
Low Latency Streaming and Multi DRM with dash.js
Daniel Silhavy
Fraunhofer FOKUS
Berlin, Germany

daniel.silhavy@fokus.fraunhofer.de

Stefan Pham
Fraunhofer FOKUS

stefan.pham@fokus.fraunhofer.de

Martin Lasak
Fraunhofer FOKUS

martin.lasak@fokus.fraunhofer.de

Anita Chen
Fraunhofer FOKUS

anita.chen@fokus.fraunhofer.de

Stefan Arbanowski
Fraunhofer FOKUS

stefan.arbanowski@fokus.fraunhofer.de

ABSTRACT
Video streaming applications account for 60% of today’s global
internet traffic. The trend to consume videos over the internet
lead to a high demand for sophisticated and robust video players.
dash.js is an open sourceDASHplayer of theDASH-Industry-Forum
written in JavaScript utilizing the native browser APIs Media Source
Extensions (MSE) and Encrypted Media Extensions (EME). This
paper gives a general overview of the player and presents two
specific features namely low-latency streaming and multi DRM
playback. For that purpose, we illustrate how CMAF chunks in
combination with the corresponding dash.js APIs and additional
manifest parameters enable low latency streaming in the browser.
For DRM support we focus on the interaction between dash.js, the
EME and the underlying Content Decryption Module (CDM) of the
browser.

CCS CONCEPTS
• Information systems → Multimedia streaming; • Security
and privacy→ Digital rights management.

KEYWORDS
MPEG-DASH, dash.js, Media Source Extensions, Encrypted Media
Extensions, CMAF
ACM Reference Format:
Daniel Silhavy, Stefan Pham, Martin Lasak, Anita Chen, and Stefan Ar-
banowski. 2020. Low Latency Streaming and Multi DRM with dash.js. In
11th ACM Multimedia Systems Conference (MMSys’20), June 8–11, 2020, Is-
tanbul, Turkey. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3339825.3394936

1 INTRODUCTION
In 2019, 60% of the global application internet traffic was caused
by video streaming applications [5]. Streaming providers such as
Netflix and YouTube accounted for 12.6% and 8.7% of the global
application traffic, respectively [5]. The two main streaming for-
mats used for the delivery of video content over the internet are
HTTP Live Streaming (HLS) and Dynamic Adaptive Streaming over
HTTP (MPEG-DASH). According to the Bitmovin Video Developer

MMSys’20, June 8-11, 2020, Istanbul, Turkey
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in 11th ACM
Multimedia Systems Conference (MMSys’20), June 8–11, 2020, Istanbul, Turkey, https:
//doi.org/10.1145/3339825.3394936.

Report of 2019, HLS is used by 79% of the streaming providers while
MPEG-DASH reaches 58% adaption [1].

The trend in consuming videos over the internet leads to a high
demand for sophisticated and robust video players. Poor player
implementation will result in bad user experience and potential
loss of customers. One of the major challenges in terms of player
development is the heterogeneity of target platforms and devices,
ranging from gaming consoles to Smart TVs, mobile devices and
desktop browsers. In order to support a wide variety of these plat-
forms and devices, 55% of streaming providers use an open source
codebase for their players [1].

In this paper, we introduce dash.js, a free, open source MPEG-
DASH player that serves as a JavaScript reference client for imple-
menting production grade DASH players. It is available on GitHub 1

and NPM 2 under the BSD license. A hosted version of the reference
sample page is also available 3. dash.js is an outcome of Dash Indus-
try Forum (DASH-IF), a group of leading streaming companies that
promote and catalyze the adoption of MPEG-DASH and help tran-
sition it from a specification into a real deployment [2]. The dash.js
player is written in JavaScript and relies on the Media Source Ex-
tensions (MSE) and the Encrypted Media Extensions (EME) defined
by World Wide Web Consortium (W3C). Thus, dash.js can be used
on all platforms, which offer support for MSE and EME. A majority
of the common target platforms support both MSE and EME, which
makes dash.js a prominent option for a production grade player.
Having a single player which runs on all of the required target
devices and platforms eliminates the need in maintaining different
codebases and as a result, potentially saves time and resources.
Moreover, clients using dash.js benefit from the active development
of the player and the contributions from the community.

