
Semantic Based Approach for Entity
Matching on Noisy Semistructured

Data

Nikhil, Acharya
Matriculation number: 3064518

May 16, 2021

Master Thesis
Institute of Computer Science

Supervisor:
Dr. Diego Collarana, University of Bonn

Examiners:
Prof. Dr. Jens Lehmann, University of Bonn

Prof. Dr. Elena Demidova, University of Bonn

INSTITUT FÜR INFORMATIK
RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN

Declaration of Authorship

I, Nikhil Acharya, declare that this thesis titled, ‘Semantic Based Approach for
Entity Matching on Noisy Semistructured Data’ has been written independently
and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research
degree at this University.

� Where any part of this thesis has previously been submitted for a degree
or any other qualification at this University or any other institution, this
has been clearly stated.

� Where I have consulted the published work of others, this is always clearly
attributed.

� Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work.

� Where none other than the specified sources and aids were used.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I
have made clear exactly what was done by others and what I have con-
tributed myself.

Signed:

Date:

i

Acknowledgements

Firstly, I would like to thank my supervisor and mentor at work Dr. Diego
Collarana for his support, ideas and encouragement. His constant review and
feedback time to time has really helped me steer my work in the right direction
and develop serious interest in the area of Semantic Web Technologies.

I am also grateful to my team in Fraunhofer IAIS based in Dresden who really
have given me all the resources, suggestions and their valuable time for feedbacks
whenever I needed it.

I would also like to extend my thanks to Dr. Carsten Winkelholz who is the
Head of Research Group Information Visualization and Interaction at Fraunhofer
FKIE and was my mentor at the Institute when I worked there as a student
assistant. My interest in the area of Natural Language Processing and Data
Visualization would not have been possible without his encouragement.

Also the success would not have been possible without constant support of my
parents and my sister who always backed me throughout the tasks and the
decision making. Lastly cheers to my friends who have been with me during
the challenging times and were always available when in need.

ii

RHEINISCHE
FRIEDRICH-WILHELMS-UNIVERSITÄT BONN

Abstract
Institute of Computer Science

Master of Science

by Nikhil, Acharya

Entity Matching on Noisy Semi-structured Data, such as RDF graphs is an active
field of research where many approaches have been proposed for interlinking
individuals of Knowledge Graph datasets. These methods have included schema
learning techniques, string matching on labels using SPARQL, attribute based
approaches and methods that use Knowledge Graph embeddings. This thesis
proposes a novel entity matching pipeline that parses Knowledge Graphs to
fetch literals and label values, handles semantic interoperability conflicts and
performs attribute based matching using data from literals by using a Deep
Learning model. We test our approach on the Itunes dataset and Wikidata-
DBpedia dataset. We believe that our technique can help interlink individuals of
various RDF datasets and extend knowledge via entity matching. Our technique
also promises to be robust to dirty, semi-structured data when literals have large
texts.

Keywords: Entity Matching, Semantic Interoperability Conflicts, Interlinking,
Link Detection

Contents

Declaration of Authorship i

Acknowledgements ii

Abstract iii

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement and Challenges 3

1.2.1 Challenges . 4
1.3 Contributions . 4
1.4 How the Thesis is Organised . 5

2 Theoretical Background 6
2.1 Entity Matching (EM) . 6
2.2 Knowledge Graphs (KG) . 7
2.3 Link Discovery in Knowledge Graphs 11
2.4 Semantic Interoperability Conflicts 12
2.5 Deep Learning . 14

2.5.1 Neural Network (NN) . 14
2.5.2 Training Feed Forward Networks 16
2.5.3 Recurrent Neural Network (RNN) 18
2.5.4 Attention . 21

2.6 Word and Character Embeddings 21

3 Related Works 23
3.1 Introduction . 23
3.2 Link Detection Workflow . 24
3.3 String Match Approaches . 25
3.4 Schema Based Approaches . 28
3.5 Embedding based Approaches . 30
3.6 Conclusion . 31

4 Entity Matching Pipeline 32
4.1 Pipeline . 32

iv

Contents v

4.2 Preprocessing . 33
4.3 Conflict Handling . 35

4.3.1 Identifying Conflicts . 35
4.3.2 Resolving Conflicts . 36

4.4 Data Transformation . 37
4.4.1 Column Vector . 38
4.4.2 Data Vectors . 39

4.5 Deep Learning Model . 40
4.5.1 General Architecture . 40
4.5.2 Deep Matcher Motivation 41
4.5.3 Deep Matcher Architecture 41
4.5.4 Representative solutions for Deep Matcher 44

5 Evaluation 46
5.1 Itunes Dataset . 47
5.2 DBpedia and Wikidata Dataset 49

6 Conclusion and Future work 51
6.1 Future Works . 52

List of Algorithms 53

List of Figures 54

Bibliography 57

Chapter 1

Introduction

As per Domo [1] in the world 1.7 mb of data was generated every second in 2020.
In terms of text that would mean a lot, i.e in the range of 100k characters per
second. Analysis of such large texts or data is not easy because they are mostly
unstructured/semistructured. However there is a need to expand knowledge
consistently and filter redundant , unnecessary data. This data once processed
is used in the fields of Artificial Intelligence (AI) which include image and speech
processing, medical diagnosis, autonomous driving, robotics etc.

One of the aims of Artificial Intelligence is to reduce human intervention in order
to perform the necessary tasks in our daily lives. These tasks highly on rely
quality of data. One of the important ways to improve quality of data involves
having good, well defined structures for representing data. The analysis in such
a case would be seamless with AI tasks achieving maximum accuracy. There has
been enough debate on improving the quality of representation of data. While its
hard to agree on a single idea to unify heterogeneous data resources, we do have
a World Wide Web. While World Wide Web has its drawbacks, to overcome
these drawbacks link data web was created where each resource is represented
via a Universal Resource Identifier (URI).

Linked data helps in linking heterogeneous data across different graph databases
using URIs. We can apply state of the art Deep Learning/Machine Learning
algorithms to these graphs. This helps us analyse, add more knowledge and re-
move redundant information in the linked data world. Data here is stored using
knowledge graphs and stored in Graph Databases. Graph databases offer vari-
ous advantages over conventional relational databases [2] and one of the them is

1

CHAPTER 1. INTRODUCTION 2

that it offers a more flexible schema which helps us understand semantic rela-
tion between entities. Semantic relationships can now help us match resources
referring to the same entity across different graph databases which helps expand
knowledge and this is one of the biggest use case of our problem.

1.1 Motivation

One entity can be present across different databases with different kinds of infor-
mation of our interest. Information for entities can be represented via properties.
These properties comply with a schema of the graph database which can also
be called an ontology. Our task is to match or link same entities across these
databases. There have been various techniques developed to link or match en-
tities which we will be discussing in the coming sections. Interlinking is key to
knowledge expansion and deduplication.

Data can be unstructured, dirty, incomplete, redundant etc. These issues are
not desirable but surely is a predominant problem in the data world including
in the field of Linked Data. One of the advantages also of semantically linked
resources is understanding of unstructured data can be simplified. We may have
to manually resolve these issues or resolve by defining new semantic relations to
transform data to a more structured or semi structured format.

Figure 1.1: Interlinking Entities

Consider Figure 1.1 where lets say we are creating a question answering model
on leaders around the world. We would like include information of Angela
Merkel. For the model to perform well we need maximum information on leaders
and here we have some information on Angela Merkel divided across different

CHAPTER 1. INTRODUCTION 3

graphs (Databases). We can integrate information from 3 databases there. Each
database has different knowledge regarding entity i.e., Angela Merkel. They
have different properties we can learn from. So we have to propose techniques
to map these entities together with the challenge where we see different formats
for labels, dates for properties and hence the interlinking may not be so straight-
forward. The intent clearly is to design robust techniques where we can apply
this across different graphs to different models. Such a technique can also reduce
redundant data i.e in our example so many labels, birthday properties represent-
ing same entity. We can eliminate them if they are same. This is termed as
deduplication.

1.2 Problem Statement and Challenges

Using the illustration above we define our problem statement relevant to our
task. From there we move onto the challenges we faced during the problem
solving.

Given two sets of graph databases G1, G2 having classes C1 ∈ G1,
C2 ∈ G2 with each having its respective individual set I1 ∈ G1, I2 ∈ G2

and property set P1, P2 where domain(P1) ∈ C1, domain(P2) ∈ C2

with semantic interoperability conflicts s. We return a set of labels
EM ∈ {1, 0} which maps if an individual i ∈ I1

⋃
I2 is in I1

⋂
I2 or I1

∐
I2.

I1 = resolve(I1, P1), I2 = resolve(I2, P1) (1.1)

T = Transform(I1, I2) (1.2)

EM = f(T) (1.3)

where f is the Entity Matching function, T is transformed dataset,
resolve is the conflict resolution function and Transformation is the
function to transform data from rdf properties to vectors.

Problem Statement

CHAPTER 1. INTRODUCTION 4

1.2.1 Challenges

Challenge 1: Lack of appropriate data

In order to map individuals which refer to same entity we need to have enough
individuals and properties to learn from. If that is not the case our function f in
problem statement 1.2 cannot return the right labels. However it has been a big
challenge in our experiments as properties are not complete for individuals.

Challenge 2: Schema Mapping

When we deal with schemas for graph databases each property can be bound
by different rules depending on the schema. These overheads can be handled
via creating links manually from property to property for properties we wish
to consider for the analysis which we call mappings. Eg- In Figure 1.1 birth
property is equivalent to birthday property. The more number of properties we
deal with, the more manual intervention we need.

Challenge 3: Semantic Interoperability Conflicts

Dealing with semantic interoperability conflicts is another challenge. Our conflict
function may not resolve each conflict. It is not possible completely because we
need manual some intervention when values for properties are subjective for
each case. However we have tried to define and resolve most of the conflicts. Eg-
Different date formats for birthdays.

1.3 Contributions

In this section, we list down the key contribution of this work corresponding to
the various challenges posed by the discussed problem:

Contribution 1

Define a pipeline which performs Entity Matching on RDF datasets by parsing
through literals and labels. Our method specializes in dealing with literals that

CHAPTER 1. INTRODUCTION 5

have really long text and has dirty data because the Deep Learning model phase
is capable of handling such anomalies. The approach uses models like RNN,
Attention that can compare literals which have long text and dirty data.

Contribution 2

Deduce a solution to handle semantic interoperability conflicts to achieve more
accuracy on Entity Matching. Handling the conflicts for properties we consider
really increases the accuracy.

Contribution 3

Define a method to parse a knowledge graph to extract values for literals using
Depth First Search or Breadth First Search algorithms. Most existing methods
use SPARQL wrappers to fetch value of literals. SPARQL wrappers are generally
slow compared to graph parsers.

1.4 How the Thesis is Organised

The study is organised into the following chapters: The introduction chapter
involves giving an overview of the linked data web and its application in problem
solving. Then we define our problem statement and its challenges. Coming to
the background chapter we give an overview of all concepts we have used to solve
our problem. They include Entity Matching, Link Detection, Knowledge Graphs,
Deep Learning, Semantic Interoperability Conflicts. Next in the related work we
discuss all the techniques used in the field of Entity Matching for Knowledge
Graphs, Link Detection Workflow, Schema learning. The techniques include
LiteralE, KnoFuss etc. In the Entity Matching pipeline chapter we discuss our
pipeline in detail which has pre processing, conflict handling, data transformation
and the deep learning model. The Evaluation chapter includes presenting results
we have got in the two sets of datasets we have used. In the final chapter of
conclusion and future work we discuss our analysis, results inferred, drawbacks
and how the work can be extended using existing approaches.

