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Abstract— Navigation and mapping is well understood for
two-dimensional or static environments since valuable ap-
proaches exist for reacting to dynamic obstacles or for ex-
tracting static 3D information. However, today’s challenge lies
in combining the strengths of these approaches to obtain a
system capable of performing safe navigation and obstacle
avoidance based on rich 3D information of the environment
while still being capable of reacting to sudden dynamic changes.
In this paper we will present a methodology for continuously
sensing environments in 3D and the necessary representations
for exploiting the so gathered data in a way efficient enough to
perform real-time 3D data based obstacle avoidance and online
mapping.
Keywords: Continuous 3D sensing, Autonomous Navigation, Obstacle
Map, Structure Map, Virtual Corridor, SLAM

I. INTRODUCTION AND RELATED WORK

One of today’s main challenges in the field of autonomous
mobile robotics is to navigate reliably in cluttered and
dynamic environments.

2D laser range-finders that measure, with high frequency
and accuracy, the distances to the structures surrounding
the robot became pretty much the standard to tackle the
problems of simultaneous localization and mapping (SLAM).
The spatial information gathered by these laser scanners
is frequently being used with various 2D scan matching
techniques allowing to localize the robot with three degrees
of freedom and to construct two-dimensional models of the
environment that are frequently and successfully used for
navigation purposes.

The developed approaches (e.g. [3]) are that robust and
successful that the problem of navigation and mapping
can basically be regarded as being solved. However, this
statement only holds for those kinds of environments that are
well-structured in a way that they do not contain obstacles
of a shape that does not intersect with the applied two-
dimensional plane perceived by the laser scanner.

In order to deal with such objects and structures that can be
found in all kinds of environments 3D information becomes
crucial. Some of the most notable approaches for acquiring
3D environmental information or for mapping in 3D come
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Fig. 1. The KURT3D robot (left) and the IAIS 3D laser scanner (right).

from Surman et al. [5], Thrun et al. [6], Cole et al. [2],
or Wulf et al. [8]. Although all these groups collect three-
dimensional information, they use it mainly for map building
[5], [6], [2] or for localization [8].

For instance Wulf et al. use a highly specialized device of a
vertically mounted laser scanner that rotates continuously to
gather 3D information but they use this information mainly
for localization purposes. Their form of obstacle avoidance
is solely based on a second 2D laser scanner device mounted
in a fixed position in the front of the robot showing the same
drawback of being only able to react to obstacles within the
particular scan plane of the 2D scanner.

In contrast to Wulf et al., Surmann et al. and Thrun et
al. integrate the gathered 3D information into their naviga-
tion procedures. Both groups follow the same approach of
building environment models by performing 3D scans while
the robot is standing at distinct positions. While Surmann et
al. use a 2D intersection in a height of roughly one meter
above ground to determine traversable areas, Thrun et al.
generate a 2 1

2D representation taking obstacles into account
for navigation decisions that are characteristic for their kind
of application environments. The resulting trajectories are
applicable for cluttered but static environments. However,
both approaches are restricted to the three-dimensional data
acquired while standing. During movement the environment
is only perceived in 2D allowing only to avoid dynamic
obstacles whose boundaries intersect the 2D scan plane. This
kind of non-continuous 3D environment sensing does not
meet the combination of demands faced in cluttered and



dynamic environments.
Cole et al. have started to address this problem by intro-

ducing an approach of 3D map building based on continuous
3D environment sensing; i.e. while moving. Nevertheless,
their robot seems to act in a completely non-autonomous
way and they show no ambition to exploit this rich data for
navigational purposes. Furthermore, their system does not
yet perform in real-time.

This paper presents a first approach to use the rich
information of continuous 3D environment sensing for both
autonomous navigation and mapping. The following sec-
tion provides a description of the system and the applied
method of 3D sensing. An efficient data representation for
safe navigation in cluttered and dynamic environments is
presented in section III while section IV shows how the
gathered information is used for online 2D and 3D mapping
and localization.

II. CONTINUOUS 3D ENVIRONMENT SENSING

In our previous work we have introduced a closed sys-
tem for autonomous exploration and mapping of real-world
environments [5]. The system achieves robust consistent 3D
modeling applying an elaborated 6D-SLAM algorithm show-
ing its performance at RoboCup Rescue by becoming vice
world champion in Lisbon 2004. The algorithm allows for
constructing three-dimensional models of the environment
and to localize the robot with six degrees of freedom (DOF).
The system is built on the basis of the KURT3D robot
platform and uses the IAIS 3D laser scanner (3DLS) to
acquire spatial information about the robot’s surrounding
environment. Both are shown in Fig. 1.