The dash.js project has been underway since November 2012.
By February 2020, 125 developers have contributed to the players’
source code. The project has 1,200 forks, 3,100 stars and is used and
watched by 329 and 270 GitHub members, respectively. In 2019, the
project had 315,309 NPM downloads. By the time this paper was
written, the latest version of the dash.js player is 3.1.0.

dash.js offers a wide set of features related to adaptive media
streaming. This includes:

• Support for Video on Demand (VOD) and live playback of
MPEG-DASH and Microsoft Smooth Streaming (MSS) assets.

1https://github.com/Dash-Industry-Forum/dash.js
2https://www.npmjs.com/dashjs
3http://reference.dashif.org/dash.js/v3.1.0/samples/dash-if-reference-
player/index.html

https://doi.org/10.1145/3339825.3394936
https://doi.org/10.1145/3339825.3394936
https://doi.org/10.1145/3339825.3394936
https://doi.org/10.1145/3339825.3394936

MMSys’20, June 8-11, 2020, Istanbul, Turkey Daniel Silhavy, Stefan Pham, Martin Lasak, Anita Chen, and Stefan Arbanowski

• Low latency MPEG-DASH playback based on Common Me-
dia Application Format (CMAF) chunks.

• Support for multiple Digital Rights Management (DRM) sys-
tems as well as different EME versions.

• Adaptive bitrate switching based on throughput, dropped
frames and buffer level. The different adaptive bitrate (ABR)
rules can be dynamically turned off and on. Moreover, the
addition of customized ABR rules is possible.

• Multi-period support: includes support for codec switch be-
tween different periods.

• Support for multiple subtitle and captions formats namely
Timed Text Markup Language (TTML), embedded CEA-608
closed captions (CEA-608), Web Video Text Tracks Format
(WebVTT) and Internet Media Subtitles and Captions (IMSC-
1) in both text and picture mode.

• Support for inband(EMSG box) and inline events (events
included in the Media Presentation Description (MPD)).

• Gap jumping
• Cross-browser compliance: tested on various browsers to
provide a consistent cross-browser experience.

This paper discusses two crucial features, namely, "low latency
streaming with CMAF" and "multi DRM support". The remainder
of the paper is structured as follows:

In Section 2, low latency streaming with CMAF is introduced.
The general working principle of CMAF chunks for low latency
streaming is illustrated and the benefits compared to conventional
ISO base media file format (ISOBMFF) segments are highlighted. In
addition, this section describes the required signaling of low latency
mode in the manifest, and the mechanisms to set the target latency
and configure the catchup mechanism with dash.js.

Section 3 explains the need for DRM systems and the role that
EME plays as an interface between the Content Decryption Module
(CDM) and the browser. Subsequently, the concrete interaction
between the dash.js player and the EME is illustrated. In addition,
the specific requirements to enable hardware DRM are presented.

Both Sections 2 and 3 have a similar structure. First, the basics
behind the corresponding technologies are explained. Next, the con-
crete implementation in dash.js is detailed, as well as highlighting
important implementation aspects.

The paper closes with a short summary and an outlook of up-
coming dash.js features.

2 LOW LATENCY STREAMINGWITH CMAF
IN DASH.JS

This section provides an overview of the CMAF media file format,
its mechanism for low latency live streaming, and how this works
in combination with dash.js.

2.1 Common Media Application Format
CMAF is essentially another media container based on ISOBMFF
and fragmented MP4. The major advantage of CMAF, in compar-
ison to classic media containers like ISOBMFF and MPEG trans-
port stream (MPEG-TS), is that it can be referenced from HLS and
MPEG-DASH manifest files. Consequently, media streaming con-
tent would only need to be encoded and packaged once (within

the CMAF container) and can then be streamed to all major plat-
forms. Content providers are no longer forced to create and store
separate media files with an MPEG-TS container for HLS and an
ISOBMFF container for MPEG-DASH. As a result, CMAF immedi-
ately cuts the storage and packaging costs in half while doubling
CDN efficiency at the same time.

In addition, CMAF provides the necessary tools for low latency
live streaming. CMAF introduces the concept of “chunks”. On a
high level, a classic ISOBMFF segment consists of one “moof” box
and one “mdat” box. With CMAF chunks, the segment now has
multiple such boxes that allow the client to access the media data
before the segment finishes. The benefits of the chunked mode
become more obvious when looking at the example depicted in
Figure 1.

