
- Located in Erlangen, Bavaria, Germany's hot spot for SiC and power electronics
- Close cooperation with FAU Erlangen-Nuremberg



SiC prototypes and solutions

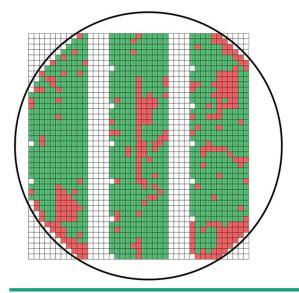
- Materials
- Devices
- Packaging and reliability
- Modules and systems


Slide 3

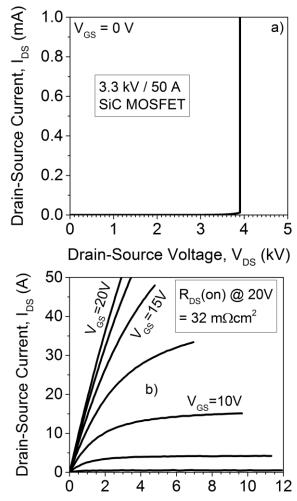
Properties of silicon carbide

Why SiC for power semiconductor devices?

Parameter	Si	4H-SiC	Benefit from SiC
E _g (eV)	1.12	3.26	high-temperature operation
E _{crit} (MV/cm)	0.3	3	low on-state resistance
к (W/cm/°C)	1.5	4.9	excellent heat dissipation
v _{sat} (cm/s)	1×10^7	$2.7 imes 10^7$	high switching frequency



Slide 4

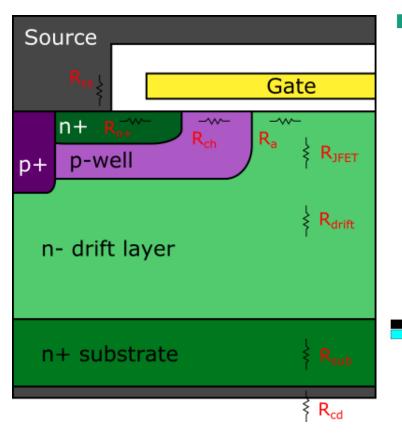

SiC Power MOSFET at Fraunhofer IISB

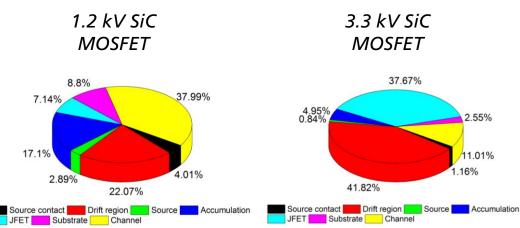
- Blocking voltage: 600 V 3300 V
- Threshold voltage: 2 V 3 V
- On-state resistance:
 - 10 mΩ cm² for 1.2 kV devices
 - 32 mΩ cm² for 3.3 kV devices
- Yield: 80% for 4 mm² chips

working chip failure

Yield map for 1.2 kV SiC Power MOSFET, chip size = 4 mm²

Drain-Source Voltage, V_{DS} (V)

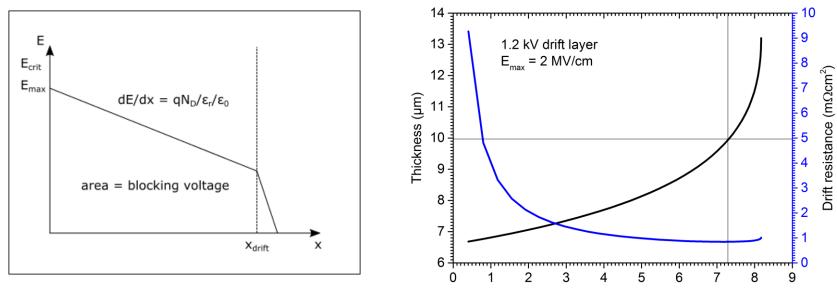

Blocking and forward characteristics for 3.3 kV SiC Power MOSFET fabricated at Fraunhofer IISB


Group Devices & Reliability, 17.07.19 © Fraunhofer IISB

SiC Power MOSFET resistance

Different components of on-state resistance

Contribution of different components to total R_{DS}(on) depends on cell design and blocking voltage


Analytical simulation of resistance of SiC Power MOSFET with 3 μm JFET, 1 μm channel, 13 μm cell pitch

Resistance: drift layer

Voltage	650 V	1200 V	1700 V	3300 V
Contribution to R _{DS} (on)	10.8%	22.1%	31.9%	41.8%

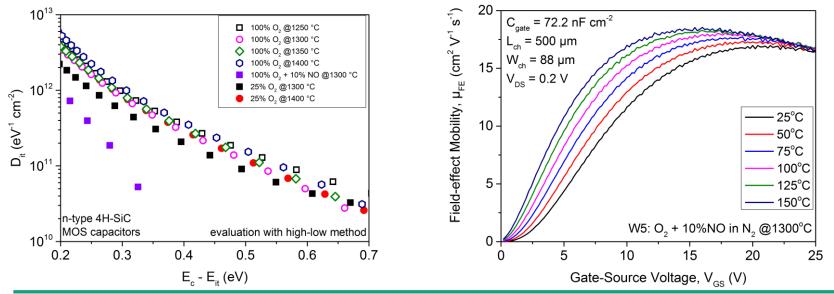
Optimization task: find drift layer doping and thickness at minimum resistance

Too high doping and / or too small thickness

→ increase of electric field

→ increase of drain-source leakage current

Doping (10¹⁵ cm⁻³)

