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It has recently been suggested that many contact mechanics problems between solids can be
accurately studied by mapping the problem on an effective one dimensional (1D) elastic foundation
model. Using this 1D mapping we calculate the contact area and the average interfacial separation
between elastic solids with nominally flat but randomly rough surfaces. We show, by comparison to
exact numerical results, that the 1D mapping method fails even qualitatively. We also calculate the
normal interfacial stiffness K and compare it with the result of an analytic study. We attribute the
failure of the elastic foundation model to the incorrect treatment of the long-range elastic coupling
between the asperity contact regions.

1 Introduction

The calculation of the stress and displacement field re-
sulting from the contact between elastic solids with rough
surfaces is a very complex problem, in part due to the
many length scales usually involved, and also because of
the long-range elastic coupling between the contact re-
gions. For this reason simplifying approaches are very
important. However, most analytically theories, such as
the Greenwood-Williamson (GW) contact mechanics the-
ory [1], and the theory of Bush et al. [2], or theories based
on the elastic foundation model (see Fig. 1), neglect
the elastic coupling between asperity contact regions. It
has recently been shown by exact numerical studies that
the neglect of the elastic coupling results in qualitatively
wrong contact topography [4], and even the relation be-
tween the contact force and the area of contact is incor-
rectly described using this approach [5]. In Ref. [6–8]
it was also shown that the contact stress-stress correla-
tion function scales as q−α as a function of wavevector
q, where in the overlap model α = 2 + H (where H is
the Hurst exponent [9]), while including the long-range
elastic coupling α = 1 +H.
In a series of papers, Popov and coworkers have pro-

posed that a simple 1D-elastic foundation model can be
used to accurately describe the contact between elastic
solids [10–13]. In a recent publication they calculated
the normal stiffness between elastic solids with randomly
rough but nominally flat surfaces, and argued that the
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FIG. 1: In the elastic foundation model the elastic solid is
replaced by an array of independent springs, see e.g., Ref. [3].

results are in good agreement with exact numerical re-
sults [13, 14]. In this note we will show that in fact this
model fails even qualitatively to describe the contact me-
chanics correctly.

2 Method of reduction of dimensionality

For a semi-infinite elastic solid the surface displace-
ment uz(x) can be directly related to the surface stress
distribution σz(x). This relation is particularly simple
in wavevector space where

uz(q) = −(2/E∗q)σz(q) (1)

with contact modulus E∗. The contact modulus de-
pends on Young’s modulus E and Poisson’s ratio ν,
E∗ = E/(1 − ν2). From Eq. (1), it follows immediately
that if a rigid axisymmetric object is squeezed against
the elastic half space the surface stress and displace-
ment fields will be related by a 1D-equation which de-
pends only on the radial distance r from the center of
the contact region. The general solution to this problem
was obtained by Sneddon [15], who derived a 1D-integral
equation from which the surface stress σz(r) and sur-
face displacement uz(r) can be derived for any shape of
the axisymmetric punch, assuming the contact region is
compact.
Geike, Heß and Popov [10, 11] have shown that the

contact between a rigid axisymmetric indenter (punch),
and an elastic half-space can be mapped on a 1D-problem
where a 1D rigid contour is indented in a 1D-array of
independent springs (1D-elastic foundation, see Fig. 1).
The shape of the 1D contour can be determined from the
shape of the original indenter using the equations derived
by Sneddon [15]. The rule for mapping the axisymmetric
2D problem to 1D is

z1D(x) = x
x

∫
0

dr
∂z/∂r√
x2 − r2 , (2)

where z(r) is the indenter shape. This mapping is only



part of Sneddon’s solution for the total force F on an ax-
isymmetric indenter. It lacks the factor of contact mod-
ulus E∗ required to obtain a stress and an integral over
x, F = 2E∗ ∫ c

0
dx (z1D(c) − z1D(x)) where c is the con-

tact radius. If the integral is discretized on a finite set of
points spaced by a, then