Figure 1: Latencies achieved with classic ISOBMFF segments
and CMAF chunks.

In this example, each segment has a duration of 8 seconds. The
current wall clock time (now time) maps to the third second of
segment number four. A player entering the presentation at the
current wall clock time playing classic media segments, has two
options:

• Option 1: since segment four is not completed, the player
can start with segment three. That way, it ends up being
11 seconds behind the live edge – 8 seconds coming from
segment three, and 3 seconds coming from segment four.

• Option 2: the player waits 5 seconds for segment four to
finish and immediately starts downloading and playing it.
That way, the players ends up with 8 seconds of latency and
a waiting time of 5 seconds.

With CMAF chunks, on the other hand, the player is able to
play segment four before it is completely available. In the example
above, the CMAF chunks have a 1 second duration, which leads to
eight chunks per segment. Typically, only the first chunk contains
an Instant Decoder Refresh (IDR) frame and therefore, the player
would always need to start the playback from the beginning of a
segment. Consequently, being 3 seconds into segment four results

Low Latency Streaming and Multi DRM with dash.js MMSys’20, June 8-11, 2020, Istanbul, Turkey

in a latency of 3 seconds, which is less than what could be achieved
with classic ISOBMFF segments. It is also possible to fast decode the
first chunks by increasing the playback rate and play even closer
to the live edge.

2.2 CMAF low latency with dash.js
Since version 2.6.8, dash.js supports low latency streaming using
CMAF. The DASH-IF offers two sample streams with low latency
support generated by the DASH-IF live simulator 4 5. A concrete
example on how to use dash.js in low latency mode is provided in
this section.

2.2.1 Signaling low latency mode in the manifest file. A way to
signal to the client that the segments are chunked and available
prior to completion is required. For that reason, two new attributes
are introduced in the MPD [3]:

• @availabilityTimeComplete (ATC): specifies if segments of
all associated representations are completed at the adjusted
availability start time. If the value is set to "false", then the
client can infer that the segment is available at its announced
location prior to completion.

• @availabilityTimeOffset (ATO): provides the time in how
much earlier the segments are available compared to their
computed availability start time (AST).

By setting ATC to “false”, the packager signals to the client
that the segments are available prior to completion. Using the ATO
attribute, the packager can specify howmuch earlier (in comparison
to normal completion time) the segments can be accessed. In the
example depicted in 1, each segment has a duration of 8 seconds
and the ATO is set to 7 seconds. This means that the segments have
a chunk duration of 1 second and the first segment is available 7
seconds before its usual completion time.

2.2.2 Setting the target latency. The first option to specify when
streaming with dash.js in low latency mode is the target latency.
Target latency defines how close dash.js plays to the live edge. In
an ideal scenario, the target latency would be 0, and dash.js would
play directly at the live edge. Unfortunately, reducing the target
latency always comes with the trade-off in reducing the size of the
media buffer. A small media buffer, on the other hand, is vulnerable
to bandwidth fluctuations. In the worst case scenario, the player
runs into an empty buffer and playback is stalled. Thus, switching
to a small latency has a significant influence on the stability of the
stream and should always be evaluated carefully before production
deployment.

Setting the target latency with dash.js is very straightforward
and requires one line of code, as illustrated in Listing 1.

1 player.updateSettings ({

2 'streaming ': {

3 'liveDelay ': 3

4 }

5 });

Listing 1: Setting the target latency in dash.js

A live delay of 2-3 seconds is a good trade-off between playing
closely to the live edge and maintaining a stable buffer.
4https://tinyurl.com/tn55bqb
5https://tinyurl.com/thfnj9u

2.2.3 Configuring the catchup mechanism. In the example illus-
trated in Figure 1, a latency of 3 seconds for the CMAF fragment
with a chunk duration of 1 second was achieved. However, there
is an easier way to get even closer to the live edge: by simply in-
creasing the playback rate. Increasing the playback rate is also
useful in scenarios in which a latency deviation between the target
and real latency occurs. In dash.js, this process is called "catch-up
mechanism", which is controlled by two parameters:

By setting the liveCatchUpMinDrift attribute (in seconds), the
minimum latency deviation allowed before activating the catch-up
mechanism is defined. Again, the concrete call is a one-liner, as
shown in Listing 2.

