Fraunhofer
 Institut Techno- und Wirtschaftsmathematik

J. Kalcsics, S. Nickel, M. Schröder

A generic geometric approach to territory design and districting
© Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM 2009
ISSN 1434-9973
Bericht 153 (2009)
Alle Rechte vorbehalten. Ohne ausdrückliche schriftliche Genehmigung des Herausgebers ist es nicht gestattet, das Buch oder Teile daraus in irgendeiner Form durch Fotokopie, Mikrofilm oder andere Verfahren zu reproduzieren oder in eine für Maschinen, insbesondere Datenverarbeitungsanlagen, verwendbare Sprache zu übertragen. Dasselbe gilt für das Recht der öffentlichen Wiedergabe.

Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt.
Die Veröffentlichungen in der Berichtsreihe des Fraunhofer ITWM können bezogen werden über:
Fraunhofer-Institut für Techno- und
Wirtschaftsmathematik ITWM
Fraunhofer-Platz 1
67663 Kaiserslautern
Germany
Telefon: 0631/31600-0
Telefax: 0631/31600-1099
E-Mail: info@itwm.fraunhofer.de
Internet: www.itwm.fraunhofer.de

Das Tätigkeitsfeld des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM umfasst anwendungsnahe Grundlagenforschung, angewandte Forschung sowie Beratung und kundenspezifische Lösungen auf allen Gebieten, die für Tech-no- und Wirtschaftsmathematik bedeutsam sind.

In der Reihe »Berichte des Fraunhofer ITWM« soll die Arbeit des Instituts kontinuierlich einer interessierten Öffentlichkeit in Industrie, Wirtschaft und Wissenschaft vorgestellt werden. Durch die enge Verzahnung mit dem Fachbereich Mathematik der Universität Kaiserslautern sowie durch zahlreiche Kooperationen mit internationalen Institutionen und Hochschulen in den Bereichen Ausbildung und Forschung ist ein großes Potenzial für Forschungsberichte vorhanden. In die Berichtreihe sollen sowohl hervorragende Diplom- und Projektarbeiten und Dissertationen als auch Forschungsberichte der Institutsmitarbeiter und Institutsgäste zu aktuellen Fragen der Techno- und Wirtschaftsmathematik aufgenommen werden.

Darüber hinaus bietet die Reihe ein Forum für die Berichterstattung über die zahlreichen Kooperationsprojekte des Instituts mit Partnern aus Industrie und Wirtschaft.

Berichterstattung heißt hier Dokumentation des Transfers aktueller Ergebnisse aus mathematischer Forschungs- und Entwicklungsarbeit in industrielle Anwendungen und Softwareprodukte - und umgekehrt, denn Probleme der Praxis generieren neue interessante mathematische Fragestellungen.

Prof. Dr. Dieter Prätzel-Wolters
Institutsleiter
Kaiserslautern, im Juni 2001

A Generic Geometric Approach to Territory Design and Districting

Jörg Kalcsics
Chair of Operations Research and Logistics, Saarland University
P. O. Box 1511 50, 66041 Saarbrücken, Germany
j.kalcsics@orl.uni-saarland.de
Stefan Nickel
Chair of Operations Research and Logistics, Saarland University
P. O. Box 1511 50, 66041 Saarbrücken, Germany
s.nickel@orl.uni-saarland.de
Michael Schröder
Fraunhofer ITWM, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
michael.schroeder@itwm.fraunhofer.de

Abstract

Territory design and districting may be viewed as the problem of grouping small geographic areas into larger geographic clusters called territories in such a way that the latter are acceptable according to relevant planning criteria. The availability of GIS on computers and the growing interest in Geo-Marketing leads to an increasing importance of this area. Despite the wide range of applications for territory design problems, when taking a closer look at the models proposed in the literature, a lot of similarities can be noticed. Indeed, the models are many times very similar and can often be, more or less directly, carried over to other applications. Therefore, our aim is to provide a generic application-independent model and present efficient solution techniques. We introduce a basic model that covers aspects common to most applications. Moreover, we present a method for solving the general model which is based on ideas from the field of computational geometry. Theoretical as well as computational results underlining the efficiency of the new approach will be given. Finally, we show how to extend the model and solution algorithm to make it applicable for a broader range of applications and how to integrate the presented techniques into a GIS.

Subject classifications: Programming: Geometric, Programming: Heuristics, Information systems: Decision support systems

1 Introduction

Territory design and districting may be viewed as the problem of grouping small geographic areas, called basic areas, e.g., counties or zip code areas, into larger geographic clusters, called territories, in a way that the latter are acceptable according to relevant planning criteria. Two important criteria are balance and compactness. Balance describes the desire for territories that have approximately equal size, e.g., the same amount of workload, number of customers, or voting population. A territory is said to be geographically compact if it is round-shaped and undistorted. Compact territories usually reduce the sales persons unproductive travel time. Territory design problems (TDPs) are motivated by quite different applications ranging from political districting (Hess et al. (1965), George et al. (1997), Mehrotra et al. (1998), Bozkaya et al. (2003), Ricca et al. (2008)) over the design of territories for schools, social facilities, waste collection, or emergency services (Hanafi et al. (1999), D'Amico et al. (2002), Muyldermans et al. (2002), Perrier et al. (2006a), Perrier et al. (2006b)), to sales and service territory design (Fleischmann and Paraschis (1988), Drexl and Haase (1999), Blais et al. (2003), Fernández and Ríos-Mercado (2009)). See Williams (1995) and Kalcsics et al. (2005) for comprehensive overviews. For sales and service territories, well-planned decisions enable an efficient market penetration and lead to decreased costs and improved customer service, while for political districting an algorithmic approach protects against politically motivated manipulations during the districting process. As most applications have a strong spatial relation, it is obvious to integrate the algorithms into a Geographical Information System (GIS). Therewith, users can utilize the rich variety of maps, spatial databases, and geographical objects available in modern GIS.