Chapter 2

Theoretical Background

In this section, we discuss the necessary background for understanding and solv-
ing our Entity Matching problem. We will start with an introduction and defi-
nition of Entity Matching, then present the concepts of Knowledge Graphs and
RDF followed by an overview of types of Semantic Interoperability Conflicts.
Lastly, we discuss Neural Network (NN) and other Deep Learning concepts which
include character, word embeddings.

2.1 Entity Matching (EM)

Entity Matching refers to matching two entities or resources that refer to the
same real-world object. The problem is predominant in numerous domains like
Natural Language Processing, Image Processing, and Information Retrieval [3].

Entity matching can also be called record linkage, deduplication, or coreference
resolution under different contexts:

• Deduplication: Refers to elimination and identification of duplicate blocks
of records within dataset. Various Hashing methods are used for dedupli-
cation [4] .

• Record Linkage: Determining if records belong to the same entity if they
come from multiple resources. A usecase we often see in the field of fraud
detection [5], healthcare [6].

6

CHAPTER 2. THEORETICAL BACKGROUND 7

Figure 2.1: Sample Knowledge Base

• Coreference Resolution: To resolve all references to a given entity in a
text corpora. The task involves replacing relevant pronouns, alias with the
subject/entity.

Also, in the context of this thesis linking two resources because they are same will
be referred to as Interlinking. This is like Paraphrasing the EM problem. Note
that in general, interlinking need not always be about linking same resources.

Lets look Figure 2.1 of a sample Knowledge Base. In this case we match all
resources of Joe Biden via Record Linkage by linking them. There are duplicate
blocks now for birthdate and label which can be removed via deduplication. Re-
placing mutiple repetitive labels for resource Joe Biden with the correct label
would be called Coreference Resolution. Inferring a link from USA to Pennsyl-
vania would be a part of interlinking task eventhough they are not same but can
be linked with a new relation “hasState”.

2.2 Knowledge Graphs (KG)

Knowledge graphs are collections of interlinked entities with certain defined prop-
erties. Using these properties and descriptions forms a network that helps to
learn the context of the information stored. A knowledge graph contains a
triplet which includes a < subject >, < predicate >, < object >. Many pub-
licly available knowledge graphs like DBpedia and Yago follow standards like
OWL (Web Ontology Language) and RDFS (Resource Description Framework

CHAPTER 2. THEORETICAL BACKGROUND 8

Schema). These standards help define a structure, create axioms which in turn
are used to create an Ontology. RDFS and OWL has many parallels with Object-
Oriented Programming, but Web Ontology Languages can be considered more
flexible as they change fast due to changing Internet data sources. Next, we
define certain concepts of RDF, OWL and other foundations for our tasks. Most
of the illustrations of these concepts are taken from W3C document [7] .

Figure 2.2: Semantic Web Stack

Semantic Web is an extension of World Wide Web set by standards of World
Wide Web Consortium. We define the aspects of semantic web from the paper
“The XML and Semantic Web Worlds: Technologies, Interoperability and Inte-
gration. A Survey of the State of the Art” [8]. In Figure 2.2 we see a semantic
web stack which explains semantic web applications layer by layer. At the root
level we have the URIs which are used to represent the resources. It is used
to identify real world objects, concepts and information on web sources. These
URIs can be represented by semi structured data using XML syntax. These
XML structures use the resources to define and instantiate web ontologies which
is done using Resource Description Framework Schema. It provides constructs
for the description of types of objects (classes), type hierarchies (subclasses),

CHAPTER 2. THEORETICAL BACKGROUND 9

properties that represent object features (object properties) and property hier-
archies (subproperty). Above these layer of resources and schema we would like
to retrieve and modify data at a query level. This is done using SPARQL. These
feature like data fetch, data retrieval and data definitions helps us define logic
for our Semantic web applications. These Semantic Web applications can help
perform the desired Artificial intelligence tasks.

Figure 2.3: Itunes OWL Ontology

Below we define some of the relevant concepts from RDF schema and OWL(Web
Ontology Language) using the standard w3c document [9]. We cite examples
from Figure 2.3

• Resource Resources are the subset of everything. It is an instance of class.
Every resource is represented as an URI. All the nodes and relations in the
graph correspond to a Resource.

• Property Property is an instance of class. It can be partly similar to a
method in object oriented terms. All relations correspond to a property.
They include HasPrice, ReleasedOn, Name etc.

• Class Classes are set of resources that are RDF classes. In lay man terms
it corresponds to a type or category of an entity. Every Node in the RDFS
graph corresponds to a class. Eg. Song rdf:type rdfs:Class

CHAPTER 2. THEORETICAL BACKGROUND 10

• rdfs:domain Domain is used to indicate that the property applies to in-
stances of a certain class. Refer to figure 2.3 we see for the property Re-
leasedOn Album class is the domain. Also HasAmount property Domain
belongs to Price class.

• rdfs:range Range is used to indicate that the values returned by the prop-
erty are instances of a certain class or a datatype. For the property duration
the range is string. Similarly for property HasPrice, range is Price class.

• owl:DatatypeProperty A type of property which can be considered a
literal whose domain corresponds to a class while range corresponds to a
primitive datatype like string or int or float. Eg- HasAmount, HasCurrency

• owl:ObjectProperty A type of property whose domain and range both
correspond to a class resource. Eg- HasAlbum, HasPrice.

• Individuals Individuals are instances of class. Individuals in turn take
property values which can be literals or resources. Eg- Luis Fonsi is an
individual of type Artist. Eg: despacito rdf:type Song .

• owl:sameAs Individuals can be linked to one another using sameAs prop-
erty. It indicates both individuals belong to same entity.

• owl:differentFrom Individuals can be linked to one another using differ-
entFrom property. It indicates both individuals belong to different entities.
Eg: Itunes:despacito owl:sameAs spotify:Despacito .

• owl:equivalentProperty The owl:equivalentProperty construct can be
used to state that two properties have the same property extension. They
are sematically equivalent [7].

In above figure 2.3 the schema is designed using OWL and RDF Schema. We here
describe Song, Album, Artist, Genre, Price and Time class. Next there are Data
Properties for classes like SongName , ArtistName , GenreList , AlbumName
etc. Object properties connect one class to another class. Itunes ontology has
object properties like HasAlbum, HasSong, HasArtist, HasGenre. While defining
properties we need to define their range and domain. They define what value
the triplets can take for < Subject > , < Object > slot while defining properties
for individuals. The domain of the property refers to the values the Subject can
take and Range refers to the Object field of the triplet respectively. Lets look at
an example of object property below

CHAPTER 2. THEORETICAL BACKGROUND 11

Lets say Despacito is of type Song described by triplet
< itunes : Despacito > < rdf : type > < Itunes : Song >
Lets say Luis Fonsi is of type Artist
< itunes : LuisFonsi > < rdf : type > < Itunes : Artist >
Now we define the property < Itunes : HasArtist >
< itunes : Despacito > < Itunes : HasArtist > < itunes : LuisFonsi >

2.3 Link Discovery in Knowledge Graphs

The knowledge graphs can be expanded via creating links between set of re-
sources. This helps knowledge expansion and hence the more links we discover
or infer, the more we learn. Entity Matching problem can be called a subset
of link discovery problem. Links can be inferred, learned or added manually.
If two resources are the same, then a link “sameAs” between them represents
the Entity Matching problem as mentioned in section 2.1. We test all pairs of
resources for a pair of similar classes from different schema using a Cartesian
product and analyse the result using a similarity function. Using the result of
the function we determine if a relation can connect two classes. Its is represented
in equations 2.1 and 2.2 below.

Given two resources S and T plus a relation R. Find all pairs

(s, t) ∈ S × T | R(s, t) (2.1)

The result is represented as a set of links called a mapping

MS,T = (ai, R, bj) | ai ∈ A, bj ∈ B) (2.2)

Link Discovery Problem

The above Link Discovery Problem(formula 2.1 and 2.2) is formulated using the
paper “A survey of current link discovery frameworks” [10]. Lets observe figure
2.4 where we want to know if we can deduce a link between “Itunes:Despacito”
and “Spotify:Despacito”. Here in accordance to the Link Discovery Problem

CHAPTER 2. THEORETICAL BACKGROUND 12

Figure 2.4: Link Discovery for sameAs property

our R is “OWL.sameAs” while our resources (s and t) are Spotify and Itunes.
Our classes A and B are “Itunes:Song” and “Spotify:Song” with class members
ai ∈ A as Itunes:Despacito and bi ∈ B as Spotify:Despacito. We can calculate
confidence of an expected link using (ai, R, bj, sim(ai, bj)). In the next section we
see various methods that can be used to infer a link.

We list some of the approaches used for link detection below

• String based similarity for link detection [11]

• Use semantic neighborhood of a resource [12]

• Reinforcement learning for path traversal along the graph and inferring
links to answer questions [13]

• Learning the literals for corresponding entities

2.4 Semantic Interoperability Conflicts

This section is referred from the PhD thesis by Irlan Grangel-González [14]. Our
semantic approaches must be able to exchange data with unambiguous, shared
meaning. Our algorithms should be able handle these conflicts. These are called
semantic interoperability conflicts.

• STRUCTUREDNESS This interoperability conflict occurs whenever
data sources are described at a different level of structuredness, e.g., struc-
tured, semi-structured, and unstructured. In Knowledge graphs for a data
property like name of an Artist we can either have a name field or the field
split into first and last name. For example- David Guetta for name field,
Guetta for last name and David for first name.

CHAPTER 2. THEORETICAL BACKGROUND 13

• SCHEMATIC Data Sources can be modelled using a different schema.
We can represent age as a number or a string or an integer. Eg- 52 as
XSD.integer or ”52” as XSD.String.

• DOMAIN The conflict where different interpretations of the same domain
is represented. Different interpretations include: i) Homonym: the same
name is used to represent concepts with a different meaning; ii) Synonym:
distinct names are used to model the same concept; iii) Acronym: different
abbreviations for the same concept are employed. Eg- Name for singer field
”Flo Rida” also can be called ”Tramar Lacel Dillard”

• REPRESENTATIONS This interoperability conflict is described when
different representations are used to model the same concept. Represen-
tation conflicts include: i) Different scales or units; ii) various values of
precision; iii) incorrect spellings. Eg- Time field in minutes and seconds
can be represented as ”4:30” or ”4 minutes and 30 seconds”

• GRANULARITY This interoperability conflict appears when various
interpretations of the same domain are represented. Different interpreta-
tions include: i) Intra-aggregation: the same data is divided differently,
e.g., full person names against first-middle-last ii) Inter-aggregation: ap-
pears when there exist sums or counts as added values. Eg- Price field may
have currency in Euros or Cents or weight field with kilogram or grams

• MISSING ITEM This interoperability conflict occurs whenever different
items in distinct data sources are missing. Missing Item comprises: i)
Missing attributes; ii) Missing content. Eg- We may have values missing
in a non mandatory field like say Fax.

Figure 2.5: Semantic Interoperability Conflicts Example

CHAPTER 2. THEORETICAL BACKGROUND 14

In the Figure 2.5 we need to conciliate semantic interoperability conflicts in order
to perform a link detection or an entity matching task on the above 2 rdf graphs.
We can observe some conflicts there like domain conflict for artistname relation,
representation conflict for released relation and value relation. To infer a link
from ”ID24L” to ”ID24R” we need to handle these conflicts.