F ≈ c/a

∑
j=−c/a

aE∗(z1D(c) − z1D(ja)). (3)

Eq. (3) suggests that F can be imagined as being given
by compressing a series of (independent) springs with
spring constant k = aE∗ with the profile z1D(x). Hence,
a connection to Winkler’s elastic foundation model can
be drawn. This reformulation of Sneddon’s equations
has been dubbed the method of reduction of dimension-
ality (MRD). Note that the equations of Sneddon are
only valid if the contact region is compact, and the 1D-
mapping therefore also only holds as long as the contact
region is compact [16]. In this limit, MRD gives the cor-
rect total force F on the indenter as a function of its
displacement d. Note that for axisymmetric power-law
indenters Eq. (2) maps onto a 1D profile with the same
power [11]. For z(r) = r2 one finds z1D(x) = 2x2.

The method of reduction of dimensionality has been
applied to various problems with axisymmetry, but so
far only to problems already solved by other methods.
In addition, it is not clear to the present authors if
there is any gain in computational effort in using the
1D-mapping approach, as compared to using the origi-
nal 1D-equations derived by Sneddon, which was used to
prove the MRD [10].
The invocation of the elastic foundation picture tempts

to interpret the 1D elastic foundation literally. However,
it has to be noted that for example the force on each
spring does not represent the true pressure profile for
the 3D contact problem. Also, the 1D rigid contour is
not simply a slice through the 2D indenting surface, but
rather given by the mapping Eq. (2). It is not clear what
the mapping Eq. (2) would be for systems like, for exam-
ple, the contact of two rigidly connected spheres. Some
mapping could probably be found that correctly repro-
duces F (d) obtained from a full 3D calculation. The im-
portant question is rather whether a universal mapping
exists that does not necessitate the solution of the 3D
problem and therefore saves computational effort. Such
a universal mapping has been proposed for self-affine ran-
domly rough surfaces [10], and later corrected to depend
on Hurst-exponent H [14] (hence restricting universal-
ity to the class of self-affine surfaces with identical H).
Here we show that this mapping fails even qualitatively
for the randomly-rough surfaces considered here and can
therefore not be universal.

3 Review of area of real contact and average in-

terfacial separation for contacting rough surfaces

Consider two elastic solids with rough but nominally
flat surfaces of nominal area A0, squeezed together by the
nominal pressure p = F /A0. We define the average inter-
facial separation as ū = z1−z0, where z1 is the the average
position of the bottom surface of the upper solid and z0
the average position of the upper surface of the bottom
solid. As p increases, the average interfacial separation
ū monotonically decreases, while the area of real contact
A increases [17–20]. In earlier publications [18, 21–24]
it has been shown that in a large pressure range A ∝ p

and ū ∝ lnp. This can be understood as follows: As
the load increases, existing contact patches grow and
new, small contacts are formed. This happens in such a
way that the distribution of contact sizes and local pres-
sures remains approximately constant over a wide range
of loads [18, 22]. It follows that A∝ p and that the elas-
tic deformation energy (per unit nominal contact area),
Uel, stored at the interface must be proportional to the
load or the nominal contact pressure [21]:

Uel = u0p, (4)

where u0 is a length parameter of order the root-mean-
square (rms) roughness hrms. Since the elastic energy is
equal to the work done by the external load (assuming
hard-wall interactions and no adhesion), it follows that

p = −dUel

dū
.