1 player.updateSettings ({

2 'streaming ': {

3 'liveCatchUpMinDrift ': 0.1

4 }

5 });

Listing 2: Settingminimum latency deviation allowed before
activating the catch-up mechanism in dash.js

In this example, the allowed drift is set to 0.1 seconds.
In addition to the allowed drift, the desired catchup playback

rate needs to be defined. Again, one line of code is required:
1 player.updateSettings ({

2 'streaming ': {

3 'liveCatchUpPlaybackRate ': 0.5

4 }

5 });

Listing 3: Setting the catchup playback rate for low latency
streaming in dash.js

In this example, the playback rate is increased by 50% to 1.5 if
the catch-up mechanism is activated.

Increasing or decreasing the playback rate without notification
can lead to a poorer viewing experience. For some viewers, it may
look like the stream is interrupted, especially because the audio
is affected as well. A user-friendly solution for this is to mute the
audio or inform the user with a notification popup.

2.2.4 Additional configuration. In order to use the low latency
feature, the browser running dash.js needs to support the Fetch
API and HTTP 1.1 chunked transfer encoding. The combination of
both allows access to the media data prior to the availability of the
media segment.

3 DIGITAL RIGHTS MANAGEMENT IN
DASH.JS

Streaming providers are required to protect media assets against
piracy. The common approach in preventing unauthorized redis-
tribution of media files is by using DRM systems. Depending on
the target platform, different DRM systems are required. The three
main DRM systems in regards to adaptive video streaming are
Google Widevine, Microsoft Playready and Apple Fairplay.

EME is the API that enables playback of DRM protected content
in the browser. It provides the necessary function calls to discover
and interact with the underlying DRM system.

Like any other API, EME evolved over a period of time and the
current version is a vastly different compared to the one in 2013.
While desktop and mobile browsers are frequently updated, some

MMSys’20, June 8-11, 2020, Istanbul, Turkey Daniel Silhavy, Stefan Pham, Martin Lasak, Anita Chen, and Stefan Arbanowski

embedded devices and set-top boxes are still running an outdated
or customized version of the EME. For that reason, a sophisticated
player would detect the EME version on the client and trigger the
correct API functions.

3.1 License acquisition with multiple EME
versions

By default, dash.js comes with support for three different versions
of EME:

• ProtectionModel_01b.js: initial implementation of the EME
by Google Chrome (prior to version 36). This EME version
is not promised-based and uses outdated or prefixed events
like “needkey” or “webkitneedkey”.

• ProtectionModel_3Feb2014.js: implementation of EME APIs
as of 3 Feb 2014. Implemented by Internet Explorer 11 (Win-
dows 8.1).

• ProtectionModel_21Jan2015.js: most recent EME implemen-
tation. Latest changes in the EME specifications are added to
this model. It supports promised-based EME function calls.

3.2 How to select the correct EME version
dash.js injects the correct EME version once the player is initialized,
as illustrated in Listing 4

1 if ((! videoElement || videoElement.onencrypted !==

undefined) &&

2 (! videoElement || videoElement.mediaKeys !==

undefined)) {

3 return ProtectionModel_21Jan2015

4 }

5
6 else if (getAPI(videoElement ,

APIS_ProtectionModel_3Feb2014)) {

7 return ProtectionModel_3Feb2014

8 }

9
10 else if (getAPI(videoElement , APIS_ProtectionModel_01b))

{

11 return ProtectionModel_01b

12 }

Listing 4: Initialization of the correct EME version in dash.js

For means of simplicity, the actual instantiation of protection
models was removed, so the player checks for the correct EME
version in a reversed order. That way, the latest available EME
version is selected and the appropriate ProtectionModel is returned
to the controlling entity (ProtectionController.js). At this point, it
is also possible to add customized protection models in order to
support customized versions of the EME.

3.3 The basic EME flow
This section describes the entire license acquisition process, as
performed by dash.js using the latest version of the EME (corre-
sponding to ProtectionModel_21Jan2015).