2.5 Deep Learning

2.5.1 Neural Network (NN)

In this section we will give an overview of Neural network adapted from the book
“Neural-Network-Design” [15]. Neural Network is one of the most commonly
used Machine Learning Algorithms. Figure 2.5 represents a typical single layer
perceptron. In case of this perceptron, we have X inputs connected to S neurons
with each input weighted by W and each neuron has a bias function. The result of
each neuron which is weighted input plus bias is passed on to a transfer function
which gives us the required output. Mathematically we denote it as σ(WX + b).

Figure 2.6: A typical Single-Layer Perceptron (MLP)

Next we look at the multi layer perceptron as represented in Figure 2.7 . Here we
extend the single layer perceptron by adding more layers and neurons. Lets say

CHAPTER 2. THEORETICAL BACKGROUND 15

Figure 2.7: A typical Multi-Layer Perceptron (MLP)

outputs of the first layer are further fed into new set of neurons and their output
to next set and so on. We would have a weight matrix of all the neurons plus
bias for each neuron and transfer functions. The first layer includes first set of
neurons,transfer functions and second layer includes the second sets of functions
and weights. This can further be extended until n layers but our illustration and
Figure 2.7 will be restricted to 2 hidden layers.

Let n1 and n2 be the number of the number of neurons in the first and second
hidden layers. Similarly W1 and W2 be weight matrix for both hidden layers and
now let b1,b2 be the bias respectively. There are non linear activation functions f1

and f2 for each layer. We can say the input X ∈ Rdimx where dimx is dimension
of input x. Next for weight matrix of first layer W1 ∈ Rdimx×n1 . Similarly for
weight matrix of W2 ∈ Rn1×n2 . Next the bias terms b1 ∈ Rn1 and b2 ∈ Rn2 .

NNSingleperceptron(x) = f(Wx+ b)

NNMultiperceptron(y) = f2(W2(f1(xW1 + b1)) + b2)
(2.3)

We need to map the weighted inputs plus bias to the desired output(typically
between 0 to 1). The most common way of doing it is by using transfer functions.
Some of the most commonly used transfer functions are listed below.

• Rectified Linear Unit: This function will output the input directly if it is
positive, otherwise it returns a zero. This can be used to resolve vanishing

CHAPTER 2. THEORETICAL BACKGROUND 16

gradient issues in the networks

ReLU(x) = max(0, x) =

0, if x < 0

x, otherwise
(2.4)

• Sigmoid Function: This function helps map the input to any value between
0 and 1. This function is smooth, continuous facilitates smooth backprop-
agation.

σ(x) = 1
1 + e−x

(2.5)

• Hyperbolic Tangent funcion (tanh): This function helps map the input to
any value between 1 and -1. The function has a threshold of 0 with any
value above 0 is considered high and value below 0 is mapped to negative
values.

tanh(x) = e2x − 1
e2x + 1 (2.6)

• Step Function: Here we choose a threshold to determine a high or low
output. This function however is non differentiable, hence cannot be used
for backpropagation.

hardtanh(x) =

0, if x <= T

1, if x > T
(2.7)

• Softmax Function: We use softmax functions to normalize the outputs
which are weighted sum values to probabilities that sum up to one. If we
were to apply multi level classification where we are classifying more than
binary outputs(k > 2 classes) we use softmax to determine the probability
of the membership to each class. In case the output dimension doutput = 1,
softmax is used for regression or binary classification.

z = z1, z2, z3..., zk

softmax(zi) = ezi∑k
j=1 e

zj

(2.8)

2.5.2 Training Feed Forward Networks

The Pattern Recognition books by Christopher M. Bishop [16] [17] have been
referred for the below section. Readers are recommended to refer these books for
in-depth knowledge about the subject. We have train our Neural Network for

CHAPTER 2. THEORETICAL BACKGROUND 17

our learning task. The idea is to use target labels from the dataset to accomplish
the task. Our learning algorithm estimates the underlying distribution p(Y |X)
where yi is the target label or output of an input example xi in the training set
D.

pmodel(yi|xi; θ) = Ŷi (2.9)

We would like to have model estimation pmodel which is closest to p(Y |X) i.e the
true distribution of data. For the input x1, x2, x3...xm with m samples param-
eterized by θ and respective target labels y1, y2, y3...ym we want to estimate Ŷi
on unseen data. One of the ways of doing so is by using Maximum Likelihood
Estimation(MLE).

θMLE = argmax
θ

pmodel(Y |X; θ)

argmax
θ

m∏
i=1

pmodel(yi|xi; θ)

θMLE = argmax
θ

m∑
i=1

log pmodel(yi|xi; θ)

(2.10)

Suppose we use a Gaussian to model the conditional distribution. The condi-
tional log likelihood would look like below.

θMLE = argmin
θ
−pmodel(Y |X; θ)

m∑
i=1

log pmodel(yi|xi; θ) = −m log σ −m/2 log 2Π−
m∑
i=1

(f(x; θ)− yi)2/2σ2
(2.11)

We would be only interested in theta hence we can write the equation as

θMLE = argmin
θ

m∑
i=1

(f(x; θ)− yi)2 (2.12)

So in a cost function where pmodel(y|x) is a gaussian N (y; f(x; θ), I), we would
like to define a cost function

J(θ) = Ex,y p̂f(x; θ)− yi)2

θMLE = argmin
θ

Exi,yi∼p̂data
L(f(xi, θ), yi)

(2.13)

The above generalised loss function is based on pre sample loss based on predicted
output and expected output. Now we need to understand that we have no idea
about true distribution of the data, hence we work on empirical distribution
p̂data. Now we will define empirical risk over m training samples. We use a loss
function to minimize empirical risk over these training samples. One thing to

CHAPTER 2. THEORETICAL BACKGROUND 18

note is that this idea can be very prone to overfitting as it may try to memorize
the training set and perform poorly on unseen data.

Exi,yi∼p̂data
L(f(xi, θ), yi) = 1/m

m∑
i=1
L(f(xi), θ), yi) (2.14)

Empirical risk over all training samples can be computationally very expensive.
Modelling over each value can consume a lot of computational load. Minimiz-
ing the loss function over the parameter space does not seem possible. Hence
Gradient Descent is used to optimize the loss function. Gradient descent makes
us move small steps in the direction opposite to gradient function and reach a
minimum. From this we can estimate the local parameters. Over the course of
steps to minimums the function can reach a local minimum and those should be
avoided.

θMLE = argmin
θ

Exi,yi∼p̂data
L(f(xi, θ), yi)

= argmin
θ

1
m

m∑
i=1
L(f(xi, θ), yi)

min
u,uTu=1

uT∇θL(f(x, θ), y)

(2.15)

The directional derivative of L along u is minimized when u points opposite to
direction as ∇θL. We can decrease L when we move in the opposite direction of
negative gradient by method of steepest descent.

θ′ = θ − η∇θL (2.16)

where, η is the learning rate which can also be called the step size. It is more
common to evaluate the model parameters only on sampled mini-batches of data.
Most optimization algorithms converge faster (overall) using rapid approxima-
tions of gradients rather than slower exact gradients. To conclude the algorithm
1 takes a mini batch of m samples, a loss function, a function f with θ as input.
It aims to return the best parameters for θ.

2.5.3 Recurrent Neural Network (RNN)

Recurrent Neural Networks are used to handle data that is sequential in nature.
These models have previously been used in speech recognition [18] [19] and
information extraction. These networks are experts in training sequences. The
network allows cyclic connections. The output of previous time slab is fed as

CHAPTER 2. THEORETICAL BACKGROUND 19

Algorithm 1 Stochastic Gradient Descent
Input: Parameter θ
Input: Training Set D = {(x1, y1), (x2, y2)....(xm, ym)}
Input: Loss function L

1: while stopping criteria not met do
2: Sample a mini-batch of m examples {(x1, y1), ..., (xm, ym)} and target la-

bels yi
3: Compute the gradient estimate ĝ = 1/m∇θL(f(x, θ), y)
4: θ ← θ − ηĝ
5: end while
6: return θ

input to the next time slab. This in turn helps Network maintain a memory
across different times.

Figure 2.8: Recurrent Network from [20]

RNN uses the concept of recursiveness in hidden units.

h(t) = f(h(t− 1), x(t); θ) (2.17)

The above equation uses folded hidden unit at time t where x(t) is input at time
t. h(t− 1) is hidden output at time t-1.

a(t) = Wh(t− 1) + Ux(t) + b

h(t) = tanh a(t)

o(t) = V h(t) + c

ŷ(t) = softmax(o(t))

(2.18)

CHAPTER 2. THEORETICAL BACKGROUND 20

where, parameters W, U and V are the weight matrices for connections between
the two hidden layers over time, input to the hidden layer, and hidden to output
layer respectively, and b and c are the bias vectors for the hidden and the output
layer respectively. We use hyperbolic tangent function transformation of output
in the hidden layer. For output transformation we use softmax function to obtain
the output from the model. The final output is ˆy(t) for a given timestep t while
h(t),h(t-1) are hidden layer outputs from t-1, t time slab. The intermediate
results for time t are a(t) and o(t).

Figure 2.9: Unfolded Recurrent Network from [17]

While forward propagation occurs from left to right in case of an unrolled graph.
The learning process should occur from right to left using backpropagation but
this can computationally expensive. We need to get all past information to
use for future transformations. We can use the existing list of training labels
and not indulge in parallel training, where gradients for each time step can be
computed stand-alone. This is called Teacher Forcing. Teacher forcing is a
training technique that is applicable to RNNs that have connections from their
output to their hidden states at the next time step. Also we can compute gradient
in unrolled RNN using backpropagation like we have done for Feed forward NN.

CHAPTER 2. THEORETICAL BACKGROUND 21

2.5.4 Attention

Traditional RNN convert all information from a source sentence into a fixed
length vector. This is a potential problem for very long sentences. Attention
Mechanism takes n arguments y1, y2...yn and a context vector c. Combining
different parts of yi it returns z. Attention receive input sentences a = a1, a2...ala

and b = b1, b2...blb where ai,bj ∈ Rd is a word embedding vector of dimension d
and that each sentence is prepended with a “NULL” token. The training data
comes in the form of labeled pairs.

Trainingdata = {a(n), b(n), y(n)}Nn=1

yN = {yn1 , yn2 ...ynC}
(2.19)

From this the model creates input representations a = a1, a2..ala and b =
b1, b2..blb . The vanilla versions of the model defines a := a and b := b. The
versions do not consider the word order. From this it creates soft alignment
of a,b using variant of neural attention and decompose the problem into the
comparison of aligned subphrases. The next step is to compare each of aligned
subphrases to produce set of vectors {V1,i}lai=1 for a and {V2,j}lbj=1. Each V1,i is
a non linear combination of ai and its softly aligned subphrase in b. In the final
step aggregate the sets {V1,i}lai=1 for a and {V2,j}lbj=1 for b from the previous step
and use the result to predict ŷ.