Combining this with Eq. (1) gives

p = p0exp(−ū/u0), (5)

where p0 is an integration constant. The theory of Pers-
son predicts that u0 = αhrms and p0 = βE∗, where E∗ is
the effective elastic modulus and α (of order unity) and
β are dimensionless. Both α and β only depend on the
spectral properties of the surface [4, 21, 23–26].
In the same pressure range where (5) is valid, the area

of real contact

A

A0

= κ

ξ

p

E∗
, (6)

where ξ = ⟨(∇h)2⟩1/2 is the surface rms-slope and κ ≈ 2.
Eqs. (5) and (6) are only valid at such high pressures

that multi-asperity contact occurs. At very low pressures
the solids will only make contact in the vicinity of the
highest asperity. In this finite-size pressure region the
relation between ū and p will exhibit large fluctuations
from one surface realization to another [27]. In the study
presented below the finite-size region is too small to be
observed on the linear pressure scale used in Fig. 4. In
Ref. [28] we have studied numerically and analytically the
relation between the interfacial stiffness and the squeez-
ing pressure in both the finite size pressure region and for
higher pressures, and in Sec. 6 we compare these results
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FIG. 2: The surface roughness power spectrum as a function
of the wavevector (log-log scale) for a self-affine fractal surface
with a roll-off (red line) and without roll-off (blue line). The
two power spectrum’s correspond to surfaces with the same
root-mean-square (rms) slope 0.1 and Hurst exponent H =
0.7. The rms slope is determined mainly by the large wave
vector region at q ∼ q1, and this is the reason for why the
curves nearly overlap for q > qr.

for the stiffness with the 1D-elastic foundation model of
Popov et al.

4 Numerical test of reduction of dimensionality

results for A(p) and u(p)
In the MRD a 3D-contact problem is mapped on a 1D-

elastic foundation problem. Here we are interested in the
contact between two nominally flat but randomly rough
surfaces. For frictionless contact, this problem can be
mapped on an elastic half-space with a randomly rough
surface in contact with a rigid substrate with a flat sur-
face.
In the contact mechanics theory of Popov et al. the

roughness of the 1D-substrate has a power spectrum re-
lated to that of the original via the equation:

C1D(q) = πqC2D(q). (7)

The rationale behind C1D is to produce a 1D-line profile
that has the same mean-square (ms) roughness and ms
curvature as the original 2D surface (with power spec-
trum C2D). The ms slope of the 1D-line profile is half
that of the 2D surface. Geike et al. [10] have shown that
if the ms curvature is invariant, then the ms curvature
of the asperity summits is about twice as large for the
1D profile as compared to the 2D profile. Therefore, the
force-distance relationship for each individual asperity is
maintained by the mapping Eq. (7) at small surface pen-
etration (see section 2). Geike et al. [10] have also shown
that the height distribution of asperities remains approx-
imately invariant. Clearly, the model does not include
elastic interactions between individual asperities and is
therefore similar to GW or “bearing-area” theories [6].
Another source of error is that at large penetration of

the individual asperity into the bearing area the map-
ping Eq. (7) is not exact.

More recent formulations use a prefactor that depends
on Hurst exponent H [14]. This modification does not
affect the general conclusions drawn here. The spring
constant of the elastic foundation is related to the effec-
tive (or combined) elastic modulus via k = aE∗, where a

is the spacing between the springs (see Eq. (3)).

Using standard procedures we have generated ran-
domly rough 1D-surfaces with the power spectra given by
Eq. (7). As in an earlier study [28], the original 2D sur-
face is self affine fractal with the Hurst exponent H = 0.7
(or fractal dimensionDf = 3−H = 2.3) and with small and
large cut-off wavevectors q0 = 2π/√A0 and q1/q0 = 4096.
We consider two cases, namely when the substrate sur-
face is fractal-like in the whole interval q0 < q < q1, and
when there is a roll-off at qr/q0 = 8, see Fig. 2. The
curves in Fig. 2 are the actual power spectrums we used
in the calculations. Both curves correspond to surfaces
with the same rms slope (equal to 0.1). The slope is de-
termined mainly by the large wave vector region at q ∼ q1
and this is the reason for why the curves nearly overlap
for q > qr.
The red and blue solid lines in Fig. 3 have been cal-

culated following the procedure outlined by Popov et
al. [29–32]: Each independent spring is compressed into
compliance by the 1D rough surface profile where the
profile overlaps with the initial relaxed spring positions.
In each step we calculated the force F and area of con-
tact A. The applied force F was calculated as the sum
of forces for all springs in contact:

F = k n∑
i=1

∆ui, (8)

where n is the number of springs in contact, ∆ui is the
spring compression. After this we have calculated the
area of contact A [30–32]:

A = π

4

nc∑
i=1

(ani)2, (9)

where nc is the number of connected regions. In this
case all springs in connected regions must be in contact,
ni is the number of springs in each region, ani are the
diameters of these regions. Using Eq. (9) presumably
implicitly assumes that the contact regions for the full
3D model are circular while in reality the contact regions
have fractal-like boundaries. In the case of full contact
A = A0, where

A0 = π

4
(aN)2, (10)

and N is the full number of springs. Then there is only
a single connected region, the diameter of which is equal
to the length of the system aN . Using (8) and (10) we
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FIG. 3: (Color online) (a) The area of real contact A in units
of the nominal contact area A0, and (b) the average interfacial
separation ū in units of the rms roughness hrms, as a function
of the squeezing pressure p in units of the effective elastic
modulus E∗. For self-affine fractal surfaces with H = 0.7
and rms-slope 0.1. The surfaces have the small and large
wavevector cut-off q0 = 1 and q1 = 4096, respectively, and the
roll-off wavevector qr = 1 (blue curves) and qr = 8 (red curves).

can also calculate the squeezing pressure p = F /A0. The
interfacial separation ū was calculated using the formula:

ū = 1

N

N∑
i=1

ui, (11)

where ui is the distance between the end of each spring
and the substrate surface. For springs in contact ui = 0.

Using this simple procedure we have calculated the
MRD results for A(p) and u(p) as shown by the solid
lines in Fig. 3a and 3b, respectively. The pressure was
varied from zero up to full contact where A(p) = A0. The
results are obtained by averaging the calculated quanti-
ties over 100 realizations of the rough-line topography,
with the 1D-power spectrum given by Eq. (7). In each
realization the elastic foundation has 8192 springs.
We compare the predictions of the theory of Popov et

al. with numerical exact results for the full 3D-problem
(with 2D surfaces), obtained as described in Ref. [33, 34].
In brief, this method computes the surface displacements
using a fast Fourier-transform technique with the linear
surface Green’s function given by Eq. (1) for Poisson ratio
ν = 1/2. The interaction with the rigid surface is treated

as a hard-wall repulsion. The solution for the contact ge-
ometry is found using a constrained conjugate-gradient
algorithm until penetration into the rigid wall drops be-
low a small tolerance ǫ. All area that feels a repulsive
pressure is counted towards the contact area [35].
5 Numerical results for A(p) and ū(p)
In Fig. 3(a) we show the calculated normalized contact

area A/A0 as a function of the squeezing pressure. The
red and blue squares are the result of a numerically exact
study and the dashed line the prediction using the theory
of Persson. Since the two surfaces have the same rms
slope the theory predicts the same curve for both cases,
which agrees well with the numerically exact results. The
red and blue solid lines are the predictions using Popov’s
method. Since A(p) approaches A0 much faster in the
MRD than in the numerically exact theory, the interfacial
stiffness K = −dp/dū will approach infinity much faster
(with increasing pressure) in the MRS, as compared to
our exact numerical study. Thus the stiffness relation
K(p) will also be incorrectly given by the theory of Popov
et al. (see also Sec. 6).
Fig. 3(b) shows the logarithm of the average interfacial

separation ū as a function of the squeezing pressure p.
Again there is good agreement between the numerically
exact results and the theory of Persson, while the MRD
fails qualitatively.