3.3.1 Detecting encrypted content. In general, the information as
to if and how the content is encrypted can either be a part of the
manifest file and/or be embedded in the media segments. In this
example, we assume that the DRM information is embedded in
the media segments. If the content is encrypted, the dash.js player

receives an encrypted event from the browser. By registering for
that type of event, the player can pass the DRM initialization data
to a callback function:

1 case 'encrypted ':

2 if (event.initData) {

3 let initData = event.initData

4 eventBus.trigger(events.NEED_KEY ,

5 {key:new NeedKey(initData , event.

initDataType)});

6 }

Listing 5: The encrypted event of the browser provides the
necessary DRM initialization data.

By parsing the initialization data, the player can identify which
DRM systems can be used in order to decrypt the content. For
instance, one content may only support a Playready DRM, while
another one supports both Playready and Widevine.

3.3.2 Selecting the right DRM system. Depending on the underly-
ing platform and browser, multiple DRMs may be available – for
example, both Playready and Widevine at the same time. Since only
one DRM system is required to decrypt the content, dash.js allows a
prioritization of DRM systems. The respective call that needs to be
completed before delivering the manifest to the player is depicted
in Listing 6.

1 const protData =

2 "com.widevine.alpha": {

3 "serverURL": "https ://drm -widevine -licensing.

axtest.net/AcquireLicense",

4 "priority": 1

5 },

6 "com.microsoft.playready": {

7 "serverURL": "https ://drm -playready -licensing.

axtest.net/AcquireLicense",

8 "priority": 0

9 };

10 player.setProtectionData(protData);

Listing 6: dash.js allows the prioritization of available DRM
systems.

In this scenario, two valid configurations are defined, one for
Playready DRM, and one for Widevine DRM. Due to the prioritiza-
tion order, the availability of a Widevine DRM is checked before
the availability of a Playready DRM.

3.3.3 Requesting access to the DRM system. Before decrypting the
content, the player needs to check if the platform supports one of
the specified DRM systems or not. For that purpose, the request-
MediaKeySystemAccess() function of the EME is used. A successful
call to this function will return a MediaKeySystemAccess object:

1 navigator.requestMediaKeySystemAccess(systemString ,

configs)

2 .then(function (mediaKeySystemAccess) {

3 keySystemAccess.mksa = mediaKeySystemAccess;

4 })

5 .catch(function(error) {

6 // configuration is not supported

7 })

Listing 7: Requesting access to the DRM system with
requestMediaKeysSystemAccess.

Low Latency Streaming and Multi DRM with dash.js MMSys’20, June 8-11, 2020, Istanbul, Turkey

3.3.4 Generating a payload for the license request. After dash.js
has selected the correct DRM system, the previously received Me-
diaKeySystemAccess object is used to create MediaKeys and assign
them to the HTML5 video element. Later on, the MediaKeys will
be used to decrypt the content:

1 keySystemAccess.mksa.createMediaKeys ()

2 .then(function (mkeys) {

3 mediaKeys = mkeys;

4 videoElement.setMediaKeys(mediaKeys)

5 .then(function () {

6 });

7 }

Listing 8: Creating the Mediakeys which will be used for
decryption of the content

In order to receive a valid license for the content, a CDM spe-
cific payload needs to be added to the license request. For that
purpose, a MediaKeySession is created, in which dash.js calls the
generateRequest() function.

1 const session = mediaKeys.createSession(sessionType);

2 session.generateRequest(dataType , initData)

3 .then(function () {

4 // Request generated

5 })

6 .catch(function (error) {

7 // Error

8 });

Listing 9: Generating a request to receive the CDM specific
payload for the license request.

The browser will forward the request to the underlying CDM.
As a result, the CDM generates the payload for the license request.

3.3.5 Sending the license request. When the CDM has generated
the required payload, the data is forwarded to the browser. By
registering for the message event, the player is able to grab the
needed data:

1 case 'message ':

2 let message = ArrayBuffer.isView(event.message) ?

event.message.buffer : event.message;

Listing 10: Receiving the payload for the license request
from the CDM

Finally, the license request can be issued using the reqPayload
derived from the previous key message:

1 doLicenseRequest(url , reqHeaders , reqMethod , responseType

, withCredentials , reqPayload ,

LICENSE_SERVER_REQUEST_RETRIES , timeout , onLoad ,

onAbort , onError);

Listing 11: Issuing a license request

3.3.6 Working with the license response. If the license server re-
turns a valid license, the final step is to update the MediaKeySession
with the data received from the license server.