2.6 Word and Character Embeddings

Deep Learning algorithms cannot take raw text as input. We need to encode
them as numbers. Word Embedding maps words or phrases from vocabulary
into vectors or real numbers. The mapping task uses methods like neural net-
works, dimension reduction in pca. We discuss this section by referring to at-
tribute embedding sections in Deep Matcher [21]. Lets say set of attributes
A ∈ A1, A2, A3..Aj have to be converted to word embedding ue1,j , ue2,j . For
attribute Aj ∈ A we denote word embeddings for entity mentions e1, e2 as

ue1,j , ue2,j ∈ Rd×m

wordembedding = {(ue1,j , ue2,j)}Nj=1

(2.20)

Word embedding encodes a word to a fixed d dimensional vector. The technique
involves using a lookup table. This table has to be learned or trained using a

CHAPTER 2. THEORETICAL BACKGROUND 22

network on wikipedia or corpus of the task in hand. This method cannot handle
out of vocabulary words. In this aspect character embeddings fare better.
Character embedding takes characters in the word as input and uses neural
network to produce a d dimensional representations of the word. Here the output
is a trained model and not a lookup table. The idea is that words are made of
morphenes or meaningful set of characters of varying lengths. For example, the
word “kindness” is made of two morphemes, “kind” and “ness”. This type of
embeddings perform better with infrequent words and is more robust to spelling
mistakes. Hence character embeddings perform well on entity matching tasks.

Chapter 3

Related Works

In this chapter, we discuss some of the work done related to topic “Entity Match-
ing in Noisy Semistructured Data”. This includes some of the link discovery
approaches which use embeddings, label match approaches, ontology learning
strategies. One thing to note that the literature discussed in this chapter may
not be exhaustive but surely covers literature closely related to our topic.

3.1 Introduction

Our problem can be paraphrased in different ways. We can call entity matching
in RDF as coreference resolution, record linkage, instance matching in RDFs, link
detection, link inference etc under different contexts. You can refer to Figure
3.1. We discuss how these problems have been approached and how they are
different from our approaches plus what are the parallels we can draw.

The Linked Data Cloud (LDC) datasets is growing in size and there are many
datasets which have to be interlinked. Manual interlinking of such large datasets
is nearly not feasible and there is a need to find a way to learn the Interlink
resources which are the same via some supervised and unsupervised approaches.
These approaches should be optimised, preprocessed and evaluated at a very
large scale. One would like to avoid a cartesian product of resource comparison
in the LDC because that can be really computationally very expensive. Also an
approach which can be run offline would be preferred as these Resource/Entity
comparisons can run for a long time. We will discuss some approaches in more
detail in the coming sections.

23

CHAPTER 3. RELATED WORKS 24

Figure 3.1: Entity Matching Terminology

There has been a lot of work done in the field of Link Detection which has been
discussed in extensive detail in the paper “A survey of current Link Discovery
frameworks” [10]. Some of the content in this section have been taken from that
paper and its really recommended that you really go through the content in this
reference paper.

3.2 Link Detection Workflow

Link Detection techniques follow an approach which usually involves a standard
workflow primarily source and target datasets, a matching algorithm and a set
of links. The main phases involved are pre processing, matching stage and post
processing.

The target input and output datasets typically should follow RDF/OWL schema
because property and schema mappings have to be done seamlessly. The human
expert labelling also follow OWL sameAs property to label matches. Link De-
tection involves computing similarity of resources based on one or more selection
criteria. Specifying a linking configuration thus entails the specification of the
elements (properties, context) to evaluate as well as the similarity measures to
apply (e.g., a 3-gram string similarity, Jaccard similarity for sets or numerical
difference) and a way to derive a combined linking decision from the individual
similarity values, e.g., based on similarity thresholds to meet [10]. We use value
fetch at the literal level as context before applying to a similarity measure us-
ing a Deep Learning algorithm. Now coming to the phase of pre processing the

CHAPTER 3. RELATED WORKS 25

Figure 3.2: Link Detection Workflow [10]

methods would strive to reduce the search space for comparisons of resources.
We explore only labelled search space(refer section 4.4.1) and do not consider
the unlabelled properties. Standard way of reducing search space is blocking and
filtering. Blocking partitions the datasets into multiple partitions or blocks such
that links are only determined between resources of the same partition. Filtering
involves removing pair of records which do not follow similarity conditions. In
the stage of Instance matching or Ontology matching the approach can be either
structure based or element based where the method studies the literal values.
Our approach does not study structure as a whole but uses the structure only to
fetch literal values. Structured techniques maybe better because it takes context
into account and hence it can consider semantics between resources. The final
phase of postprocessing involves tightening loose ends by eliminating inconsis-
tencies mainly using human intervention. Our postprocessing involves manually
adding some labels if they have been missed during the transformation phase in
the pipeline.

3.3 String Match Approaches

Now we can look at how previously instances from 2 RDF datasets have been
matched using string match algorithms. SERIMI [22] deals with interlinking
datasets on Linked Data Cloud (LDC). We know that the some of LDC date-
sets follow RDF schemas and has a large collection of entities bounded by its
schema and semantics. SERIMI uses state of the art string matching algorithms
at the selection phase and with a function of similarity for approximating the

CHAPTER 3. RELATED WORKS 26

notion of similarity during the disambiguation phase. The approach searches for
resources in the target dataset that share the same/similar labels. This will refer
to pseudo homonym set. By a naive approach here pseudo-homonym set may
have instances of different classes or instances of the same classes sharing same
labels. Look at Figure 3.3, In the set A searching by label ”Brazil” we get results
from class ”country” and ”river”. We get more results from multiple classes for
labels ”Portugal” and ”Spain” too. Hence fetching by just by label match is a
bad idea. To solve this issue the paper proposes Resource Description Similarity,
or RDS.

Figure 3.3: Pseudo Homonym set from [22]

The SERIMI algorithm uses RDF properties and SPARQL to select objects.
The selection process involves selecting literals(like Labels) of a fixed size and
for comparison uses Jaro Winkler similarity. These similarity measures does
not use the knowledge of the RDF schema. The property extraction process is
oblivious to the schema and it does not involve tree parsing unlike ours. Jaro
Winkler approaches are not robust enough on dirty data or on large text data.
The SERMI approach has proved to work on large LDC datasets like DBpedia
with good results.
Correference resolution requires efficient use of data sources when there isnt
schema mapping involved. If the data sources are big, instance matching has
to be made efficient. KnoFuss [23] implements a component-based approach,
which allows flexible selection and tuning of methods. It takes the ontologi-
cal schemata into account to improve the reusability of methods. The task of
KnoFuss architecture is to handle data integration process: instance coreferenc-
ing, inconsistency detection and inconsistency resolution. It contains method
descriptors which are used to perform method selection and assign method pa-
rameters.Also there is an application context object which defines the parameters
of the method in more specific conditions. Here applicable methods is selected by
running the selection criteria queries on the incoming data. Using available selec-
tion criteria, context-dependent configuration parameters are defined. Lets say
the method used in context has not been used before, a new application context

CHAPTER 3. RELATED WORKS 27

Figure 3.4: KnoFuss architecture via method selection [23]

is defined. In our method ,the class to which entity is mapped is fixed and we do
not explore the possibility of matching entities across different classes and hence
we do not handle Homonyms. KnoFuss introduces that flexibility. KnoFuss uses
traditional string match methods hence may not be robust to dirty data. In
Knofuss, the scope for exploring all data properties is less and it can be compu-
tationally expensive to do the same. In our method we explore more properties
and this can help infer better results. The KnoFuss architecture uses SPARQL
wrapper for selection criteria and hence the result retrieval can be really slow as
well. In our approach we have minimized the use of the wrapper and hence it
the data fetching can be fast. We have additionally tested our approach on LDC
datasets which has proved effectiveness on real world datasets and KnoFuss has
not been tested on DBpedia and Wikidata datasets.

Our primary dataset is an ITunes music dataset which aims to link two song
entities if they are the same. There has also been work done in interlinking Music
RDF datasets which is Automatic Interlinking of Music Datasets on the Semantic
Web [24]. This method goes for a literal lookup and performs a string match
at the query level in SPARQL like SERIMI [22]. At the query level sometimes
there is no disambiguation and hence to distinguish further Music Interlinking[24]
uses string match of properties to eliminate ambiguity. Our dataset can eliminate
ambiguity when there are semantic interoperability conflicts which hasn’t been
proved in the Music Interlinking [24] and SEREMI [22]. In case we are trying
to distinguish ”Teriyaki Boys” and ”Tokyo Drift” which are basically the same
entity. We wont get a match at the query level nor at the string match level which

CHAPTER 3. RELATED WORKS 28

is a visible drawback. This method does not take into account the schema of both
datasets and hence is not flexible with varying ontologies. Music Interlinking [24]
has to follow a standard schema like OWL or RDF because it uses sparql for
literal lookup.

3.4 Schema Based Approaches

Our method relies on pre defined schema mappings for data properties prior to
performing Entity Matching in the pipeline. Our approach does not learn these
mappings by itself because we manually define it. Now there has been work
done to learn these mappings automatically by data integration algorithms [25].
There have been approaches in which the ontologies have been used to match
entities. One of the ways to match relational databases has been using DBMS
keys. Similar approach has been used in Graph databases too [26].

We need to understand that learning Keys for Graph Databases are much more
complex than Relational Databases. Graph patterns are used to identify entities
like we use schemas and primary keys in relational databases. The methods
like SERIMI we discussed before only rely on label equality but Attribute based
Ontological matching [26] take topological patterns into account.

Consider ϕ1 and ϕ2 be two Ontological graph keys(OGK) which represents Pat-
tern 1 and Pattern 2 as represented in Figure 3.4. ϕ1 states that “if two songs
share the same name and album, then they refer to the same song”. Also for
identifying an album we need the name, year of release and artist. Lets look at
the other 3 graphs which represent entities v1, v2, v3. Now without considering
properties in Ontology O, we can only apply OGK to v3 as we have all the at-
tributes needed for ϕ1 and ϕ2. However if we study Ontology O we can extend
the idea OGK to v1 and v2 as we can see Hit is a subclass of song, OST is a
subclass of album and band is a subclass of artist. After applying ϕ1 and ϕ2
we can infer now v1 and v2 are the same song. Using these OGKs, Ontology 0,
Graph G and a matching cost, it defines the Entity Matching Problem using an
algorithm chase.

Now there are some similarities with our approach where we consider the Ontol-
ogy or a subset of it for referring to the properties which is also graph pattern like
an OGK. We parse these patterns to get values for properties. The difference
however is we do not consider multiple patterns of the graphs for identifying
entities.

CHAPTER 3. RELATED WORKS 29

Figure 3.5: Ontology Graph key for Ontological Matching [26]

Computing Class/Node similarity and property similarity help in seeing if indi-
viduals refer to the same entity. In order to map similar properties at the schema
level, we do it manually in our approach using equivalent property. One of the
ways to find node similarity is by using a lowest common ancestor(LCA) for a
pair of nodes. Hence computing Taxonomic similarity is one of the methods for
Entity Matching. Pathsim [27] is a method which uses Lowest Common Ances-
tor and Taxonomic relations. According to PathSim, the similarity between two
nodes is directly proportional to the amount of paths that meet the meta-path
description among them. ”A Framework for Semantic Similarity Measures to en-
hance Knowledge Graph Quality” [28] presents an ontological similarity measure
OnSim based on hierarchy and neighborhood. But plain taxonomic ontology
based methods ignores semantics as well as the values for properties. The thesis
[28] also presents IC-OnSim which takes ontology, neighborhood plus shared in-
formation between the nodes for checking similarity. If the nodes are annotated
with an article or description it compares the text corpora while determining
similarity score for the nodes. Finally the thesis presents GADES architecture
which determines similarity of nodes based on taxonomy, shared information,

CHAPTER 3. RELATED WORKS 30

neighbors and information of attributes. Attribute similarity involves compar-
ing texts in data properties using various distance measures. In our approach
attribute comparison, text corporas are all compared using Deep Matcher [21]
which has proven to perform really well as compared to conventional string match
approaches.