Upon reviewing the literature, one can observe that only few papers consider the territory design problem independently from a specific practical background. Hence, the tendency to separate the model from the application and establish the model itself as a self-contained topic of research cannot be observed (Schröder (2001)). However, when taking a closer look at the proposed models, we observe that these models can often be, more or less directly, carried over to other applications. Therefore, we will introduce a generic application-independent model that covers criteria shared by most models in the literature. Typically, a decision making process does not follow a strict linear work flow but is rather an iterative and ongoing process of selecting appropriate planning parameters and data for the problem, computing a territory layout, and evaluating the solutions obtained. It is this interactive type of work that requires the fast generation of high quality solutions; especially for large-scale problems which are often
encountered due to the availability of very detailed data in nowadays GIS.
Many different solution approaches for territory design problems have appeared in the literature. The first mathematical programming approach was proposed by Hess et al. (1965) who modeled the problem as a capacitated p-median facility location problem. Since then, several authors improved and modified this location-allocation procedure, see e.g. Fleischmann and Paraschis (1988); George et al. (1997). A second mathematical programming approach is based on set partitioning models, see e.g. Mehrotra et al. (1998); Nygreen (1988). In recent years a growing number of meta heuristics have been proposed for the TDP. Most notably, Simulated Annealing (D'Amico et al. (2002); Ricca and Simeone (2008)), Tabu Search (Blais et al. (2003); Bozkaya et al. (2003)), Genetic algorithms (Bergey et al. (2003); Forman and Yue (2003)), and GRASP (Fernández and Ríos-Mercado (2009)). Common to all these techniques is however, that they have an abstract view on the problem and completely neglect the inherent geographical nature of the problem. Therefore, our goal is to utilize the spatial information to develop a fast procedure that uses techniques from Computational Geometry and is suitable for an interactive use. Recently, Ricca et al. (2008) proposed to use weighted Voronoi diagrams. However, their preliminary computational tests indicate that the approach is not yet suitable for solving districting problems. In a slightly different context, Novaes et al. (2009) use Voronoi diagrams in association with continuous approximation models to solve location-districting problems.

The remainder of this paper is organized as follows. In the next section we introduce the basic model that covers criteria common to most applications. In Section 3 we give a sketch of the solution approach and derive theoretical results on the balance of the resulting territories. Afterward, we present the algorithm in detail (Section 4) and report computational results underlining its efficiency and the quality of the solutions obtained (Section 6). In Section 5 we show how to incorporate a broad range of extensions of the basic territory design model into the heuristic and how to integrate the methods into a Geographical Information System. The paper concludes with a summary and an outlook to future research.

2 A Basic Model for Territory Design

Since the early sixties, many authors have investigated territory design problems. Kalcsics et al. (2005) give an extensive overview of criteria and objectives encountered in literature. Despite the wide range of applications, most of them have the same basic premises, including the desire
for compact, contiguous, and balanced territories. Therefore, we chose these criteria as the core of our generic model. Starting with a basic model has several advantages. Often, such a model already provides a sufficient approximation of the problem at hand (see Fleischmann and Paraschis (1988); George et al. (1997)). Moreover, this generic model can serve as a starting point for more complex models taking additional planning criteria into account, making it applicable to a much broader range of problems, see also Section 5. Finally, when providing algorithms for a general purpose GIS, one does not know the exact problem a user will have. Hence, modeling the most common aspects of the territory design problem allows a wide applicability of the algorithms. Next, we present the components of the basic model. Note that we provide rather informal descriptions here, as we first want to give a general idea of the model and the mathematical modeling of some of its components strongly depends on the chosen solution approach or the specific application, see Section 3.2 for more details.

Basic areas. A territory design problem comprises a set V of basic areas, also called sales coverage units. Let $M:=|V|$. These basic areas are geographical objects in the plane: points (e.g., geo-coded addresses), lines (e.g., streets), or geographical areas (e.g., zip-code areas). In case of non-point objects, a basic area $i \in V$ is represented by a central point b_{i}, e.g., its geographical center. In what follows we assume, without loss of generality, that no more than two points b_{i} lie on a common line. Moreover, a quantifiable attribute $w_{i} \in \mathbb{R}_{+}$, called activity measure, is associated with each basic area $i \in V$. Typical examples are workload for servicing or visiting the customers within the area, estimated sales potential or number of inhabitants. For a subset $T \subset V$ of basic areas we define the activity measure of T as $w(T)=\sum_{i \in T} w_{i}$.

Number of territories. In the basic model we assume that the number of territories is given in advance and is denoted by p.

Complete assignment of basic areas. We require every basic area to be contained in exactly one territory, i.e., the territories define a partition of the set V of basic areas. Let $T_{j} \subset V$ denote the j-th territory, then $T_{1} \cup \cdots \cup T_{p}=V$ and $T_{j} \cap T_{k}=\emptyset, \forall j \neq k, 1 \leq j, k \leq p$.

Balance. We call a territory T perfectly balanced if its size $w(T)$ is equal to the average territory size $\mu=w(V) / p$. However, since perfectly balanced territories can usually not be achieved, a common way to measure balance is to compute the relative percentage deviation of the territory size from the average size. The larger this deviation is, the worse is the balance.

Contiguity. Unfortunately, a concise mathematical formulation of contiguity depends on the available data. If the basic areas are non-point objects, i.e., lines or polygons, we can easily derive neighborhood information and determine, whether a territory is connected or not. However, as we also have to take into account basic areas that represent point objects, we call a territory contiguous, if the convex hull of the (point representations of the) basic areas comprising the territory does not intersect the convex hull of the basic areas of another territory.

Compactness. A territory is said to be geographically compact if it is somewhat round-shaped and undistorted. Although being a very intuitive concept, a rigorous definition of compactness does not exist. Compactness can be evaluated using relative measures, like the Roeck and Schwartzberg tests, or absolute measures, e.g., the (weighted) moment of inertia (see Young (1988)). For our solution approach we will derive a measure based on convex hulls to achieve compact territories.

Objective. The objective can be informally described as follows: Partition all basic areas V into a number of p territories that are balanced, contiguous, compact, and non-overlapping.

3 Theoretical Results

In the following we present the principle ideas of our approach, which are based on methods from computational geometry and utilize the underlying geographical information of the problem. Although this type of approach has already been mentioned in the literature, no details were given (Forrest (1964)). The idea is to recursively subdivide the problem geometrically using lines into smaller and smaller subproblems, until an elemental level is reached where we can efficiently solve the TDP. The solutions to these problems then directly yield a solution for the original problem. Hence, the basic operation is to divide a subset $B \subseteq V$ of the basic areas, i.e., points, into two "halves" B_{l} and B_{r} by placing a line within this set of points. $B_{l}\left(B_{r}\right)$ are then defined as the set of points, i.e., the set of basic areas, located "left" ("right") of the line. By this, we partition the territory design problem for B into two disjoint subproblems, one for B_{l} and one for B_{r}. These subproblems are then solved independently from one another, again by dividing each of them using a line. See Figure 1 for an example. This iterative partitioning gives the heuristic its name: successive dichotomies. The partitioning is thereby achieved by means of so-called line partitions. Note that one could consider more general methods to geometrically

Figure 1: A recursive partition of a set of points B into four disjoint subsets.
define a partition, e.g., using curves. However, as we will see in following, using lines has several (computational) advantages. But before, we will state some basic definitions.