6 Contact stiffness

The total stiffness Ktot of the contact between two
solids consists of a bulk part Kb related to compres-
sion of the solids and another part K from the ap-
proach of the two surfaces at the nominal contact area,
which depends on the surface roughness of the two solids.
For friction-less contact between two rectangular blocks
1/Ktot = 1/Kb + 1/K. Here we will focus on the contri-
bution K to the total contact stiffness. We can write
K = −dp/dū where ū is the average interfacial surface
separation (see Sec. 3).
Consider two elastic solids with nominally flat surfaces

squeezed together by the nominal pressure p = F /A0.
From (5) it follows that the contact stiffness

K = −dp
dū
= p

αhrms

or

Khrms

E∗
= 1

α

p

E∗
(12)

This equation is only valid at such high pressures that
multi-asperity contact occurs. At very low pressures the
solids will only make contact in the vicinity of the highest
asperity. In this finite-size pressure region the relation
between K and p will exhibit large fluctuations from one
surface realization to another [27].
In Ref. [28] two of us have derived an (approximate) an-

alytic expression for the (ensemble averaged) interfacial



stiffness in the finite-size region. The derivation assumes
a self-affine fractal surface with the surface roughness
power spectrum shown in Fig. 2. The surface is char-
acterized by the Hurst exponent H and the small and
large wavevector cut-off q0 and q1, as well as a roll-off qr
(see Fig. 2). For this model the stiffness per unit area
in the low pressure, finite size, region is approximately
given by (see Ref. [28])

K ≈ ( E∗

L2qr
)H/(1+H) ( p

hrms

)1/(1+H) ∝ p1/(1+H)

where L ≈ 2π/q0 is the linear size of the studied system.
Note that we can also write this equation as

Khrms

E∗
≈ (hrms

L2qr
)H/(1+H) ( p

E∗
)1/(1+H) (13)

The same scaling has been obtained in Ref. [13] from scal-
ing arguments. These scaling arguments do however not
give a fully parameter free expression for K that includes
all prefactors.

7 Numerical results for K(p)
We consider again two cases, when the substrate sur-

face is fractal-like in the whole interval q0 < q < q1, and
when there is a roll-off at qr = 8 (see Fig. 2). In Fig.
4(a) we show the calculated interfacial stiffness using the
theory of Persson. We have plotted Khrms/E∗ as a func-
tion of p/E∗ since these are the dimensionless quantities
that enter in the theory [see Eqs. (12) and (13)]. The
results in Fig. 4(a) are in excellent agreement with exact
numerical simulations for the same system (see Fig. 1 in
Ref. [28]). One can distinguish three regions in the stiff-
ness K(p) relation. For very small pressures the stiffness
increases as K ∝ p1/(1+H). This is a finite size effect,
which occurs when a single effective Hertzian contact re-
gion, formed at the highest substrate asperity, prevails.
For higher pressures a region where K ∝ p is observed.
This region, which becomes wider as the width of the
roll-off region increases, results from contact with many
asperities, and depends crucially on the long-range elastic
coupling between the contact regions. Finally, for very
large pressure the interfacial separation approaches zero
and the interfacial stiffness increases towards infinite.
Fig. 4(b) shows the results using the contact mechan-

ics theory of Popov et al. The results are again obtained
by averaging the contact stiffness obtained in 100 real-
izations of the rough-line topography, with the 1D-power
spectrum given by Eq. (7). In each realization the elas-
tic foundation has 8192 springs. Fig. 4(b) shows that
the theory correctly predicts the initial (low pressure)
relation K ∝ p1/(1+H). This result is expected because
the study in Ref. [28] shows that K ∝ p1/(1+H) holds
even when one neglects the elastic coupling between the
asperity contact regions. However, the region where K

increases linearly with the pressure p is absent in Fig.
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FIG. 4: (Color online) Log-log plot of the nondimensional
contact stiffness Khrms/E

∗ vs. nondimensional pressure p/E∗

for self-affine fractal surfaces with H = 0.7 and rms slope 0.1.
The surfaces have the small and large wavevector cut-off q0 = 1
and q1 = 4096, respectively, and the roll-off wavevector qr = 1
(blue curves) and qr = 8 (red curves). The result in (a) is from
the Persson contact mechanics theory, which agrees with the
exact numerical study presented in Ref. [28]. The result in (b)
is using the theory of Popov et al. The vertical dashed lines
indicate the pressures where the Popov et al. theory starts to
deviate from the analytic results.