3.5 Embedding based Approaches

In the approaches discussed till now we have not taken into account different rep-
resentations for Knowledge graphs like KG embeddings. Latent feature methods
can be used for knowledge graph analysis. They serve as convenient representa-
tions for learning knowledge graphs which can in turn be used for Link prediction.
LiteralE [29] incorporates literals into Knowledge Graph embeddings. LiteralE
directly enriches these embeddings with information from literals via a learnable
parametrized function.

Figure 3.6: Overview on how LiteralE is applied to the base scoring function
f . LiteralE takes the embedding and the corresponding literals as input, and
combines them via a learnable function g. The output is a joint embedding

which is further used in the score function f [29].

Latent methods represent entities and relations of a knowledge graph using low
dimensional vectors. LiteralE follows a score based approach unlike other latent
methods incorporating literals in knowledge graphs. To put a summary LiteralE
is a method which takes entity embedding, literal vector as an input and maps

CHAPTER 3. RELATED WORKS 31

them to a vector of entity embedding dimension [29]. There arent many parallels
of this method to our approach except for the fact that LiteralE also takes literals
into account for link detection. Also the method does not just learn similarity
function to compare similarity of entities, it also can infer other links including
”sameAs” which can help in completing the knowledge graph.

3.6 Conclusion

This section has given an overview of the standard ways to approach an en-
tity matching problem in knowledge graphs plus the ways to infer links as well.
SEREMI [22], KnoFuss [23], Automatic Interlinking of Music Datasets on the
Semantic Web [24] have all used string similarity approach following a literal
lookup at the atomic levels. Attribute based ontological matching [26] and lit-
eralE [29] have learned the structure of the graph plus literals can detect and
infer hidden links. GADES [28] uses attribute based, structure based and taxon-
omy based approach .These methods can also help detecting same entities and
in way performing deduplication. Our approach follows in turn follows a mix of
these approaches where we also study literals by parsing through the structure
of the graph. Our notable contributions include handling semantic interoper-
ability conflicts, considering long literal attributes which can include dirty data,
handling empty attributes.

Chapter 4

Entity Matching Pipeline

We now enter the core section of the thesis, where we describe our Entity Match-
ing approach on RDF datasets which have semantic interoperability conflicts.
Some of the concepts used in this section have been discussed in the background
chapter, and we may not elaborate on them in detail here. We start with an
overview of the pipeline, and next in each section, we will discuss the different
parts of the pipeline, which will lead us to solve our Entity Matching Problem.

4.1 Pipeline

Our proposed pipeline would take as input a pair of annotated knowledge graphs
and predict match or no match for a pair of entities belonging to its respective
knowledge graphs where the class to which the entity belongs is fixed. The an-
notated knowledge graph after conflict resolution is transformed to a dataframe
where each row vector represents values taken for each attribute for a pair of
entities and column vector indicates values taken for an attribute by all entities.
Using this dataframe for each row vector a similarity representation is created
by representing similarity score for a given attribute which is repeated for each
attribute for all the entity pairs. The similarity representation matrix merged
with label vector is passed to a classifier which performs label prediction. The
Figure 4.1 is a pictorial representation of the pipeline.

Lets refer to Section 1.2 where we have discussed the problem statement. Our
input graphs G1 and G2 are left and right RDF graphs in our pipeline in Fig-
ure 4.1. The conflict handling phase are done independently for both graphs as
we see in the problem statement using resolve function. Following the conflict

32

CHAPTER 4. ENTITY MATCHING PIPELINE 33

handling phase we may have new relations which has to be mapped because some
of the conflicts like representation conflicts are resolved by adding new proper-
ties. Unless we map new properties we add in conflict handling phase, they wont
be considered. Next phase of the pipeline is the transformation function where
we transform RDF data to a dataframe. The column vector for the dataframe
is created using mapped properties. Next Data vector for dataframe is created
using graph parsers which fetches values for these properties. The dataframe is
later passed onto the Deep Learning model which learns the values for properties
and returns the match or no match labels. Going by the KnoFuss workflow dis-
cussed in section 3.2 we can categorize input phase plus conflict handling phase
as a part of Pre processing, Transformation and Deep Learning Model as part
of instance matching. We have not explicitly mentioned post processing phase
in the pipeline but that would correspond to handling inconsistencies in our
evaluation section.

Figure 4.1: Entity Matching Pipeline: We propose a three-step pipeline where
the first step fixes semantic conflicts present in the inputs. Second, we trans-
form the input data into a vector representation to finally apply a deep learning

model that summarizes the attributes to predict entity matches.

4.2 Preprocessing

We discuss both input Knowledge Graphs in this section which follow the RD-
F/OWL schema. Our Input (Right and Left RDF graphs) is a set of triples
consisting of subject predicate objects. The graph consists of a schema which
acts like a skeleton of the whole graph and is called an Ontology. The most im-
portant aspect in this section is pre processing where we need to have a schema
in place for our transformation step in the pipeline.

CHAPTER 4. ENTITY MATCHING PIPELINE 34

Figure 4.2: Sample Left Right Ontology

Lets consider Figure 4.2 which are 2 RDF graphs(R and L) which have classes
Lclass = {S,A,C}, Rclass = {D,E, F}. We have object properties Lobject =
{r1, r2, r3}, Robject = {r4, r5, r6} and data properties Lliteral = {L1, L2, L3, L4},
Rliteral = {L5, L6, L7, L8}. From Figure 4.2 we have individuals Lindividual =
{I1, I2, I3, A1, A2} and Rindividual = {I6, I7, I8, E1, E2}. We need to map the
individuals to sameAs or differentFrom which can also be called labels = {1, 0}
where 1 indicates sameAs, 0 indicates differentFrom and this forms our classifica-
tion problem. For any classification problem we need data i.e more information
on individuals. Below we describe a sample Input to our pipeline without se-
mantic conflicts. We have some information on individuals which are label and
literal values which we discuss next.

I1triples represents triples set of individual I1, I2triples represents triples set of
individual I2 and so on. Label set represents individuals represents same and
different entities. Using the below data can we infer I3 sameAs I8? Are I3 and I8
representing same entity? We can see I3 has literal value “escape” for L1, “Jan
11, 1999” for L2. For I8 we see the literal L5 has value as “escape” too, “Jan 11,
1999” for L6 which is same for I3. We see the same pattern for the other pairs
of individuals. The more data we have, the more we can infer. How do we know
which properties should we consider? We should define these properties before
hand which we call property mappings. We need to define property equivalence,
L2 is equivalent to L5, L3 equivalent L6 etc. If we do not define equivalent
property and classes, We may have to force a cartesian product of comparisons
across entities of all classes and check all properties. This maybe really inefficient
as discussed in KnoFuss architecture [23].

CHAPTER 4. ENTITY MATCHING PIPELINE 35

Example 1:

Lclass = {S, A, C}
Rclass = {D, E, F}
Lobject = {r1, r2, r3}
Robject = {r4, r5, r6}
Lliteral = {L1, L2, L3, L4}
Rliteral = {L5, L6, L7, L8}
Lindividual = {I1, I2, I3, A1, A2}
Rindividual = {I6, I7, I8, E1, E2}
I1triples = {(I1, L1, “beat it′′), (I1, L2, “Jan16, 2016′′), (I1, r1, A1), (A1, L4, “T hriller′′)}
I6triples = {(I6, L5, “Beat it′′), (I6, L6, “Jan16, 2016′′), (I6, r5, E1), (E1, L8, “T hriller′′)}
I2triples = {(I2, L1, “Hero′′), (I2, L2, “Jan11, 1999′′), (I1, r1, A2), (A1, L4, “Escape′′)}
I7triples = {(I7, L5, “Heroo′′), (I7, L6, “Jan11, 1999′′), (I7, r5, E2), (E2, L8, “escape′′)}
I3triples = {(I3, L1, “escape′′), (I3, L2, “Jan11, 1999′′), (I3, r1, A2)}
I8triples = {(I8, L5, “escape′′), (I8, L6, “Jan11, 1999′′), (I8, r5, E2)}
Label = {(I1, sameAs, I6), (I2, sameAs, I7),

(I1, differentF rom, I8), (I3, differentF rom, I6)}

4.3 Conflict Handling

When we talk of Linked Data Cloud we have to understand the inconsistencies
in formats, notations and structures across all open RDF datasets. When there
are conflicts in these notations, it would affect our Entity Matching tasks. It is
important that we identify what semantic interoperability conflicts (2.4) we have
at the schema level or at the data level. We discuss how we have handled some
conflicts we have mentioned in 2.4 to solve our task.

4.3.1 Identifying Conflicts

In the figure 4.3 we see 3 different conflicts. The first kind is of the type GRAN-
ULARITY. We see that L2 is of type string with value 20 kgs and also with value
20,000 grams. The base algorithm we use for comparing literals or even a raw
string match algorithm cannot infer if they belong to the same individual using
that property. On the other hand if one of the value was string and other was in-
teger, it would be a SCHEMATIC conflict. A SCHEMATIC conflict would make
comparisons difficult. Now to further extend if one individual would have been
20kg while the other 44 pounds, it would be a REPRESENTATION conflict. In
the second example in figure 4.3 there are 2 different date formats which can be

CHAPTER 4. ENTITY MATCHING PIPELINE 36

Figure 4.3: Semantic Interoperability Conflicts

categorised as REPRESENTATION conflict. Finally the third conflict in figure
4.3 would be identified as a DOMAIN conflict. Conflict identification is on the
whole a manual task in our approach.

4.3.2 Resolving Conflicts

Now in order to resolve the conflicts we use sparql to fetch, modify,alter the
literal values. The task is again to minimize comparison across individuals (avoid
cartesian product) to resolve conflicts.

Lets look at the example below with individuals I8,I9. Lets first define mappings
where we say L1 is equivalent to L5, L2 is equivalent to L6, L3 is equivalent
to L7 and finally L4 is equivalent to L8. Now L2 and L6 follow different date
formats. We standardize the format using a function ϕI∗REPRESENTATION

CHAPTER 4. ENTITY MATCHING PIPELINE 37

because its a representative conflict. Now the entity matching algorithm can
compare L2 and L6 better because the date format is the same. Lets consider
L4 and L8. Both represent price of the album. They are using different cur-
rency formats. This representative conflict is again resolved using the function
ϕI∗REPRESENTATION . As you can see in I8resolved and I9resolved we add a new
resource a2 in first dataset and b2 in second dataset. We split the price(a2,b2)
into currency and amount as literals for both datasets. Now we can use the cur-
rency conversion function to standardise the currency to Euro. After this we can
compare the prices better in our approach after replacing the price literal with
currency and amount. Coming to the L1 and L5 which has values “Pigs” and
“Pigman”. We are not sure if it refers to the same resource. But if we observe
its name attribute and both belong to the same album and has same release
date. We define a predicate that if a set of resources have same album name and
release date it maybe the same song and we standardise value for song name. We
need to minimise comparisons here and hence we only consider strings belong-
ing to same album and those which have same release date. On this subset we
perform string match to check for partial string match and see if its an acronym
or an abbreviation or just another synonym. If yes the values are replaced and
standardised. All of these are defined using the function ϕI∗DOMAIN . Now we
have a modified set of triples as we see in I8resolved and I9resolved.