3.1 Definitions

An undirected graph $G=(V, E)$ consists of a set of nodes $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and a set of edges $E=\left\{e_{1}, \ldots, e_{m}\right\}$ connecting the nodes. A path $P\left(v_{i}, v_{j}\right)$ between two nodes v_{i} and v_{j} is an alternating sequence of nodes and edges connecting v_{i} and v_{j} where all nodes and edges are distinct. The length $\ell(P)$ of a path $P\left(v_{i}, v_{j}\right)$ is the number of edges of the path. A tree $T=(V, E)$ is an undirected graph which is connected, i.e., there exists a path between any pair of nodes, and acyclic, i.e., there are no closed paths. Let $v^{0} \in V$ be a distinguished node of the tree, the so-called root. Let $v_{i} \in V, v_{i} \neq v^{0}$, be a node and v_{j} be adjacent to $v_{i} . v_{j}$ is called son or child of v_{i}, if v_{i} is on the unique path connecting v_{j} with v^{0}; moreover, v_{i} is called parent or father of v_{j}. A tree is called binary, if a node is either a leaf or has exactly two sons. We say that a node v_{i} is at depth or level l of the tree, if the length of the unique path from v_{i} to the root has length l : $\operatorname{lev}\left(v_{i}\right)=\ell\left(P\left(v_{i}, v^{0}\right)\right)$. The height $l^{\max }$ of a rooted tree is the greatest depth of a node of the tree, i.e., $l^{\max }=\max _{v_{i} \in V} \operatorname{lev}\left(v_{i}\right)$.

3.2 Line Partitions

First, we will formally define line partitions and afterwards discuss properties of line partitions regarding balance, contiguity, and compactness. We denote a line $L=L(z, \alpha)$ in the plane by a footpoint $z=\left(x_{z}, y_{z}\right) \in \mathbb{R}^{2}$ and an angle $\alpha \in[0,2 \pi)$ of the line with the positive x-axis, that is $L(z, \alpha)=\left\{(x, y) \in \mathbb{R}^{2} \mid 0=m x-y+a\right\}$, where $m=\tan \alpha$ and $a=y_{z}-x_{z} \tan \alpha$ (we set $\tan \alpha:=0$ for $\alpha \in\{0,180\}$). Every line $L\left(\left(x_{z}, y_{z}\right), \alpha\right)$ in \mathbb{R}^{2} divides the plane into two halfspaces. Let $H^{\diamond}(z, \alpha):=\left\{(x, y) \in \mathbb{R}^{2} \mid m x-y+a \diamond 0\right\}$, where $\diamond \in\{<, \leq,=, \geq,>\}$.

Figure 2: Partition of a set of basic areas and the corresponding partition tree.

A partition problem $P P=(B, q)$ is defined as a subset of basic areas $B \subseteq V$ and an integer $1 \leq q \leq p$ denoting the number of territories B has to be partitioned into. $P P$ is called trivial if $q=1$, as in this case B already defines a territory. As there are exponentially many possible partitions of the set B, we restrict ourselves to a special class of partitions, defined as follows.

Definition 3.1 A line partition $L P=\left(B_{l}, B_{r}, q_{l}, q_{r}\right)$ of a partition problem $P P=(B, q)$ is defined by two sets $B_{l}, B_{r} \subset B$, a line $L(z, \alpha)$ in \mathbb{R}^{2} such that $B_{l}=B \cap H \leq(z, \alpha)$ and $B_{r}=B \cap H^{>}(z, \alpha)$, and two numbers $1 \leq q_{l}, q_{r} \leq p$ with $q_{l}+q_{r}=q$.

Observe that $B_{l} \cup B_{r}=B$ and $B_{l} \cap B_{r}=\emptyset$. We say that L generates or induces the line partition $L P$. Note that the number of partitions of B induced by a line is bounded by $|B|^{2}$, as we assumed that no more than two points lie on a common line. We call $P P_{l}:=\left(B_{l}, q_{l}\right)$ and $P P_{r}:=\left(B_{r}, q_{r}\right)$ the left and right subproblem of $P P$, and $P P$ the father of $P P_{l}$ and $P P_{r}$. As a nontrivial partition problem generates two new subproblems, the recursive partitioning resembles a binary tree, called partition tree. The root of the tree is the problem (V, p) we start with, each interior node represents a nontrivial partition problem, and the leaves correspond to territories $\left(T_{i}, 1\right)$.

Example 3.1

Consider the set of basic areas $B:=\{1,2, \ldots, 10\}$ depicted in Figure 2 with the following weights: $w=(4,2,4,3,5,7,6,5,6,8)$. Let $q=4$. The figure depicts a partition of the point-set B into four territories. First, we partition the point-set B using the horizontal line L_{1} into the left (upper) and right subproblem $P P_{l}=(\{1,3,5,7,10\}, 2)$ and $P P_{r}=(\{2,4,6,8,9\}, 2)$. Afterward, $P P_{l}$ is further subdivided by L_{2} into two territories $T_{1}=(\{1,3,5\}, 1)$ and $T_{2}=(\{7,10\}, 1)$; analogously, for $P P_{r}$. This structure is resembled in the partition tree, where we only give the corresponding partitioning line in an interior node.

In Section 2 we introduced, rather informally, the components of the basic model. Some of them require further specification. This will be done next. Note that we do not obtain the final territory layout till the very end of the method (territories correspond to leafs of the partition tree); hence, evaluating the criteria only for the resulting territories would be too late. Therefore, given a problem that needs further subdivision, we try to choose a line partition such that the two resulting subproblems are again disjoint, balanced, contiguous, and compact.