4(b). This is also expected because the K ∝ p result
depends crucially on the elastic coupling between the as-
perity contact regions, which is not included in the theory
of Popov et al. As shown in Fig. 4(a), the linear region
is particularly large when there is a roll-off in the power
spectrum. Most surfaces of engineering interest exhibit
a roll-off even larger than for the qr/q0 = 8 case shown in
Fig. 2. Thus in most practical applications, in particular
involving elastically soft materials like rubber, one will
be in the linear K ∝ p region where the MRD fails.

We note that whether there is a roll-off or a cut-off at
qr has very little influence on the result. However, this
does not imply that the only thing which matters is the
range over which the surface is self-affine fractal. The
point is that including a roll-off or cut-off at qr > q0 im-
plies roughly that the surface is “periodically” repeated
(qr/q0)2 times. This implies that there will be many as-
perities of height similar to the highest asperity. This in
turn means that the contact will much more quickly (with



increasing pressure) come into the multi-asperity contact
configuration where the stiffness K depends linearly on
the nominal squeezing pressure p. This is the origin of
why the linear relation between K and p starts at lower
pressures, and extends over a larger pressure range, when
the surface has a roll-off or cut-off.

The vertical dashed lines in Fig. 4 indicate the pres-
sures where the theory of Popov et al. starts to deviate
from the analytic results in Fig. 4(a). Note that these
points correspond to the start of the linear K ∝ p re-
gion in the analytic theory. This is expected as the lin-
ear region corresponds to multi-asperity contact, where
the elastic coupling between the asperity contact regions,
which is incorrectly treated in the Popov et al. theory,
becomes important. Thus we believe it is the incorrect
treatment of the long range elasticity, and not the reduc-
tion in dimensionality, which is the basic problem with
the approach of Popov et al (see also Ref. [36]).

8 Summary and conclusion

We have presented a detailed comparison of the the-
ory of Popov et al., dubbed the method of reduction of
dimensionality (MRD), with numerical exact results and
analytic results for self-affine fractal surfaces with and
without a roll-off. The MRD fails qualitatively to de-
scribe the A(p) and ū(p) relations, and we attribute this
to the incorrect treatment of the elastic coupling between
the asperity contact regions. Indeed, Popov recently ac-
knowledged that results obtained for the contact area
can be wrong in some circumstances [14]. A recent study
by Scaraggi et al.[36] has shown that if the long-range
elastic coupling is properly included in the analysis, it is
possible to make 2D isotropic roughness approximately
equivalent to 1D roughness.

We have also presented a detailed comparison of the
MRD with analytic results for the normal contact stiff-
ness. For the case of a roll-off at qr = 8 the Persson theory
and the exact numerical results presented in Ref. [28],
exhibit a linear K ∝ p region extending over 3 decades
in pressure, while there is no linear region in the MRD.
The latter theory predicts K ∝ p1/(1+H) in the limit of
small pressures, but this result is expected since an ef-
fective Hertz single-asperity contact prevails in this case
(see Ref. [28]). However, since the elastic coupling be-
tween the asperity contact regions is incorrectly treated
in the approach of Popov et al., no linear K ∝ p region
is obtained.
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Martin Müser and Mark Robbins for useful discussions.
L.P. acknowledges funding from the European Commis-
sion (Marie-Curie IOF-272619).

[1] Greenwood, J.A., Williamson, J.B.P.: Contact of nomi-
nally flat surfaces. Proc R Soc A 295, 300 (1966)

[2] A.W. Bush, R.D. Gibson and T.R. Thomas: The elastic
contact of a rough surface. Wear 35, 87 (1975).

[3] See, e.g., Sec. 4.3 in K.L. Johnson, Contact Mechanics,
Cambridge University Press (1985).
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