Example 2:

I8conflicts = {(I8, L1, ”P igs”), (I8, L2, ”21− 01− 76”), (I8, r1, a1),
(a1, L3, “Animals′′), (a1, L4, “EUR1′′)}
I9conflicts = {(I9, L5, “P ig man′′), (I9, L6, “01− 21− 76′′), (I9, r5, b1),
(b1, L7, “animals′′), (b1, L8, “Rs.88′′)}
Iresolve = {ϕI∗DOMAIN , ϕI∗REP RESENT AT ION}
ϕI∗REP RESENT AT ION ((I8, L2, “21− 01− 76′′), (I9, L6, “01− 21− 76′′))
ϕI∗REP RESENT AT ION ((a1, L4, “EUR1′′), (b1, L8, “Rs.88′′))
ϕI∗DOMAIN ((I8, L1, “P igs“), (I9, L5, “P igman′′))
I8resolved = {(I8, L1, “P igs′′), (I8, L2, “21− Jan− 76′′), (I8, r1, a1), (I8, r2, 12)
(a1, L3, “Animals′′), (a2, L41, “EUR′′), (a2, L42, “1′′)}
I9resolved = {(I9, L5, “P igs′′), (I9, L6, “21− Jan− 76′′), (I9, r5, b1), (I9, r6, b2)
(b1, L7, “animals′′), (b2, L81, “EUR′′), (b2, L82, “1′′)}

4.4 Data Transformation

This section mainly discusses how we fetch the preprocessed data from the pre-
vious phase in the pipeline. The aim in this phase is to have the data in the form

CHAPTER 4. ENTITY MATCHING PIPELINE 38

desired for the Deep Learning algorithm. We recommend you to go through the
documentation of Deep matcher [30] to learn about the input format desired by
our deep learning model. The rdf data in turtle format returned by the previous
phase is far from what Deep Matcher wants. Figure 4.4 represents an instance
which is an input pair we are sending to the transformation phase. Left graph
is for left entity and right graph is for right entity.

Figure 4.4: Pair of input to transformation

4.4.1 Column Vector

We need to first get the column vector in the form our deep matcher algo-
rithm wants. We need an Id vector which can be auto generated per pair of
entities/individuals. There is also a label attribute which considers labels i.e
1 for a match or 0 for no match. Coming to the rest we consider a pair of
equivalent properties. The left schema properties need to have a prefix left
and right schema properties need to have a prefix right .The name of the
property can be any one of the labels of left or right schema. i.e if we have
(L1, equiprop, L5), the column vector will be (left L1, right L1). Lets look at
the example below we have set of literals in Lliteral, set of mappings Map and a
function ϕMap Prop(Lliteral,Map,Column) which returns column vector col.

Example 3:

Column = {id, label}
Lliteral = {L1, L2, L3, L4}, Rliteral = {L5, L6, L7, L8},
Map = {(L1, equiprop, L5), (L2, equiprop, L6), (L3, equiprop, L7), (L4, equiprop, L8)}
Column = ϕMap P rop(Lliteral, Map, Column)
Column = {id, label, left L1, left L2, left L3, left L4, right L1, right L2, right L3, right L4}

CHAPTER 4. ENTITY MATCHING PIPELINE 39

4.4.2 Data Vectors

Now we have the column vector by the method discussed in the previous sub-
section. Next step would be to fetch values from literals for the resources. The
transformation should be in desired format for Deep Matcher [30]. The obvious
way to fetch data is using a SPARQL wrapper. But a sparql fetch is not an
efficient method as each fetch consumes a lot of time. An alternative we use is
Graph parse method. We will discuss how we parse to the literal using graph
parse methods like Depth first search. Our input is a column vector and RDF
dataset with resolved conflicts. Prerequisite is also a mapping to pair of equiv-
alent properties which we consider for our deep matcher algorithm. The output
will be a data vector for all the columns we consider.

Below we present a sample fetch function of data for individuals. We take data
from example 1 and column vector from example 2.We discuss the transformation
step with data vector creation in detail. Primarily we have the fetch function
which takes the individual and literal to be fetched as parameters. It parses the
graph and fetches the value for the literal. We do this we for all individuals.
If literal belongs to left schema we append the fetched value in the left literal
vector. If literal belongs to right schema, we find the equivalent literal from left
schema and populate it in the right literal.In case of a label vector, for pair of
individuals if the relation is sameAs, its mapped to 1 and 0 otherwise. By this
we have literal vectors for each literals and label vectors. By merging all vectors
into dataframe our data is ready for Deep Matcher algorithm. To illustrate
further,lets say we want to fetch the literal L1 value for I1 as we have done in
Example 4 we get “Beat it”. Similarly if we have to fetch literal L5 value for
I6 we also get “Beat it”. We have equivalent property vector from example 3
where we know L1 and L5 are equivalent. L1 is mapped to left L1 vector and
L5 to right L1 vector. We repeat this for each pair in labels. After each vector
is populated we merge it to a dataframe which is later passed to deep matcher.

CHAPTER 4. ENTITY MATCHING PIPELINE 40

Example 4:

fetch(I1, L1) = “Beat it′′ fetch(I1, L2) = “Jan 16, 2016′′ fetch(I1, L4) = “T hriller′′

fetch(I6, L5) = “Beat it′′ fetch(I6, L6) = “Jan 16, 2016′′ fetch(I6, L8) = “T hriller′′

fetch(I2, L1) = “Hero′′ fetch(I2, L2) = “Jan 11, 1999′′ fetch(I2, L4) = “Escape′′

fetch(I7, L5) = “Heroo′′ fetch(I7, L6) = “Jan 11, 1999′′ fetch(I7, L8) = “escape′′

fetch(I3, L1) = “escape′′ fetch(I3, L2) = “Jan 11, 1999′′ fetch(I3, L4) = “Escape′′

fetch(I8, L5) = “escape′′ fetch(I8, L6) = “Jan 11, 1999′′ fetch(I8, L8) = “escape′′

Label(I1, I6) = 1 Label(I2, I7) = 1 Label(I1, I8) = 0 Label(I3, I6) = 0
left L1 = “Beat it′′, “Hero′′, “Beat it′′, “escape′′

right L1 = “Beat it′′, “Heroo′′, “escape′′, “Beat it′′

left L2 = “Jan 16, 2016′′, “Jan 11, 1999′′, “Jan 16, 2016′′, “Jan 11, 1999′′

right L2 = “Jan 16, 2016′′, “Jan 11, 1999′′, “Jan 11, 1999′′, “Jan 16, 1999′′

left L4 = “T hriller′′, “Escape′′, “T hriller′′, “Escape′′

right L4 = “T hriller′′, “Escape′′, “escape′′, “T hriller′′

label = 1, 1, 0, 0
T = merge(id, label, left L1, right L1, left L2, right L2, left L4, right L4)

4.5 Deep Learning Model

In this phase we enter the last step of the pipeline. In this document we have
often referred to this Deep Learning Model phase as Deep Matcher. However we
can use different Deep Learning Models like Magellan [31]. The Deep Learning
model is expected to be robust to dirty, noisy, long textual data. Hence choosing
a good model is critical to our Entity Matching Task. This section discusses
Deep Matcher [21] in some detail.

4.5.1 General Architecture

The Deep Learning Model is expected to take data from properties of literals
for a pair of individuals and predict if they refer to the same individuals. Even
a well structured text input alone cannot be read by a Deep Learning Model.
First we need to learn character or word embeddings for text representations in a
vector format. These embeddings can be trained or be pre trained on an external
text corpora . The embeddings should be able to represent large sequences of
text. The word embeddings vectors can be of varying dimensions and hence it
should have a good function for dimensional reduction and summarization. The
summarized representation helps deduce a similarity representation indicating
similarity score for an attribute per entity pair. Lastly the Deep Learning Model

CHAPTER 4. ENTITY MATCHING PIPELINE 41

needs a good classifier to determine for a set of similarity representations if the
entity pair is similar or not.

Figure 4.5: Entity Matching problem types

4.5.2 Deep Matcher Motivation

Traditional string match methods give priority to characters at the beginning of
the string. If there are two strings by name “Michael M Jackson” and “Jackson
Michael”, conventional string match algorithms will probably flag a mismatch
in strings. Deep Matcher(Hybrid or Attention) would take one of the strings as
context and do a character comparison from all direction using an RNN. Deep
matcher has proved to work really well on large textual data, dirty data and
structured data. Figure 4.5 shows a few cases relevant to our experiment. After
the transformation phase we get a copyright vector with a lot of text data. We
can also get other vectors with empty or noisy values. In the ideal case each
vector is complete and data is structured. However incase of a structured data,
because deep matcher needs really high training time and use of such complex
model may seem unnecessary. Our ITunes dataset has a copyright field which
contains large text and some noisy data. Also wikidata contains fields with
noisy data and empty data. While we have handled most conflicts, our conflict
handling has its limitations especially when there is a Domain conflict. Keeping
these conflicts in mind we opt for Deep Matcher because of its performance when
there are such anomalies.

4.5.3 Deep Matcher Architecture

Prior to this we have already discussed some aspects of Deep Matcher in the
background chapter and it is recommended you revisit the Neural Network, other

CHAPTER 4. ENTITY MATCHING PIPELINE 42

Figure 4.6: Deep Matcher Architecture [21]

deep learning sections prior to going through this subsection. We have also
discussed the general architecture expected from the Deep Learning model in
section 4.5.1. In the Figure 4.6 we show the architecture of Deep Matcher.
Because we cannot promise an exhaustive coverage of Deep Matcher in this
section, we recommend you to refer the paper “Deep learning for entity matching:
A design space exploration” [21] and its implementation documentation [30]. In
the previous step we have data vectors all consolidated into a dataframe. We
will in this section discuss the architecture in detail and how it is used in our
task. Each row of the dataframe represents pair of entities with its attributes
along with label and id. For each attribute we have two sequences of text , one
for each entity as we can see in the figure 4.6 . Here each attribute with respect
to our approach refers to properties we have fetched in the transformation phase.

We know raw sequences of text cannot be understood by the Deep Learning
algorithms. The Attribute embedding module takes a sequence of words and

CHAPTER 4. ENTITY MATCHING PIPELINE 43

returns word embeddings. This embedding represents word vector in a high di-
mensional vector space. For attributes Aj ∈ A1, A2, A3...AN , given word vectors
for Aj , we1,j and we2,j . It converts them to d dimensional word embeddings
ue1,j and ue2,j . If word sequence for e1 for Aj contains m elements, then we have
ue1,j ∈ Rd×m.Important to note both word sequence can have varying number of
elements. The choice of word embeddings include word or character embeddings
with option of pre trained or learned embeddings. Deep Matcher uses character
embeddings which are pre trained(Fasttext).

Now we have two embedding vectors for each attribute, we send it to the at-
tribute similarity phase which returns attribute similarity representations. The
representation should be able to capture the attribute similarities. We can divide
this phase into two parts. The first part would be attribute summarization and
the second part would be attribute comparison. The attribute summarization
phase takes pair of word embedding vectors and would summarize the informa-
tion of both sequences with summarization vector(both vectors being of the same
dimension). For ue1,j and ue2,j we get ue1,j ∈ Rd×m and ue2,j ∈ Rd×k i.e word
embedding vectors for an attribute with sequences of length m and k. From here
we have summarization vectors se1,j ∈ Rh and se2,j ∈ Rh. Next we pass these
vectors to comparison phase where it takes the pair of summary representation
vectors , passes it to a similarity function and returns one similarity representa-
tion for a pair of entities per attribute. i.e for se1,j ∈ Rh and se2,j ∈ Rh we get
sj ∈ Rl.