Balance of a Line Partition

Given a partition problem $P P=(B, q)$, following the territory design literature, we measure its balance by computing the relative percentage deviation of the territory size from the average size $\mu=w(V) / p$

$$
b a l(P P)=b a l(B, q):=\frac{|w(B)-q \mu|}{q \mu}
$$

The larger this value is, the worse is the balance of the territory. The balance bal $(T L)$ of a territory layout $T L=\left\{T_{1}, \ldots, T_{p}\right\}$ is defined as the maximal balance of one of the territories T_{j} of the layout, that is $\operatorname{bal}(T L):=\max _{j=1, \ldots, p} b a l\left(T_{j}\right)$. In the following, our aim is to derive an upper bound on $b a l(T L)$. The balance of a line partition $L P=\left(B_{l}, B_{r}, q_{l}, q_{r}\right)$ is defined by means of the resulting subproblems $P P_{l}=\left(B_{l}, q_{l}\right)$ and $P P_{r}=\left(B_{r}, q_{r}\right):$ bal $(L P):=$ $\max \left\{b a l\left(P P_{l}\right), b a l\left(P P_{r}\right)\right\}$. Next, we will show that the balance of at least one of the two subproblems $P P_{l}$ and $P P_{r}$ will be worse than the balance of $P P$.

Proposition 3.1 Let $P P=(B, q)$ be a partition problem and $L P=\left(B_{l}, B_{r}, q_{l}, q_{r}\right)$ be a line partition of $P P$. Then, bal $(P P) \leq \max \left\{\operatorname{bal}\left(P P_{l}\right), \operatorname{bal}\left(P P_{r}\right)\right\}$.

Proof. Assume, w.l.o.g., that $w(B) \geq q \mu$. Let $\delta:=w(B)-q \mu \geq 0$. Moreover, define $\delta_{l}:=w\left(B_{l}\right)-q_{l} \mu \in \mathbb{R}$ and $\delta_{r}:=w\left(B_{r}\right)-q_{r} \mu \in \mathbb{R}$. Then, $\delta_{l}+\delta_{r}=\delta=\delta \frac{q_{l}}{q}+\delta \frac{q_{r}}{q}$, since $w(B)=w\left(B_{l}\right)+w\left(B_{r}\right)$ and $q=q_{l}+q_{r}$. We distinguish two cases:

1. $\delta_{l} \geq \delta q_{l} / q$. Since $\delta \geq 0$, we have $\delta_{l} \geq 0$ and

$$
\operatorname{bal}\left(B_{l}, q_{l}\right)=\frac{\left|w\left(B_{l}\right)-q_{l} \mu\right|}{q_{l} \mu}=\frac{\delta_{l}}{q_{l} \mu} \geq \frac{\delta \frac{q_{l}}{q}}{q_{l} \mu}=\frac{\delta}{q \mu}=\operatorname{bal}(B, q)
$$

2. $\delta_{l}<\delta q_{l} / q$. Then, $\delta_{r}-\delta \frac{q_{r}}{q}=\delta \frac{q_{l}}{q}-\delta_{l}>0$. Therefore, $\delta_{r}>\delta \frac{q_{r}}{q} \geq 0$ and we can repeat the argument in 1 . to show that $\operatorname{bal}\left(B_{r}, q_{r}\right)>\operatorname{bal}(B, q)$.

Hence, the result follows.

As the balance deteriorates for at least one of the sons with every line partition, we should choose a well balanced partition for each problem. Let a partition problem (B, q) and numbers $1 \leq q_{l}, q_{r} \leq q$ with $q_{l}+q_{r}=q$ be given. For a given angle α, we are looking for a line $L(\cdot, \alpha)$ inducing a partition of (B, q) such that the resulting two subproblems $\left(B_{l}, q_{l}\right)$ and $\left(B_{r}, q_{r}\right)$ are again well balanced. Let us assume for the moment that $\alpha=\pi / 2$, i.e., we consider separating lines parallel to the y-axis. First, we sort the points in B by non-decreasing x-coordinate. Obviously, every possible partition along a line parallel to the y-axis divides this sorted sequence into a left and a right part. Thus, there are $O(|B|)$ (nontrivial) partitions, as we assumed that no more than two points lie on a common line. If α is different from $\pi / 2$, the same idea applies after rotating the coordinate system so that the line through the origin with angle α becomes the y-axis. Denote the sorted sequence of points of B as $a_{1}, a_{2}, \ldots, a_{n}, n=|B|$.

Every possible, nontrivial line partition of (B, q) with respect to this angle is given by $L P(k)=\left(B_{l}^{k}, B_{r}^{k}, q_{l}, q_{r}\right), k=1, \ldots, n-1$, where $B_{l}^{k}:=\left\{a_{1}, \ldots, a_{k}\right\}$ and $B_{r}^{k}:=\left\{a_{k+1}, \ldots, a_{n}\right\}$. Next, we determine the partition $L P^{*}$ for which the maximal relative deviation of the two resulting subproblems from the average territory size with respect to (B, q) is minimal, i.e., the index k^{*} minimizing

$$
\begin{equation*}
\min _{k=1, \ldots, n-1} \max \left\{\frac{\left|w\left(B_{l}^{k}\right)-q_{l} \mu^{\prime}\right|}{q_{l} \mu^{\prime}}, \frac{\left|w\left(B_{r}^{k}\right)-q_{r} \mu^{\prime}\right|}{q_{r} \mu^{\prime}}\right\} \tag{1}
\end{equation*}
$$

where $\mu^{\prime}:=w(B) / q$. The index k^{*} can be computed as follows. First, we determine an index k^{\prime} such that $w\left(B_{l}^{k^{\prime}}\right)<q_{l} \mu^{\prime}$ and $w\left(B_{l}^{k^{\prime}+1}\right) \geq q_{l} \mu^{\prime}$. Let $w^{k^{\prime}+1}$ be the weight of the point $a_{k^{\prime}+1}$. Then, k^{*} is given by

$$
k^{*}:= \begin{cases}k^{\prime} & \text { if } q_{l} \mu^{\prime}-w\left(B_{l}^{k^{\prime}}\right) \leq \frac{1}{2} w^{k^{\prime}+1} \tag{2}\\ k^{\prime}+1 & \text { otherwise }\end{cases}
$$

The correctness of this construction is verified in the following proposition.

Proposition 3.2 Let a partition problem $(B, q), q_{1}, q_{2} \geq 0$ with $q_{1}+q_{2}=q$, an angle α, and the corresponding sorted sequence $a_{1}, a_{2}, \ldots, a_{n}$ of points of B be given. Moreover, let k^{*} be defined as in (2). Then, k^{*} minimizes (1).