1 session.update(message).catch(function (error) {

2 });

Listing 12: Updating the MediaKeySession

At this point, the player has everything it needs to play the
content. The rest is up to the browser and CDM.

Table 1: Mapping of EME levels to Widevine security level
[4]

EME Level Robustness Level Widevine Security Level
1 SW_SECURE_CRYPTO 3
2 SW_SECURE_DECODE 3
3 HW_SECURE_CRYPTO 2
4 HW_SECURE_DECODE 1
5 HW_SECURE_ALL 1

3.4 Enabling Hardware DRM on Android
Chrome using Encrypted Media Extensions

DRM systems offer different levels of security. Taking Google’s
Widevine DRM system as a reference, three different security levels
are defined:

• Security Level 1 (L1): complete processing is performed in a
Trusted Execution Environment (TEE). This level refers to a
hardware DRM.

• Security Level 2 (L2): cryptography is performed within the
TEE. The video processing is done through separate video
hardware or software. This level also refers to hardware
DRM.

• Security Level 3 (L3): no TEE is present in the device. De-
cryption is typically performed directly in the browser. This
level refers to software DRM.

In several cases, only devices with a security level of L1 are
allowed to play Ultra HD content. Thus, an interesting question
arises in regards to how to check if a device supports an L1Widevine
DRM or not.

3.4.1 Hardware DRM and EME - the theory. As described in Sec-
tion 3.3.3, EME’s requestMediaKeySystemAccess function is used to
detect which DRM systems are available, along with its supported
configurations. The EME defines five different levels which can
be directly mapped to its respective Widevine security level, as
illustrated in Table 1.

For example, EME level 1 maps to a Widevine security level of 3.
The EME level is not specified directly in the requestMediaKeySys-

temAccess call. Instead, the robustness level parameter is used (see
Table 1). The complete invocation of the initial EME call includes a
configuration array that combines all required parameters.

Typically, not only is the video track encrypted, but the audio
track as well. Widevine recommends using different encryption
keys for both tracks. Video tracks are much more valuable and as a
result, platforms only support Widevine L3 audio tracks. Following
that, a sample configuration for the requestMediaKeySystemAccess
call can include the following values:

1 const config = [

2 {

3 "initDataTypes": [

4 "cenc"

5],

6 "persistentState": "optional",

7 "distinctiveIdentifier": "optional",

8 "sessionTypes": [

9 "temporary"

MMSys’20, June 8-11, 2020, Istanbul, Turkey Daniel Silhavy, Stefan Pham, Martin Lasak, Anita Chen, and Stefan Arbanowski

10],

11 "audioCapabilities": [

12 {

13 "robustness": "SW_SECURE_CRYPTO",

14 "contentType": "audio/mp4;codecs="mp4a .40.2""

15 }

16],

17 "videoCapabilities": [

18 {

19 "robustness": "HW_SECURE_ALL",

20 "contentType": "video/mp4;codecs="avc1 .42800C""

21 }

22]

23 }

24]

Listing 13: Sample configuration that is handed to the
requestMediaKeySystemAccess function

In this example, the video track requires at least a Widevine level 1
DRM, while audio only needs level 3. One thing to keep in mind is
that changing parameters like persistentState, distinctiveIdentifier
or the contentType have a significant influence on the result of the
call. The underlying CDM may reject the configuration if one of
these settings is not supported, regardless of whether a hardware
DRM is supported or not.

3.4.2 Hardware DRM and EME - Practical Tests. Based on the pre-
viously described code, we conducted a small test, in which we used
a Samsung Galaxy S9 with Android 9 and Chrome 75.0.3770.101,
and a HTC OnePlus 5T with Android 8.1 and Chrome 75.0.3770.101.

With the configuration described in Listing 13, the promise re-
turned by the requestMediaKeysSystemAccessCall is successfully
resolved on both devices. Unfortunately, this does not necessarily
mean that the device really supports hardware DRM. On one of
our test devices, we encountered an error when trying to create
the MediaKeys afterwards. Therefore, when checking if a device
supports hardware DRM or not, the MediaKeys need be checked as
well. This results in the code shown in Listing 14.

1 navigator

2 .requestMediaKeySystemAccess(keySystem , config)

3 .then((keySystemAccess) => {

4 return keySystemAccess.createMediaKeys ();

5 })

6 .then (() => {

7 // It works

8 })

9 .catch ((e) => {

10 // no UHD on this device

11 });

Listing 14: The require EME calls to check for a Hardware
DRM.