There are four options for attribute summarizations. The first one is an aggre-
gate function which uses a simple weighted average or an average function to
produce a d dimensional summarization. The second method is sequence aware
summarization which can help learn complex interaction among tokens. This
method uses an RNN that takes order and semantics of the given sequence. The
input sequence of embedding is passed into the summarization function to ob-
tain a sequence he,j hidden states. The hidden states are then aggregated into
h dimensional vector to get se,j . Now we move onto the next type of method
called sequence alignment which takes two word sequences together while using
one as context. The previous methods did not take word sequences together
while creating a summary vector. Sequence alignment computes a soft align-
ment between two given sequences of words and then performs word by word
comparison. Sequence alignment cannot take position of tokens into account and
only weighs on the context provided as input. To handle the drawbacks of the
three methods, the fourth and final method hybrid is proposed. This takes both

CHAPTER 4. ENTITY MATCHING PIPELINE 44

sequence aware and sequence alignment together which helps accuracy on dirty
textual data. Hybrid training is expensive and can lead to high training times.

Finally similarity representations for each attribute given pair of entities we pass
it to a classifier module. The classifier using the representations checks if the
two entities are the same or not.

4.5.4 Representative solutions for Deep Matcher

Deep matcher offers four types of solutions for Entity Matching which we discuss
in the 4 subsections below. All these solutions are completely referred from Deep
Matcher paper [21] .

• SIF: An Aggregate Function Model SIF uses weighted sum of word
embeddings for summarization and element-wise absolute difference for
comparison. The weights used to compute average over word embeddings
is weighted by a weight f(w) = a

(a+p(w)) where a is a hyperparameter and
p(w) the normalized unigram frequency of word w in the input corpus.

• RNN: A Sequence-aware Model This type of method uses a bi direc-
tional RNN for for attribute summarization and an element-wise absolute
difference comparison operation to form the input to the classifier module.
Precisely bidirectional GRU-based RNN model is used. The forward RNN
processes the input word embedding sequence in its regular order and the
backwards network that processes the input sequence in reverse. The final
attribute summarization representation corresponds to the concatenation
of the last two outputs of the bidirectional RNN. This method helps find
what sequences are present in the input sequence

• Attention: A Sequence Alignment Model Here Decomposable atten-
tion is used for attribute summarization and vector concatenation to per-
form attribute comparison. This method analyses input sequences jointly
to learn similarity representation. Intuitively it performs soft alignment
and pairwise token comparison across the two input sequences. Attention
tries to understand sequences present in both entities together.

• Hybrid This model uses a bidirectional RNN with decomposable atten-
tion to implement attribute summarization and a vector concatenation

CHAPTER 4. ENTITY MATCHING PIPELINE 45

augmented with element-wise absolute difference during attribute compar-
ison to form the input to the classifier module. This is the model with the
highest representational power we consider in deep matcher [21].

Algorithm 2 Entity Matching algorithm for RDF
Input: Graph G1, G2, Labels, Mappings
Output: {1, 0}

1: Column V ector ← get col vector(G1, G2,Mappings)
2: T ← Column V ector
3: for all i1, i2 ∈ Labels do
4: if i1 sameAs i2 then
5: T [, label] = 1
6: else if i1 differentFrom i2 then
7: T [, label] = 0
8: end if
9: for all property p ∈ G1 do

10: if p ∈Mappings then
11: T [, left p] = DFS(i1, p)
12: T [, Right p] = DFS(i2, equivalent property(p))
13: end if
14: end for
15: end for
16: Output = DEEP MATCHER(T)

To apply these solutions to our transformed data, we can choose the appropriate
solution based on the type of data we get from literals. If we have too many
attributes with large text, hybrid is worth the training time expense. If there
are many semantic interoperability conflicts left unhandled , especially domain
or representative its recommended to go for the attention or hybrid models as it
best handles reversed string, acronym. In case of dirty/noisy attributes data SIF
is not recommended. Lastly if our phase 2 of our pipeline has worked perfectly
and transformation has returned well structured data, we can go for SIF as it
saves training time and is efficient.

Chapter 5

Evaluation

This chapter we will discuss our input datasets, the parameters considered in
deep learning models, the semantic conflicts identified, resolved and finally our
results, accuracy with respect to all mentioned factors. We divide the sections
into two for each datasets we used and we will also mention the challenges faced
during the pre processing phase. After the conflict handling and transformations
on our datasets, we pass the data to our deep learning models which in our case is
the deep matcher. The deep matcher architecture include attribute embeddings
which are in our case pre-trained character-level embedding (Fasttext). We test
our data on all attribute summarizers like SIF, RNN, Attention and Hybrid. The
classifier we use is a multilayered Neural Network which is a popular choice for
DL classifier solutions. We use F1 measure for measuring accuracy of our deep
learning model which we define below

Precision = TP

(TP + FP)

Recall = TP

(TP + FN)

F1 = 2 ∗ (Precision ∗Recall)
(Precision+Recall)

where, TP = True Positives

FP = False Positives

FN = False Negatives

(5.1)

46

CHAPTER 5. EVALUATION 47

5.1 Itunes Dataset

In Itunes dataset experiments we interlink individuals of two different subsets of
Itunes dataset which follow different structure and schema. Itunes dataset is a
RDF dataset comprising of details about songs on Itunes platform. The dataset
is divided into two different schemas with two sets of song entities abiding by
their respective schemas. We need to identify if song abiding by its schema
is same as a song from the other schema i.e if they are the same entity. We
already have some labelled data in hand for Itunes songs where some pair of
song resources are mapped using sameAs or differentFrom. These individuals
have many data properties like name, albumname, price etc for us to consider
in our approach. These properties have semantic interoperability conflicts. We
define and discuss these conflicts that came our away in our approach. Also to
add how we resolved these conflicts using conflict resolution functions.

Figure 5.1: ITunes Dataset representative conflict resolution

• Representative Conflicts: The data property Released date for both
schemas follow different date formats. These varying representations can
really affect accuracy of our base deep learning model. We standardize date
formats for Released date attribute in both schemas and change values
for literals accordingly. Now in the Song Price data property, we have
song prices represented in different currencies. We split the price field into
currency and amount as shown in Figure 5.1. After the splitting we can

CHAPTER 5. EVALUATION 48

standardize the currency in the desired format which deep learning model
can distinguish.

• Domain Conflicts: The artist name property in both schemas has dif-
ferent names/alias for the same artist. Some of the names are hard to
distinguish because it can be their alias which is completely different from
their original name(complete string mismatch). We resolve these conflicts
using sparql where we create a blocking predicate to identify an artist. If
the name is different for the same artist, we standardize the name and
remove alias. For example Flo Rida is also called “Tramar Lacel Dillard’.
No string match algorithm can flag them as same. If we know more in-
formation on the artist like songs he sang, albums we can distinguish the
strings.

F1 measure
No. Summarizer Epoch=15 Epoch=30
1 SIF 81.82 83.07
2 RNN 89.28 87.71
3 Attention 83.87 86.66
4 Hybrid 93.1 88.88

Table 5.1: Itunes Dataset

In the Deep learning model phase we test our dataset using deep matcher. As
you can see from the table 5.1 above we can observe the Hybrid summarizer
gives us the best results on Itunes data. SIF summarizer provides us lesser
accuracy because the data is not completely well structured plus it has many
empty literals, few dirty data, long texts like copyright and not all conflicts
are resolved. However SIF needs far less training time. When we increase the
iterations for SIF, the accuracy increases. RNN gives good accuracy because
it performs well on long text attributes, dirty data. Both RNN and attention
also require high training times but accuracy of attention increases with higher
iterations. The attribute embedding is fasttext and the batch size is set to 16.
It is recommended to use Hybrid unless our pre processing phase has gone really
well and data completeness is near perfect.

CHAPTER 5. EVALUATION 49

5.2 DBpedia and Wikidata Dataset

In the second part we wanted to cover the open linked datasets. We have tried
to apply our approach to linked open datasets. One big challenge is handling the
large knowledge base and its schema as we can see in Figure 5.2. In comparison
to Itunes ontology, DBpedia ontology is very huge with hundreds of classes. Also
our approach wont be straightforward because most of these open datasets are
not complete, contain dirty and redundant data. DBpedia, Yago and Wikidata
has very few property mappings with limited labels and may not necessarily abide
by OWL/RDF schema. The solution is to hence apply our approach to a subset
of the knowledge base. We try to match film class individuals in wikidata and
DBpedia. We take some existing mappings and labels but we had to create some
mappings on our own as a part of preprocessing. We had to filter out incomplete
properties and data. After this we identify conflicts and try to resolve them in
the conflict handling phase.

Figure 5.2: Above we see a glimpse of DBpedia schema. Because of the scale
we match individuals from film class (in red) and take subgraph surrounding

it for learning properties

• Representative Conflicts: . Gross Amount literal was represented in

CHAPTER 5. EVALUATION 50

different formats. We had to standardize the representation by using a
single currency to help deepmatcher distinguish the individuals. First we
split gross amount to gross currency and gross amount. After a currency
is decided upon we can standardize it.

• Structured Conflicts: ImdbId was represented as integer in wikidata
and as result some of the alphabets were truncated out. We had to convert
it to string and agree on a common datatype for wikidata and DBpedia
attribute ImdbId. Hence the datatype was standardized to string for both
set of literals.

F1 measure
No. Summarizer Epoch=15 Epoch=30
1 SIF 84.12 83.87
2 Attention 97.44 97.74
3 RNN 94.8 94.89
4 Hybrid 95.22 96.96

Table 5.2: Dbpedia Wikidata Dataset

Like the Itunes dataset in wiki-DBpedia dataset we can also observe in the table
5.2 that the accuracy is high for Hybrid due to incompleteness, empty and dirty
data for literals. Similarly the accuracy is also high for RNN and attention but
is lower for SIF due to incomplete properties. For attention and Hybrid accuracy
increases with iterations. The attribute embedding is fasttext and batch size is
16. Due to incompleteness of data, dirty data and empty literals hybrid is highly
recommended on Linked Open Datasets.

Chapter 6

Conclusion and Future work

In this chapter we look back at our work done in this thesis, and discuss the
distinctness, drawbacks of our approach, how we can improve it and how we
have managed to contribute to the Knowledge Graph community.

Our primary task in hand was to match entities of two RDF datasets. The
approach is supervised, i.e., it relies on labels (e.g, we can take advantage of
the sameAs links already annotated by the Semantic Web community) and it
needs property mappings. Based on our experiments, our approach is robust to
dirty/unstructured/semi structured data and promises good accuracy. However
it expects the datasets to stay compliant with OWL/RDF schema. We need to
understand that Wikidata and DBpedia do not necessarily abide by OWL/RDF
schema and it requires a more pre processing if we were to use such datasets in
our approach. It also is heavily vulnerable if the graph paths are broken because
of the tree traversal technique it follows.

While comparing our method to SEREMI [22], music interlink [24] approaches,
our method is more sophisticated because it merely does not work on raw string
match at the atomic level. It can explore far more number of properties and is
a more supervised approach which is immune to conflicts and incompleteness of
data. Our approach also avoids using SPARQL wrappers as query fetches can
be slow and can give unexpected number of results on filters. We have proposed
a way to use deep matcher for entity matching on RDF graphs and improved its
accuracy when there are semantic interoperabiltiy conflicts. In the background
work to the thesis we inferred about poor performance of Deep Matcher when
there are Semantic interoperability conflicts.