Proof. Let k^{\prime} be defined as above. We start showing that for k^{*} minimizing (1) in fact $k^{*} \in\left\{k^{\prime}, k^{\prime}+1\right\}$. First, let $k<k^{\prime}$. Then, $\left|w\left(B_{l}^{k}\right)-q_{l} \mu^{\prime}\right|=q_{l} \mu^{\prime}-w\left(B_{l}^{k}\right)>q_{l} \mu^{\prime}-w\left(B_{l}^{k^{\prime}}\right)=$ $\left|w\left(B_{l}^{k^{\prime}}\right)-q_{l} \mu^{\prime}\right|$ and, as $\left|w\left(B_{r}^{j}\right)-q_{r} \mu^{\prime}\right|=\left|w(B)-w\left(B_{l}^{j}\right)-q \mu^{\prime}+q_{l} \mu^{\prime}\right|=\left|w\left(B_{l}^{j}\right)-q_{l} \mu^{\prime}\right|, j=$
$1, \ldots, n-1$, also $\left|w\left(B_{r}^{k}\right)-q_{r} \mu^{\prime}\right|>\left|w\left(B_{r}^{k^{\prime}}\right)-q_{r} \mu^{\prime}\right|$. Analogously, for $k>k^{\prime}+1$ we obtain that the deviation for $k^{\prime}+1$ is always smaller than the one for k. Hence, $k^{*} \in\left\{k^{\prime}, k^{\prime}+1\right\}$.

Now, first assume that $q_{l} \mu^{\prime}-w\left(B_{l}^{k^{\prime}}\right) \leq \frac{1}{2} w^{k^{\prime}+1}$. Then, $w\left(B_{l}^{k^{\prime}+1}\right)-q_{l} \mu^{\prime} \geq \frac{1}{2} w^{k^{\prime}+1}$. Therefore, $\left|w\left(B_{l}^{k^{\prime}}\right)-q_{l} \mu^{\prime}\right|=q_{l} \mu^{\prime}-w\left(B_{l}^{k^{\prime}}\right) \leq w\left(B_{l}^{k^{\prime}+1}\right)-q_{l} \mu^{\prime}=\left|w\left(B_{l}^{k^{\prime}+1}\right)-q_{l} \mu^{\prime}\right|$, and $\left|w\left(B_{r}^{k^{\prime}}\right)-q_{r} \mu^{\prime}\right|=$ $\left|w\left(B_{l}^{k^{\prime}}\right)-q_{l} \mu^{\prime}\right| \leq\left|w\left(B_{l}^{k^{\prime}+1}\right)-q_{l} \mu^{\prime}\right|=\left|w\left(B_{r}^{k^{\prime}+1}\right)-q_{r} \mu^{\prime}\right|$. Hence, $k^{*}=k^{\prime}$ minimizes (1). Using similar arguments, we obtain for $q_{l} \mu^{\prime}-w\left(B_{l}^{k^{\prime}}\right)>\frac{1}{2} w^{k^{\prime}+1}$ that $k^{*}=k^{\prime}+1$ minimizes (1).

Note that, in principle, we may have $k^{*}<q_{l}$ or $n-k^{*}<q_{r}$. This, however, would mean that there exists a basic area i with $w_{i}>\mu^{\prime}$; a situation which is very unlikely in practice as this basic area then already comprises a territory in itself and could be removed from V a priori.

Example 3.1 (cont.)

For $\alpha=0$, i.e., a horizontal line, the sorted sequence of points is given by $\{7,1,10,3,5,8$, $6,2,9,4\}$, see Figure 2. Let $q=4$ and $q_{l}=q_{r}=2$. Hence, $\mu=\mu^{\prime}=12.5$. Then, $k^{\prime}=4$ as $w\left(B_{l}^{4}\right)=22<25$ and $w\left(B_{l}^{5}\right)=27 \geq 25$. As $w^{5}=w_{5}=5$, we have $q_{l} \mu^{\prime}-w\left(B_{l}^{4}\right)=$ $3>2.5=\frac{w^{5}}{2}$. Hence, $k^{*}=5$ and $L P^{*}=(\{1,3,5,7,10\},\{2,4,6,8,9\}, 2,2)$. Note that $\operatorname{bal}\left(L P^{*}\right)=2 / 25<3 / 25=\operatorname{bal}\left(L P\left(k^{\prime}\right)\right)$.

In Proposition 3.1 we have seen that the balance of any line partition of a problem $P P$ is always worse than the balance of $P P$ itself. The question that now arises is: How worse can it get if we use the best balanced line partition? The answer is given in the following proposition.

Proposition 3.3 Let (B, q) be a partition problem, $q_{1}, q_{2} \geq 0$ with $q_{1}+q_{2}=q$, and $L P\left(k^{*}\right)$ be a line partition of PP for a given angle α, where k^{*} is defined as in (2). Then, for $w_{B}^{\max }:=$ $\max _{i \in B} w_{i}$,

$$
\operatorname{bal}\left(B_{l}^{k^{*}}, B_{r}^{k^{*}}, q_{l}, q_{r}\right) \leq \operatorname{bal}(B, q)+\frac{w_{B}^{\max }}{2 \min \left\{q_{l}, q_{r}\right\} \mu}
$$

Proof. First, consider $P P_{l}=\left(B_{l}^{k^{*}}, q_{l}\right)$. Denote $B_{l}^{*}=B_{l}^{k^{*}}$ and $\mu^{\prime}=w(B) / q$. From (2) and the proof of Proposition 3.2 follows $\left|w\left(B_{l}^{*}\right)-q_{l} \mu^{\prime}\right| \leq \frac{w_{B}^{\max }}{2}$. Then,

$$
\begin{aligned}
\operatorname{bal}\left(B_{l}^{*}, q_{l}\right) & =\frac{\left|w\left(B_{l}^{*}\right)-q_{l} \mu^{\prime}+q_{l} \mu^{\prime}-q_{l} \mu\right|}{q_{l} \mu} \leq \frac{\left|w\left(B_{l}^{*}\right)-q_{l} \mu^{\prime}\right|+\left|q_{l} \mu^{\prime}-q_{l} \mu\right|}{q_{l} \mu} \\
& \leq \frac{w_{B}^{\max }}{2 q_{l} \mu}+\frac{\left|q \mu^{\prime}-q \mu\right|}{q \mu}=\frac{w_{B}^{\max }}{2 q_{l} \mu}+\operatorname{bal}(B, q) .
\end{aligned}
$$

Analogously, we obtain $\operatorname{bal}\left(B_{r}^{k^{*}}, q_{r}\right) \leq \frac{w_{B}^{\max }}{2 q_{r} \mu}+\operatorname{bal}(B, q)$, and the result follows.
As we will see in the next example, this bound can be tight.