4 CONCLUSION
This paper introduced dash.js, the open source MPEG-DASH player
of DASH-IF that is written in JavaScript and utilizes the native
browser APIsMSE and EME. dash.js offers awide variety of features,
like VOD and live playback, MSS to MPEG-DASH conversion, as
well as support for multi-period and buffer- and throughput-based
adaptive bitrate algorithms. Within the scope of this paper, two
specific use cases, namely low-latency streaming and multi-DRM
playback, were presented.

In the context of low latency streaming, CMAF chunks, used
as a means to access the media data of a segment, and prior to
the segment being completely available on the Content Delivery
Network (CDN), were introduced. Furthermore, the two MPD at-
tributes, @availabilityTimeComplete and @availabilityTimeOffset,
to specify if and how much earlier a segment is available at its
announced location, were presented as well. Subsequently, the con-
crete low latency implementation in dash.js was explained, focusing
on the three relevant API functions of the player that control the
parameters for target latency, latency deviation and catch-up rate.
Finally, potential drawbacks, like irritating sound effects (due to
an increased playback rate in catch-up mode), and additional re-
quirements, like support for the Fetch API and HTTP 1.1 chunked
transfer encoding, were outlined.

For DRM support in dash.js, the general requirement for stream-
ing providers in protecting their content against piracy was high-
lighted. In browser-based environments, EME is the interface for
accessing DRM’s underlying functionality. dash.js offers support
for different EME versions in order to enable playback of DRM
protected content on legacy devices and latest browser versions.
The complete license acquisition process in dash.js comprises of
multiple steps. This process includes passing a valid configuration
to the CDM, creating a key session and its corresponding media
keys, and generating valid request data to deliver to the license
server. These steps were detailed in Section 3. In addition, the impli-
cations of different DRM security levels on the corresponding EME
calls were investigated. A practical test case was also provided in
order to show that checking the availability of a hardware DRM
requires at least two different EME calls.

Future work in the context of dash.js development includes: sup-
port for offline playback, implementation of the Common Media
Client Data specification (CTA 5005). Furthermore, multi-period
and live implementations for SegmentTimeline, as well as gap man-
agement, will be improved. Additionally, the ABR algorithm for
low latency streaming is to be revised.

REFERENCES
[1] Bitmovin. 2019. Bitmovin Video Developer Report 2019. (2019).

https://bitmovin.com/bitmovin-2019-video-developer-report-av1-codec-
ai-machine-learning-low-latency

[2] DASH Industry Forum. [n.d.]. DASH Industry Forum - About. https://dashif.org/
about/

[3] ISO/IEC FDIS 23009-1 4th edition 2019. Information technology — Dynamic
adaptive streaming over HTTP (DASH) — Part 1: Media presentation description and
segment formats . Standard. International Organization for Standardization.

[4] Microsoft. 2019. Offline Widevine streaming for Android. https://docs.microsoft.
com/en-us/azure/media-services/previous/offline-widevine-for-android

[5] Sandvine. 2019. The Global Internet Phenomena Report. (2019). https://www.
sandvine.com/global-internet-phenomena-report-2019

https://bitmovin.com/bitmovin-2019-video-developer-report-av1-codec-ai-machine-learning-low-latency
https://bitmovin.com/bitmovin-2019-video-developer-report-av1-codec-ai-machine-learning-low-latency
https://dashif.org/about/
https://dashif.org/about/
https://docs.microsoft.com/en-us/azure/media-services/previous/offline-widevine-for-android
https://docs.microsoft.com/en-us/azure/media-services/previous/offline-widevine-for-android
https://www.sandvine.com/global-internet-phenomena-report-2019
https://www.sandvine.com/global-internet-phenomena-report-2019

	Abstract
	1 Introduction
	2 Low Latency Streaming with CMAF in dash.js
	2.1 Common Media Application Format
	2.2 cmaf low latency with dash.js

	3 Digital Rights Management in dash.js
	3.1 License acquisition with multiple EME versions
	3.2 How to select the correct EME version
	3.3 The basic eme flow
	3.4 Enabling Hardware DRM on Android Chrome using Encrypted Media Extensions

	4 Conclusion
	References