51

CHAPTER 6. CONCLUSION AND FUTURE WORK 52

Our pipeline heavily relies on existing mappings and labels. These mappings
have to be created manually which is a overhead. Data integration and schema
based approaches help learn mappings [25, 26]. There has been work done in
automating property mappings and these are not incorporated in our approach.
Our approach also does not take learn the schema or object properties during
the approach. This is another drawback. LiteralE[29] uses the schema, object
properties and literals in its approach. It uses knowledge graph embeddings
instead of embeddings provided by deep matcher. Knowledge graph embeddings
can represent graph data and its semantics better.

To summarize we have presented an approach which performs well on literals
with large textual data, dirty data and it matches entities based on its data
properties. However the drawbacks include that there is no schema learning or
knowledge embeddings being used.

6.1 Future Works

There can be a lot of extended contributions done with respect to reducing the
overhead. The manual dependency on property mappings can be removed by
using Ontology Graph keys [26] for schema learning and also we can deduce
methods that use graph embeddings to learn semantics prior to sending to the
deep learning model.

Apart from that the approach should be extended to non OWL/RDF schemas,
and has to be made more robust to learning different types of schemas with
less manual interventions. The deep learning model can be changed from deep
matcher, and other models can be tested. New techniques can be developed
using deep matcher for Knowledge Graphs with dirty data, noisy data where we
can try new types of link detection apart from sameAs and different From.

List of Algorithms

1 Stochastic Gradient Descent . 19
2 Entity Matching algorithm for RDF 45

53

List of Figures

1.1 Interlinking Entities . 2

2.1 Sample Knowledge Base . 7
2.2 Semantic Web Stack . 8
2.3 Itunes OWL Ontology . 9
2.4 Link Discovery for sameAs property 12
2.5 Semantic Interoperability Conflicts Example 13
2.6 A typical Single-Layer Perceptron (MLP) 14
2.7 A typical Multi-Layer Perceptron (MLP) 15
2.8 Recurrent Network from [20] . 19
2.9 Unfolded Recurrent Network from [17] 20

3.1 Entity Matching Terminology . 24
3.2 Link Detection Workflow [10] . 25
3.3 Pseudo Homonym set from [22] 26
3.4 KnoFuss architecture via method selection [23] 27
3.5 Ontology Graph key for Ontological Matching [26] 29
3.6 Overview on how LiteralE is applied to the base scoring function

f . LiteralE takes the embedding and the corresponding literals as
input, and combines them via a learnable function g. The output
is a joint embedding which is further used in the score function
f [29]. 30

4.1 Entity Matching Pipeline: We propose a three-step pipeline where
the first step fixes semantic conflicts present in the inputs. Second,
we transform the input data into a vector representation to finally
apply a deep learning model that summarizes the attributes to
predict entity matches. 33

4.2 Sample Left Right Ontology . 34
4.3 Semantic Interoperability Conflicts 36
4.4 Pair of input to transformation 38
4.5 Entity Matching problem types 41

54

LIST OF FIGURES 55

4.6 Deep Matcher Architecture [21] 42

5.1 ITunes Dataset representative conflict resolution 47
5.2 Above we see a glimpse of DBpedia schema. Because of the scale

we match individuals from film class (in red) and take subgraph
surrounding it for learning properties 49

List of Tables

5.1 Itunes Dataset . 48

5.2 Dbpedia Wikidata Dataset . 50

56

Bibliography

[1] Data never sleeps 2.0, 2020. URL https://www.domo.com/assets/

downloads/18_domo_data-never-sleeps-6+verticals.pdf.

[2] Rachel Howard Bryce Merkl Sasaki, Joy Chao. Graph Databases for Begin-
ners. MIT Press, 2016. ttps://neo4j.com.

[3] Ehud Reiter and Robert Dale. Building natural language generation sys-
tems, 2000.

[4] Er.Ramanjot Kaur Er. Karmjeet Singh. A review: Various hashing algo-
rithms in data deduplication for storage enhancement. INTERNATIONAL
JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER EN-
GINEERING, 6(1):193–196, 2018.

[5] Cengiz Kahraman Sezi Çevik Onar, Başar Öztayşi. Record linkage using
fuzzy sets for detecting suspicious financial transactions. pages 241–246,
2015. doi: 10.2991/ifsa-eusflat-15.2015.36.

[6] Antoine Buemi Erik A Sauleau, Jean-Philippe Paumier. Medical record
linkage in health information systems by approximate string matching and
clustering. BMC Medical Informatics and Decision Making, (1):1–13, 2005.
doi: 10.1186/1472-6947-5-32.

[7] Jim Hendler Ian Horrocks Deborah L. McGuinness Peter F. Patel-Schneider
Lynn Andrea Stein Sean Bechhofer, Frank van Harmelen. Owl web ontology
language reference, 2004. URL https://www.w3.org/TR/owl-ref/.

[8] Nektarios Gioldasis Ioannis Stavrakantonakis Stavros Christodoulakis
Nikos Bikakis, Chrisa Tsinaraki. The xml and semantic web worlds: Tech-
nologies, interoperability and integration. a survey of the state of the art.
pages 1–42, 2013. doi: 10.1007/978-3-642-28977-4 12.

[9] Dan Brickley and R.V. Guha. Rdf schema 1.1, 2009. URL https://www.

w3.org/TR/rdf-schema/.

57

https://www.domo.com/assets/downloads/18_domo_data-never-sleeps-6+verticals.pdf
https://www.domo.com/assets/downloads/18_domo_data-never-sleeps-6+verticals.pdf
ttps://neo4j.com
https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/

BIBLIOGRAPHY 58

[10] Axel-Cyrille Ngonga Ngomo Erhard Rahm Markus Nentwig, Michael Har-
tung. A survey of current link discovery frameworks. pages 419–435, 2017.
doi: 10.3233/SW-150210.

[11] Yunlong Zhang Xing Niu, Shu Rong and Haofen Wang. Zhishi.links results
for oaei 2011. volume 814, pages 220–227. OM’11: Proceedings of the 6th
International Conference on Ontology Matching, 2011.

[12] Bernardo Cuenca Grau Ernesto Jiménez-Ruiz. Logmap: Logic-based and
scalable ontology matching. The Semantic Web - ISWC 2011 - 10th Inter-
national Semantic Web Conference, 2011.

[13] Manzil Zaheer Luke Vilnis Ishan Durugkar Akshay Krishnamurthy Alex
Smola Andrew McCallum Rajarshi Das, Shehzaad Dhuliawala. Go for a walk
and arrive at the answer: Reasoning over paths in knowledge bases using
reinforcement learning. Proceedings of the 2018 International Conference
on Management of Data, 2018.

[14] Prof. Dr. Sören Auer Trlan Grangel-González, Prof. Dr. Maria-Esther Vidal.
A knowledge graph based integration approach for industry 4.0, 2019.

[15] Mark Hudson Beale Orlando De Jesús Martin T. Hagan, Howard B. De-
muth. Neural Network Design. 2014.

[16] Christopher M. Bishop. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). 2006. ISBN 978-0-387-31073-2.

[17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. Neo4j,
2018. http://www.deeplearningbook.org.

[18] Dmitriy Serdyuk Philemon Brakel Yoshua Bengio Dzmitry Bahdanau,
Jan Chorowski. End-to-end attention-based large vocabulary speech recog-
nition. 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing, 2016. doi: 10.1109/ICASSP.2016.7472618.

[19] Navdeep Jaitly Alex Graves. Towards end-to-end speech recognition with
recurrent neural networks. pages 1764–1772. ICML’14: Proceedings of
the 31st International Conference on International Conference on Machine
Learning - Volume 32, 2014.

[20] Alex Graves. Supervised Sequence Labelling. 2012.

[21] Theodoros Rekatsinas AnHai Doan Youngchoon Ganesh Krishnan Rohit
Deep Esteban Arcaute Vijay Raghavendra Sidharth Mudgal, Han Li. Deep

http://www.deeplearningbook.org

BIBLIOGRAPHY 59

learning for entity matching: A design space exploration. ICML’14: Pro-
ceedings of the 31st International Conference on International Conference
on Machine Learning - Volume 32, 2016. doi: 10.1145/3183713.3196926.

[22] Daniel Schwabe Arjen P. de Vries Samur Araujo, Jan Hidders. Serimi -
resource description similarity, rdf instance matching and interlinking. 2011.

[23] Enrico Motta Andriy Nikolov, Victoria Uren and Anne de Roeck. Handling
instance coreferencing in the knofuss architecture. 2008.

[24] Christopher Sutton Yves Raimond and Mark Sandler. Automatic interlink-
ing of music datasets on the semantic web. 2008.

[25] Alon Halevy Anhai Doan, Pedro Domingos. Learning to match schemas
of data sources: A multistrategy approach. 2003. doi: 10.1023/A:
1021765902788.

[26] Yinghui Wu Hanchao Ma, Morteza Alipourlangouri. Ontology-based entity
matching in attributed graphs. 2003. doi: 10.14778/3339490.3339501.

[27] Xifeng Yan Philip S. Yu Tianyi Wu Yizhou Sun, Jiawei Han. Pathsim: Meta
path-based top-k similarity search. 2011.

[28] Dipl.-Ing. Ignacio Traverso Ribón. A framework for semantic similarity
measures to enhance knowledge graph quality, 2017.

[29] Denis Lukovnikov Jens Lehmann Asja Fischer Agustinus Kristiadi, Moham-
mad Asif Khan. Incorporating literals into knowledge graph embeddings.
2018.

[30] Prof. AnHai Doan Prof. Theodoros Rekatsinas Sidharth Mudgal, Han Li.
Deepmatcher documentation, 2016. URL https://anhaidgroup.github.

io/deepmatcher/html/#.

[31] Shishir Prasad Ganesh Krishnan Pradap Konda, Jeff Naughton. Magellan:
Toward building entity matching management systems. 2016. doi: 10.
14778/2994509.2994535.

https://anhaidgroup.github.io/deepmatcher/html/#
https://anhaidgroup.github.io/deepmatcher/html/#

	Declaration of Authorship
	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement and Challenges
	1.2.1 Challenges

	1.3 Contributions
	1.4 How the Thesis is Organised

	2 Theoretical Background
	2.1 Entity Matching (EM)
	2.2 Knowledge Graphs (KG)
	2.3 Link Discovery in Knowledge Graphs
	2.4 Semantic Interoperability Conflicts
	2.5 Deep Learning
	2.5.1 Neural Network (NN)
	2.5.2 Training Feed Forward Networks
	2.5.3 Recurrent Neural Network (RNN)
	2.5.4 Attention

	2.6 Word and Character Embeddings

	3 Related Works
	3.1 Introduction
	3.2 Link Detection Workflow
	3.3 String Match Approaches
	3.4 Schema Based Approaches
	3.5 Embedding based Approaches
	3.6 Conclusion

	4 Entity Matching Pipeline
	4.1 Pipeline
	4.2 Preprocessing
	4.3 Conflict Handling
	4.3.1 Identifying Conflicts
	4.3.2 Resolving Conflicts

	4.4 Data Transformation
	4.4.1 Column Vector
	4.4.2 Data Vectors

	4.5 Deep Learning Model
	4.5.1 General Architecture
	4.5.2 Deep Matcher Motivation
	4.5.3 Deep Matcher Architecture
	4.5.4 Representative solutions for Deep Matcher

	5 Evaluation
	5.1 Itunes Dataset
	5.2 DBpedia and Wikidata Dataset

	6 Conclusion and Future work
	6.1 Future Works

	List of Algorithms
	List of Figures
	Bibliography