Example 3.1 (cont.)

For $q=4, q_{l}=q_{r}=2$, and k^{*} as defined as in (2), we get the following upper bound for any line partition $L P\left(k^{*}\right)$ of $(B, 4): \operatorname{bal}\left(B_{l}, B_{r}, 2,2\right) \leq b a l(B, 4)+\frac{8}{2 \cdot 2 \cdot 12 \cdot 5}=\frac{4}{25}$. For the partition $L P\left(k^{*}\right)$ for $\alpha=0$, the actual balance is $\operatorname{bal}\left(L P\left(k^{*}\right)\right)=2 / 25$. Let now $\alpha=\pi / 4$, i.e., we use the first main diagonal. Hence, the sorted sequence is $\{1,3,7,2,5,10,6,4,8,9\}$. We obtain $k^{*}=k^{\prime}=5$ and $\operatorname{bal}\left(L P\left(k^{*}\right)\right)=\max \left\{\frac{|21-25|}{25}, \frac{|29-25|}{25}\right\}=\frac{4}{25}$, i.e., the upper bound is tight.

From Proposition 3.3, we can derive two straightforward, but important consequences. First, the upper bound is independent of the line direction α. Secondly, if we use the best line partition $L P^{*}$ for a problem $P P$, the balance of the two subproblems is at most $w^{\max } /\left(2 \min \left\{q_{l}, q_{r}\right\} \mu\right)$ worse than the balance of $P P$. As we try to obtain well balanced territories, we should choose values q_{l}^{*} and q_{r}^{*} such that this term is as small as possible. Therefore, the best values for q_{l}^{*} and q_{r}^{*} are given by

$$
\begin{array}{ll}
q_{l}^{*}=q_{r}^{*}=\frac{q}{2} & \text { if } q \text { is even } \tag{3}\\
q_{l}^{*}=\frac{q-1}{2} \text { and } q_{r}^{*}=\frac{q+1}{2} & \text { if } q \text { is odd } .
\end{array}
$$

From the proof of Proposition 3.3 we can directly derive the following result.

Corollary 3.1 Let $P P=(B, q)$ and $P P^{\prime}=\left(B^{\prime}, q^{\prime}\right)$ be two subproblems of (V, p), where $P P$ is the father problem of $P P^{\prime}$ and $P P^{\prime}$ generated by a line partition $L P\left(k^{*}\right)$ of $P P$, where k^{*} is defined as in (2). Then, $\operatorname{bal}\left(P P^{\prime}\right) \leq \operatorname{bal}(P P)+\frac{w_{B}^{\max }}{2 q^{\prime} \mu}$.

As this bound can be applied recursively, we can derive an upper bound for the balance of the final territory layout, as we show next. Recall that in the partition tree for a problem (V, p), the root corresponds to the initial problem, $P P^{0}=(V, p)$, and the leafs to territories T_{j}. A node on an intermediate level i of the tree stands for a partition problem $P P^{i}$ whose subdivision yields two subproblems $P P_{l}^{i+1}$ and $P P_{r}^{i+1}$ at depth $i+1$. First, we consider $p=2^{s}, s \leq\left\lfloor\log _{2} n\right\rfloor$. Choosing q_{l} and q_{r} according to (3), we always have $q_{l}=q_{r}=q / 2$. Thus, all leafs v are at the highest level, $\operatorname{lev}(v)=l^{\text {max }}$; moreover, $l^{\text {max }}=s$, i.e., s is the height of the tree.

Theorem 3.4 Let $P P^{0}=(V, p)$ be the initial problem with $p=2^{s}, s \geq 1$. If we always choose values q_{l} and q_{r} according to (3), and a line partition $L P\left(k^{*}\right)$ where k^{*} is defined as in (2), then

$$
\operatorname{bal}(T L)=\max _{j=1, \ldots, p} \operatorname{bal}\left(T_{j}, 1\right) \leq \frac{w^{\max }}{\mu}
$$

where the T_{j} are the point-sets of the leafs, i.e., the final territories, $T L$ the territory layout $\left\{\left(T_{1}, 1\right), \ldots,\left(T_{p}, 1\right)\right\}$, and $w^{\max }:=\max _{i \in V} w_{i}$.

Proof. Let $P P^{i}=(B, q)$ be a partition problem at level $0 \leq i \leq s$ of the binary tree. Then, $q=p / 2^{i}=2^{s-i}$. Moreover, let $P P^{i-1}$ be the father problem of $P P^{i}$ and $P P^{i}$ be generated by a line partition $L P\left(k^{*}\right)$ of $P P^{i-1}$ where k^{*} is defined as in (2). From $w^{\max } \geq w_{B}^{\max }$ and Corollary 3.1, we obtain

$$
\begin{aligned}
\operatorname{bal}\left(P P^{i}\right) & \leq \operatorname{bal}\left(P P^{i-1}\right)+\frac{w^{\max }}{2 q \mu}=\operatorname{bal}\left(P P^{i-1}\right)+\frac{w^{\max }}{2^{s-i+1} \mu} \\
& \leq \operatorname{bal}\left(P P^{i-2}\right)+\frac{w^{\max }}{2^{s-i+2} \mu}+\frac{w^{\max }}{2^{s-i+1} \mu} \leq \ldots \\
& \leq \operatorname{bal}\left(P P^{0}\right)+\frac{w^{\max }}{\mu}\left(\frac{1}{2^{s}}+\ldots+\frac{1}{2^{s-i+2}}+\frac{1}{2^{s-i+1}}\right) .
\end{aligned}
$$

Hence, for $i=s$, we get

$$
\operatorname{bal}\left(P P^{s}\right) \leq \operatorname{bal}(V, p)+\frac{w^{\max }}{\mu}\left(\frac{1}{2^{s}}+\ldots+\frac{1}{4}+\frac{1}{2}\right) \leq \frac{w^{\max }}{\mu}
$$

since $\operatorname{bal}(V, p)=0$. The result follows, as $P P^{s}=\left(T_{j}, 1\right)$, for $j \in\{1, \ldots, p\}$.