KURT3D is a mobile robot platform with a size of 45 cm
(length) × 33 cm (width) × 26 cm (height). The robot’s
maximum velocity is 5.2m/s. Two 90W motors are used
to power the 6 wheels, whereas the front and rear wheels
have no tread pattern to enhance rotating. The robot has a
weight of 15.6 kg. Equipped with the IAIS 3DLS the height
increases to 47 cm and the weight to 22.6 kg.

The IAIS 3DLS is based on a standard SICK 2D laser
range-finder. It supports a horizontal apex angle of Θyaw =
180◦ with an angular resolution of up to ∆θyaw = 0.25◦

(rotating mirror device). Nevertheless, as a relatively low
resolution is adequate for robust obstacle avoidance and
has benefits in terms of speed concerns we use an angle
resolution of ∆θyaw = 1◦. In this operating mode a single
2D laser scan of 181 distance measurements is read in
approximately 13.32ms (≈ 75Hz).

In order to take three-dimensional scans of the environ-
ment, the scanner is attached to a rotatable horizontal axis.
This allows to pitch the scanner over a vertical angular
range of up to Θpitch = 120◦ with a maximum resolution
of ∆θpitch = 0.25◦. In our previous work we used the
system to perform accurate and locally consistent 3D scans
for mapping by taking scans over the full vertical angular
range while standing. However, for a fast and continuous
perception of the environmental structures relevant for ob-
stacle avoidance while moving we now restrict this range
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Fig. 2. Perception of the Virtual Corridor. Obstacles of different sizes can
be perceived in contrast to standard 2D perception. θpitch, min and θpitch, max
are chosen in a way to represent the minimal Area Of Interest (AOI).
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Fig. 3. Sequence of pitch angles θpitch to continuously sense the Area Of
Interest (AOI). Lower and upper bound of the AOI as well as the scanner’s
pitch rate are exemplarily fixed.

by defining an Area of Interest (AOI) extending the idea of
virtual roadways [4] to the third dimension, i.e. with respect
to the robot’s boundaries (in 3D) and thus possible areas
of collision. We call this the virtual corridor (see Fig. 2).
Its upper limit is formed by the robot’s height while the
lower limit is bound by the maximum size of obstacles the
robot can still handle or simply by the relative floor height.
Narrowing the AOI and furthermore reducing the number
of consecutive 2D scans that form a complete 3D scan
results in an increase of the scanner’s pitch rate. Pitching the
laser scanner in a continuous nodding-like fashion allows for
sensing the surrounding environmental structures lying in the
AOI as well as to monitor the virtual corridor for dynamic
obstacle detection. Lower bound (θpitch, min) and upper bound
(θpitch, max) of the AOI as well as the scanner’s pitch rate
(∆θpitch/13.32ms) thereby depend on the robot’s current
velocity and can be adjusted by applying a PI-controller (see
Fig. 3). Thereby, dmin corresponds to the distance from which
on the full virtual corridor can be perceived during the pitch
movement. It has to be chosen appropriately. The minimum
size of the AOI for driving fast covers exactly the virtual
corridor while the maximum size corresponds to a complete
3D scan over the full 120◦ of Θpitch.

A scan point is represented by the tuple (di; θyaw,i; θpitch)
with di being the i-th distance measurement in the current
laser scan while θyaw,i and θpitch are the yaw angle of that
distance measurement and the current pitch angle of the laser
scanner respectively. The cartesian coordinates of that point,
with respect to the robot’s left-handed coordinate frame,



result from applying the homogeneous transformation in Eq.
1. The scanner’s position on the robot is taken into account
with the translational part ∆t = (xs, zs, ys)

T .0B@x
z
y
1

1CA =
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0 cos(θpitch) − sin(θpitch) zs

0 sin(θpitch) cos(θpitch) ys

0 0 0 1
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0
1

1CA
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This 3D sensing design allows the robot to continuously
perceive the defined AOI and detect dynamic and static
obstacles in real-time.

III. NAVIGATION AND EFFICIENT EGOCENTRIC WORLD
REPRESENTATIONS

The sensor setup described in section II delivers continu-
ous 3D data. The data flow has to be interpreted in a way that
allows to react in real-time to obstacles suddenly appearing
in the aforementioned AOI. Real-time capability demands
for highly efficient navigation algorithms and the existing
approaches that show this capability normally perform on
2D data (cf. e.g. [4]). Hence, a most promising approach
is to break down the three-dimensionality of the gathered
data into a two-dimensional representation that still holds all
necessary 3D information but allows for the application of
these existing efficient navigation algorithms.