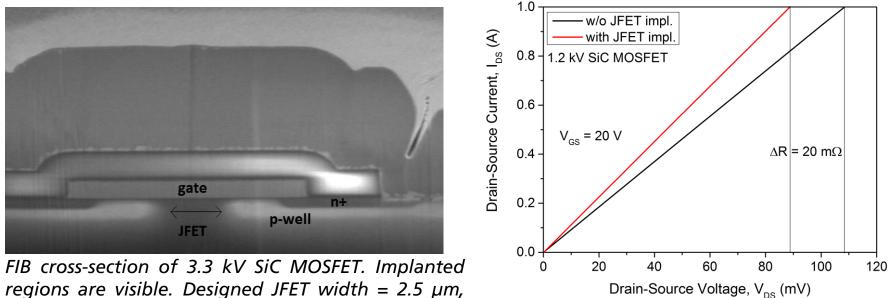

Resistance: channel

Voltage	650 V	1200 V	1700 V	3300 V
Contribution to R _{DS} (on)	45.9%	38.0%	30.9%	11.0%

High density of states at SiO₂ / SiC interface \rightarrow low mobility \rightarrow high channel resistance

- Sophisticated gate oxides (NO annealing)
- \rightarrow passivation of interface states and increase of electron mobility

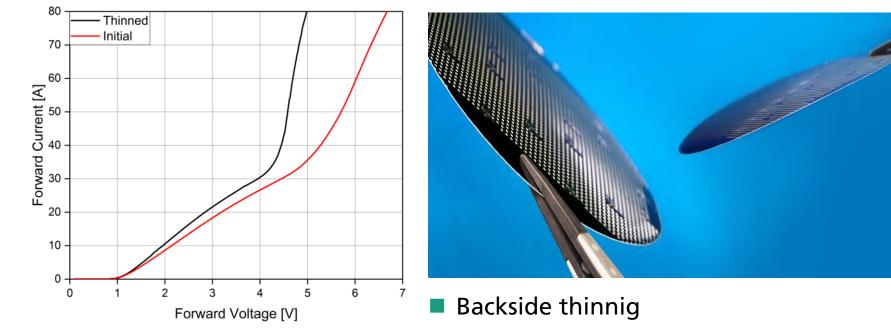
→ shift of flatband (threshold) voltage



Resistance: JFET

Voltage	650 V	1200 V	1700 V	3300 V
Contribution to R _{DS} (on)	3.8%	7.1%	10.6%	37.7%

JFET implantation used to reduce extension of the space charge region in the JFET region


- \rightarrow decrease of JFET resistance
- \rightarrow possible increase of electric field in gate oxide

Resistance: substrate

Voltage	650 V	1200 V	1700 V	3300 V
Contribution to R _{DS} (on)	10.6%	8.8%	7.2%	2.6%

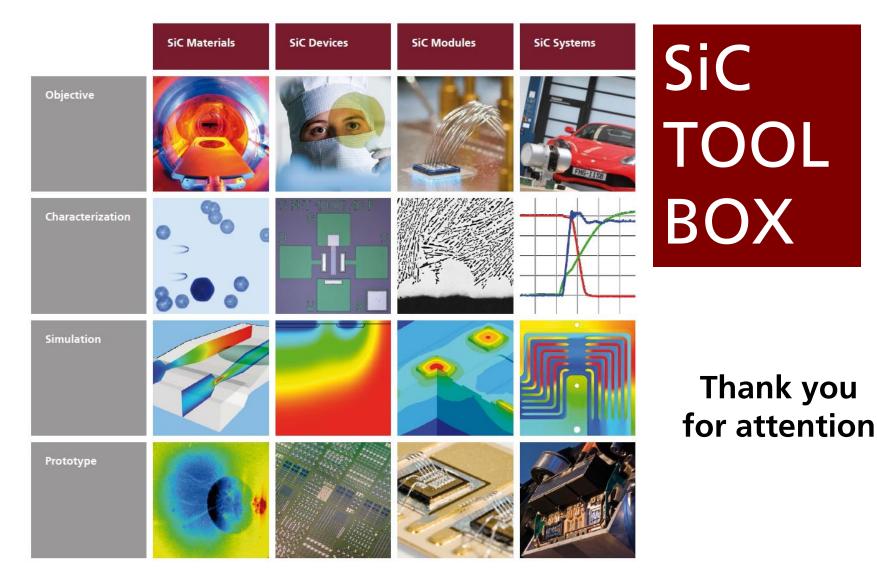
Forward characteristics of 6 A / 650 V SiC JBS diodes with and without substrate thinning

- \rightarrow decrease of substrate resistance
- → more challenging handling and processing of thin wafers

Resistance: cell design

	Cell design	
Stripe	Square	Hexagon
1	1.36	1.34
1	1.73	1.74
1	0.46	0.45
45 - J SC		$\Delta = 31 \text{ m}\Omega$
Drain-Source CL Drain-Source CL Drain-Source CL Drain-Source CL	1.7 kV SIC MOSEE	27% Iower R _{DS} (on) for square design
0] 0 1	2 3 4 5	6 7 8
-	1 1 1 1 1 50 45 40 35 50 40 35 50 20 15 10 5	Stripe Square 1 1.36 1 1.73 1 0.46

Summary


Low on-state resistance of SiC Power MOSFET achievable by design and / or process optimization

Dominant components of total on-state resistance dependent on the device blocking voltage

Very low on-state resistance usually paid with lower reliability

Group Devices & Reliability, 17.07.19 © Fraunhofer IISB

Part of this research was supported by GRDC Program through the National Research Foundation (NRF) funded by the MSIT of Korea (NRF-2017K1A4A3013716).