Example 3.1 (cont.)

For the problem $P P=(B, 4)$, we obtain as upper bound for the deviation of the final territories: $\operatorname{bal}\left(T_{j}, 1\right) \leq \frac{8}{12.5}=0.64$. For the partition depicted in Figure 2 on page 7, we obtain $\max _{j=1, \ldots, 4} b a l\left(T_{j}, 1\right)=0.12$.

From Theorem 3.4 follows that the size of the final territories deviates at most $w^{\max }$ from the average size μ. Observe, that for a given set of points V, the number of territories has a strong impact on the upper bound and, as we will see in Section 6, also on the actual balance of the territories. Unfortunately, for $2^{s}<p<2^{s+1}, s \leq\left\lfloor\log _{2} n\right\rfloor-1$, we obtain a weaker bound.

Theorem 3.5 Let (V, p) be the initial problem with $2^{s}<p<2^{s+1}, s \geq 1$. If we always choose values q_{l} and q_{r} according to (3), and a line partition $L P\left(k^{*}\right)$ where k^{*} is defined as in (2), then

$$
\operatorname{bal}(T L)=\max _{j=1, \ldots, p} \operatorname{bal}\left(T_{j}, 1\right) \leq 2 \frac{w^{\max }}{\mu}
$$

where T_{j} are the point-sets of the leafs, i.e., the final territories, $T L$ is the territory layout $\left\{\left(T_{1}, 1\right), \ldots,\left(T_{p}, 1\right)\right\}$, and $w^{\max }:=\max _{i \in V} w_{i}$.

Proof. Let $P P^{i}=\left(B^{i}, q^{i}\right)$ be a partition problem on level $0 \leq i \leq l^{\max }$ of the partition tree. For p being a power of two, we could directly determine the value of q. Here, this is not possible (so easily), but we can derive a lower bound on q^{i} as follows. If we always choose q_{l} and q_{r} according to (3), the smallest possible value of q^{i} is obtained if we have a sequence of partition problems $P P^{j}=\left(B^{j}, q^{j}\right), 1 \leq j \leq i-1$, such that always $q^{j}=\left(q^{j-1}-1\right) / 2$. Hence, for $j=1: q^{1}=\left(q^{0}-1\right) / 2=(p-1) / 2$, for $j=2: q^{2}=\left(q^{1}-1\right) / 2=(p-3) / 4$, for $j=3$: $q^{3}=\left(q^{2}-1\right) / 2=(p-7) / 8$, and so on. Consequently, $q^{j}=(p+1) / 2^{j}-1$. Therefore,

$$
\begin{equation*}
q^{i} \geq \frac{p+1}{2^{i}}-1>\frac{2^{s}}{2^{i}}-1=2^{s-i}-1 \quad \Rightarrow \quad q^{i} \geq 2^{s-i} \tag{*}
\end{equation*}
$$

Using this lower bound for q^{i}, we now derive a bound on $\operatorname{bal}(T L)$. Let $P P^{i-1}$ be the father problem of $P P^{i}$ and $P P^{i}$ be generated by a line partition $L P\left(k^{*}\right)$ of $P P^{i-1}$ where k^{*} is defined as in (2). Using (*) and applying Corollary 3.1 recursively, we obtain, analogously to Theorem 3.4, that

$$
\begin{aligned}
\operatorname{bal}\left(P P^{i}\right) & \leq \operatorname{bal}\left(P P^{i-1}\right)+\frac{w^{\max }}{2 q^{i} \mu} \leq \operatorname{bal}\left(P P^{i-1}\right)+\frac{w^{\max }}{2^{s-i+1} \mu} \\
& \leq \operatorname{bal}\left(P P^{0}\right)+\frac{w^{\max }}{\mu}\left(\frac{1}{2^{s}}+\ldots+\frac{1}{2^{s-i+2}}+\frac{1}{2^{s-i+1}}\right) .
\end{aligned}
$$

Unfortunately, the height, $l^{\max }$, of the tree is now $s+1: l^{\max } \geq s+1$, as $p>2^{s}$; on the other hand, to show that $l^{\max } \leq s+1$, we assume that there exists a leaf at level $s+2$. Let $P P^{s+1}=\left(B^{s+1}, q^{s+1}\right)$ be the father of the problem in the leaf. Then, $q^{s+1} \geq 2$. If we always choose q_{l} and q_{r} according to (3), then, for a partition problem $P P^{i}$ at level i and its son $P P^{i+1}$, we have $q^{i} \geq 2 q^{i+1}-1$. For a son, $P P^{i+2}$, of $P P^{i+1}$, we get $q^{i} \geq 4 q^{i+2}-3$. Recursively applying this argument, we obtain for a descendant $P P^{i+j}$ of $P P^{i}$ at level $i+j$ that $q^{i} \geq 2^{j}\left(q^{i+j}-1\right)+1$. Hence, for $i=0$ and $j=s+1$ we have $p=q^{0} \geq 2^{s+1}\left(q^{s+1}-1\right)+1 \geq 2^{s+1}+1>p$, which leads to a contradiction. Therefore, $l^{\max }=s+1$ and

$$
b a l\left(P P^{s+1}\right) \leq \operatorname{bal}\left(P P^{0}\right)+\frac{w^{\max }}{\mu}\left(\frac{1}{2^{s}}+\ldots+\frac{1}{4}+\frac{1}{2}+1\right) \leq 2 \frac{w^{\max }}{\mu}
$$

which concludes the proof, as $b a l\left(P P^{i}\right) \leq w^{\max } / \mu$ for $i \leq s$.

3.3 Contiguity of a Line Partition

We call a subset $B \subset V$ of points contiguous with respect to V, if no point in $V \backslash B$ is contained in the convex hull, $\operatorname{ch}(B)$, of the set B. If B is divided into two subsets, B_{l} and B_{r}, using a line, then the convex hulls of the two subsets will be disjoint. Hence, this criterion is always fulfilled for line partitions as well as partition problems.

3.4 Compactness of a Line Partition

For reasons of computational efficiency we decided against using one of the manifold explicit compactness measures, but rather evaluate compactness indirectly. The measure we propose is based on the following reasoning. Let a set B and a line L that partitions B into two subsets B_{l} and B_{r} be given. The segment of L that lies "within" B will contribute to the total length of the borders of B_{l} and B_{r} and therefore likely also to the territory borders in the final layout. If we try to make this segment short, we can hope to end up with a small total border length and therefore with a compact layout. Hence, we do not measure the compactness of subproblems (or territories) but the compactness of line partitions.