A. Representing Three-Dimensionality in 2D

To compress the three-dimensionality of the data delivered
by the scanner for real-time applicability we introduce the
concepts of 2D obstacle maps and 2D structure maps.
Both kinds of maps are local and egocentric environment
representations generated from consecutive pitching laser
scans.
2D Obstacle Maps: In the case of the obstacle maps the min-
imum distance in each scan direction (θyaw,i) is extracted and
inserted into the map. These values correspond to the closest
objects or obstacles in that particular direction regardless of
the actual vertical angle of the scanner. Hereby, only those
points are taken into account whose height above ground
would intersect with the robot’s bounds and the virtual
corridor respectively. In this first approach, our selection
mechanism assumes a flat ground structure what is, after
all, a feasible assumption for indoor environments. Thus, we
obtain a local map containing all obstacles in sight of the
robot. Such a map is exemplarily depicted in Fig. 4(b) for
the scene shown in Fig. 4(a).
2D Structure Maps: The structure maps, on the other hand,
only contain those values that correspond to the maximum
distance readings of the scanner in that particular direction,
an approach inspired by the concept of virtual 2D scans
introduced by Wulf et al. in [7]. Extracting the maximum
distances automatically filters out all objects that do not
extend over the full height of the AOI since the scanner will
eventually look above or beneath these objects. The robot
thereby replaces a previously measured smaller distance
value with the newly obtained larger distance reading in that
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Fig. 4. Demonstration of the map types in an example scenario (a). The
obstacle map (b) is generated by extracting minimum distances (projected
into 2D) in the continuously acquired 3D data. Extracting maximum
distances results in the structure map (c).

direction. The resulting map will only contain points that
most probably correspond to the environmental bounds while
all points that belong to smaller obstacles are filtered out as
are those that belong to dynamic obstacles. Fig. 4(c) shows
such a structure map.

While the obstacle maps are very valuable when it comes
to local obstacle avoidance, the structure maps are, for
instance, very suitable for robotic self-localization, i.e. for
tasks that need large scale information about an environment.
The obstacle maps would fail for such purposes as they
would miss a lot of environmental information.

The procedure of generating these maps is quite intuitive
when thinking of a standing robot. This yields, however, the
question of how the maps are represented and updated while
moving.

B. Representation and Update Procedure

As a great part of the algorithms that we have developed
in our previous work is designed to process two-dimensional
laser scan data we decided to extend the representation of
standard laser scans in order to keep the algorithms com-
patible. The standard representation is a vector of distance
measurements di ordered by the discretized measurement an-
gle (θyaw,i). The extended representation has a variable apex
angle Θ ∈ [0◦, . . . , 360◦] and a variable angle resolution
∆θyaw. It is implemented as a vector of N = Θ/∆θyaw points
indexed by the accordingly discretized angle in which the
measured point is lying from the robot’s perspective. To min-
imize the computational costs of transforming points each
time as input for the various algorithms the representation



always maintains cartesian as well as polar coordinates.
The map update procedure consists of the following three

fundamental steps and is applied for every incoming laser
scan:

1) Transformation of the map to keep it egocentric
(according to odometry).

2) Removal of obsolete points to handle dynamics.
3) Replacement of already saved points using more rele-

vant points from the current laser scan.
If the robot stands still and no pose shift has been estimated
respectively steps 1) and 2) are skipped. In the initial state
the map is filled with dummy points that are chosen in a way
that they are replaced during the first update.

1) Transformation: According to the robot’s movement
the pose shift between the current and the last map update
(i.e. current and last reception of a laser scan) consists of
a rotation R∆θ around the y-axis by an angle ∆θ and a
translation ∆t = (∆x, ∆z)T . The egocentric maps thus need
to be transformed according to Eq. (2):
(

xi,t+1

zi,t+1

)
=

(
cos∆θ − sin∆θ

sin∆θ cos ∆θ

)(
xi,t

zi,t

)
+

(
∆x
∆z

)
(2)

where t and (t + 1) represent discrete points in time.
As Eq. (2) transforms the map based on cartesian coordi-

nates the values of the polar coordinates have to be adjusted
accordingly. But due to the discretization of the N valid
angles two points could fall into the same vector index. In
this specific case the point being more relevant with respect
to the map type has priority. Vector indices being unassigned
after the transformation are filled with dummy points.

2) Removing Obsolete Points: The number of transforma-
tions applied during step 1 is stored for every single point.
To deal with dynamic obstacles a saved point is removed and
replaced by a dummy point after its count of transformations
exceeds a threshold (e.g. 500 transformations, ≈ 5 s). This
procedure also removes erroneous points from the map that
may arise due to inaccuracies in the odometric pose shift
estimation.

3) Point Replacement: The final update procedure highly
depends on the map type. In a nutshell a point pi stored in an
obstacle map is replaced with a point si in the current laser
scan S if the angle of acquisition sθ

i equals the discretized
angle pθ

i and the measured distance sd
i is less than or equal to

pd
i ; just as a point pi stored in a structure map is overwritten

with si if sθ
i = pθ

i and sd
i ≥ pd

i . When updating an
obstacle map the height y of an acquired point in a perceived
environmental structure is used as an additional information.
If a point does not lie within the range being relevant for
obstacle avoidance (virtual corridor) it will be ignored in the
update procedure.

With these obstacle and structure maps the robot maintains
computationally and space efficient 2D representations of a
three-dimensional environment. Due to this kind of continu-
ous 3D environment sensing and its adaption to the robot’s
velocity dynamic obstacles can be perceived relatively fast.
Integration of this information in the obstacle map allows
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Fig. 5. Behavior based obstacle avoidance in (a) an example scenario,
(b) using obstacle maps by means of 2D perception with the laser scanner
in a fixed horizontal position, and (c) with the continuously pitching laser
scanner.

for reliable 3D data-based obstacle avoidance while the
generation of the structure maps shows benefits in terms of
localization.

C. Navigation Using Obstacle Maps

Obstacle maps bare all the information necessary for
performing reactive behavior-based robot control. We apply
a simple set of behaviors implementing a set of algorithms
introduced previously in [4]. The behaviors consist of:
• Steer orients the robot towards the direction of maxi-

mally free space α.
• Brake stops the robot in front of obstacles by examin-

ing the occupancy of the virtual corridor.
• Turn turns the robot into a free direction if Brake is

active.
Fig. 5(b) depicts the resulting robot trajectory with the

laser scanner in a fixed horizontal position (2D perception)
and Fig. 5(c) the resulting trajectory with the approach
presented here. In the first case, the robot was not able to
perceive the obstacles as they did not intersect with the 2D
scan plane. In the second they were perceived due to the pitch
movement and thus integrated in the obstacle map. The robot
was therefore able to avoid them successfully.

IV. DATA SEGMENTATION AND MAPPING

For the purpose of mapping and relative robot localization
we incrementally build models of the environment and match
extracted information against these maps. The particular
challenge is to segment the continuously acquired 3D data
flow into chunks applicable for this matching process. We



thereby distinguish 2D mapping (3DOF-SLAM) and 3D
mapping (6DOF-SLAM). Both algorithms are based on the
Iterative Closest Point (ICP) algorithm by Besl and McKay
[1].

Given two sets of points or point clouds – a model set
M = {mi | mi ∈ Rn, i = 1, . . . , Nm} and a data set
D = {di|di ∈ Rn, i = 1, . . . , Nd} – with dimension n,
the algorithm searches for a transformation, consisting of a
rotation R and a translation ∆t that map D onto M . Both
are determined by minimizing the error function

E (R, ∆t) =
Nm∑

i=1

Nd∑

j=1

wi,j ||mi − (Rdj + ∆t)||2 (3)

with the weighting factor wi,j encoding point correspon-
dences; i.e. wi,j = 1 iff mi corresponds to dj and wi,j = 0
otherwise. A detailed description of our solutions to this
optimization problem for both dimensionalities (n = 2 and
n = 3) can be found in [5].

Once a transformation is found that minimizes Eq. 3 and
maps newly acquired data onto the so far built model of
the environment, the same transformation can be applied,
respectively, to update the robot pose and to correct the
former pose estimation obtained via odometry.

A. 3DOF-SLAM

Since our continuously acquired three-dimensional data
flow is not applicable for 2D mapping as a whole we have to
extract the relevant two-dimensional information. We follow
the straightforward approach of extracting exactly those 2D
scans during the pitch movement that have been taken in the
horizontal position (θpitch = 0◦) during the pitch movement.
These can directly be used as data set D and matched against
an incrementally built 2D map; i.e. new scan points dj that
do not show a correspondence to already existing points mi

in M are added to M . Points that already have an equivalent
corresponding point, i.e. those points that were matched, will
be neglected as they do not provide additional information.
In accordance to the approach of the obstacle and structure
maps this representation is also relatively space efficient as it
avoids duplicate entries in the map. Two-dimensional maps
obtained by this means are shown in Fig. 6 and 7. As one
can see, the resulting map does not rank behind 2D maps
shown in approaches where the laser scanner is mounted in
a fixed position although in this approach the robot was able
to perform 3D data based obstacle avoidance while acquiring
the map.

B. 6DOF-SLAM

When building a three-dimensional environment model
and re-localizing the robot with all six degrees of freedom we
have not only to select the appropriate scans for the matching
process but to extract and transform the continuously gath-
ered 3D data. As aforementioned, our previous work used
6DOF-SLAM algorithms on 3D data that was acquired while
standing. But since the robot now moves while performing its
scans we have to segment the continuous data flow in a way
to obtain single three-dimensional point clouds at discrete
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Fig. 6. 2D Map of a 30m long corridor. The data for matching was
extracted from the continuous 3D data flow.
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Fig. 7. 2D Map of a cluttered example scenario. The according 3D map and
photos of the modeled environment are shown in Fig. 9. Due to the online
re-localization the scan matching trajectory is corrected and thus reflects
that the robot drove back to its starting position.

points that are each referenced to a distinct robot pose – the
base pose Pb.

The robot’s movement in space during the phase of
acquiring the scan, i.e. during the pitching movement, is
stripped from the point cloud by transforming the succes-
sively gathered 2D scans that make up the cloud according
to the estimated relative pose shift between the current robot
pose and Pb. Thereby a point cloud consists of approximately
15 to 500 single 2D laser scans depending on the currently
used pitch rate and AOI since we segment the continuous
data flow to reflect one complete pitch movement per point
cloud. A point cloud being generated by this means is shown
in Fig. 8. A similar approach in terms of data segmentation
has been presented by Cole and Newman [2].

In order to reduce the computational load we do not build
every possible point cloud for the matching process but only
those whose robot base poses Pb are further than 2 m away
from each other or that correspond to a rotation of more than
45◦. This selection mechanism still guarantees a sufficient



Fig. 8. A point cloud being constructed from 50 consecutive laser scans
while moving approximately 1m forward. The upper part shows a photo
of the scene, the middle shows the already transformed scans forming the
point cloud. The bottom shows the same point cloud rendered as a depth
image for visualization.

overlap of the point clouds for the matching process.
The generated point clouds are registered into an incre-

mentally built 3D model using our 6DOF-SLAM algorithm
[5]. A typical result for such a model generated while
roaming the environment is shown in Fig. 9. Note that the
so built model does not contain the full three-dimensional
information of the environment but only the area covered
in the AOI. In the depicted example the AOI was again
chosen to correspond to the robot’s virtual corridor. While
the resulting model is slightly more distorted compared to
those that can be achieved by performing 3D scans while
standing, the represented information is still very substantive
and consistent and thus usable for higher level robotic
applications.

Fig. 9. 3D model of an example scenario. The model was obtained by
matching generated 3D point clouds. The robot’s trajectory is depicted in
Fig. 7.

V. SUMMARY AND OUTLOOK

In this paper we have presented a novel sensor setup
for continuously sensing the environment in 3D. We have

introduced methodologies for representing the so gathered
three-dimensional data efficiently in the form of 2D obstacle
and structure maps. By combining these maps with the
concepts of an area of interest and the virtual corridor we
demonstrated a system capable of performing reactive real-
time 3D data based obstacle avoidance. With the presented
data segmentation mechanisms we have furthermore pro-
vided the means for processing the same continuous 3D data
in real-time for correcting the robot’s pose estimations and
for building 2D and 3D models of the environment. Due to
this novel approach the used autonomous mobile robot was
able to deal with cluttered and dynamic environments.

One of the shortcomings that we have already addressed
concerns the selection mechanism of filtering out floor points
in the update procedure of the 2D obstacle and structure
maps. In our previous work we have already presented
approaches for evaluating the slope of neighboring points in
3D laser scans. Such methods can easily be integrated into
the system in order to determine different kinds of surfaces
traversable to the robot.

Furthermore, we proposed a first approach for filtering out
dynamics in the update procedures of the 2D obstacle and
structure maps but we still need to tackle the same question
in the 2D and 3D mapping process.

Moreover, we reduced complex navigation strategies in
this first approach to mere behavior-based obstacle avoid-
ance. Future work will thus concentrate on integrating the
information provided by the 2D obstacle and structure maps
into more sophisticated path planning and following as well
as exploration approaches. Thereby we want to evaluate how
the benefits of the proposed representations are transferable
to these more complex tasks and what additional information
may show to be crucial or meaningful to add.
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