As B is a discrete set of points, we measure the length of the intersection of $L(z, \alpha)$ with the convex hull. By convexity, L intersects $\operatorname{ch}(B)$ in at most two points c_{1} and c_{2}. Note that possibly $c_{1}=c_{2}$. The Euclidian distance between c_{1} and c_{2} defines the length of the segment and is a measure of the compactness of the line partition: $c p(L P):=l_{2}\left(c_{1}, c_{2}\right)$.

4 The Successive Dichotomies Heuristic

In this section, we present the successive dichotomies heuristic for solving our basic territory design model. A brief outline of the heuristic has already been given in Kalcsics et al. (2005). The heuristic explores the partition tree with nodes corresponding to partition problems and terminates when all leaves are generated. Two questions need to be answered:

- How do we perform the partitioning of a problem into subproblems?
- How do we explore the partition tree?

Before we answer these questions, we make the following assumption. We assume that a lower bound L and an upper bound U for the activity measure of a territory are given. A partition problem (B, q) is called feasible if $L \leq w(B) / q \leq U$. For example, L and U can be calculated from a maximally allowed deviation $\tau>0$ from the average size by $L=(1-\tau) \mu$ and $U=(1+\tau) \mu$. Then (B, q) is feasible, if $\operatorname{bal}(B, q) \leq \tau$.

4.1 Partitioning a Problem

Let a partition problem (B, q) be given. If $q>1$, we have to make two decisions:

1. Select numbers $q_{l}, q_{r} \geq 1$ with $q_{l}+q_{r}=q$.
2. Select a line partition $L P=\left(B_{l}, B_{r}\right)$ to split B into two subsets B_{l} and B_{r}.

Concerning 1., we choose q_{l} and q_{r} according to (3) to reduce the imbalance of the subproblems. As we restricted ourselves to line partitions, we have a quadratic number of possible partitions. Unfortunately, this is still too much for large scale problems. Therefore, just those partitions of B are considered that are generated by a limited number K of line directions. Although this seems to be rather restrictive, we found that it still produces very good results, see Section 6. Next, we will show how to generate and rank line partitions in terms of balance and compactness.

Generating and Ranking Line Partitions

Let now a partition problem (B, q) and the numbers q_{l} and q_{r} be given. Moreover, denote K the number of line directions to be considered. We consider the angles $\alpha_{i}=i \frac{\pi}{K}$ for $i=$ $0,1, \ldots, K-1$. We are looking for a line inducing a partition of B such that the resulting two subproblems are balanced, compact, contiguous, and non-overlapping. As the last two criteria are fulfilled by definition of a line partition, we only have to consider the first two. Therefore, we compute for every angle $\alpha_{i}, i=0, \ldots K-1$, the sorted sequence $a_{1}, a_{2}, \ldots, a_{n}$ of points of B. Afterward, we determine the line partition $L P\left(k^{*}\right)$, where k^{*} is defined as in (2). Note that we discard the partition for k^{*} if it is infeasible, i.e., if $k^{*}<q_{l}$ or $n-k^{*}<q_{r}$, or if $w\left(B_{l}\right) / q_{l}$ or $w\left(B_{r}\right) / q_{r}$ is not in $[L, U]$. We repeat this process for all given directions α_{i} and, if q is odd, for both combinations of q_{l} and q_{r}. All feasible line partitions are stored in a list $\mathcal{F} \mathcal{L P}$. Note that this list contains at most $2 K$ elements.

Among the feasible partitions in $\mathcal{F} \mathcal{L P}$, we then choose the most balanced and compact one and implement it. To rank all partitions, we evaluate them in terms of balance and compactness. Since compactness is measured as an absolute value, we divide the compactness measure of each line partition by the maximal compactness value $c p^{\max }$ of a partition: $c p^{\max }:=\max \left\{c p\left(B_{l}, B_{r}\right) \mid L P \in \mathcal{F} \mathcal{L P}\right\}$. Analogously, we also scale the balance values by the maximal balance, bal ${ }^{\max }$, of a line partition in $\mathcal{F} \mathcal{L P}$. The ranking value of a line partition $L P$ is a convex combination of the scaled balance and compactness measure

$$
\begin{equation*}
r k(L P):=\beta \frac{b a l(L P)}{b a l^{\max }}+(1-\beta) \frac{c p\left(B_{l}, B_{r}\right)}{c p^{\max }}, \tag{4}
\end{equation*}
$$

where β is the weighting factor for the two criteria. The smaller the ranking value is, the better the partition. Finally, we sort the partitions in nondecreasing order of their ranking value. The
partition to be implemented is then given by

$$
L P^{*}:=\underset{L P \in \mathcal{F} \mathcal{L P}}{\operatorname{argmin}} r k(L P) .
$$

We summarize the steps in Algorithm 4.1.

```
Algorithm 4.1: Compute and rank all feasible line partitions of a problem
    Input: Partition problem \((B, q)\); number of line directions \(K\); bounds \(L\) and \(U\).
    Output: \(\mathcal{F L P}\) sorted in nondecreasing order of their ranking value.
1 if \(q\) is even then set \(Q:=\left\{\left(\frac{q}{2}, \frac{q}{2}\right)\right\}\).
    else set \(Q:=\left\{\left(\frac{q-1}{2}, \frac{q+1}{2}\right),\left(\frac{q+1}{2}, \frac{q-1}{2}\right)\right\}\).
    Set \(\mathcal{F} \mathcal{L P}:=\emptyset\).
2 for \(i=0, \ldots, K-1\) do
            Let \(\alpha_{i}:=i \frac{\pi}{K}\) and determine the sorted sequence \(a_{1}, \ldots, a_{n}\) w.r.t. \(\alpha_{i}\).
            forall \(\left(q_{l}, q_{r}\right) \in Q\) do
                Compute \(k^{*}\), where \(k^{*}\) is defined as in (2).
                if \(L P\left(k^{*}\right)\) is feasible then set \(\mathcal{F} \mathcal{L P}:=\mathcal{F} \mathcal{L P} \cup\left\{L P\left(k^{*}\right)\right\}\).
            end
    end
3 Sort the partitions in \(\mathcal{F L P}\) in nondecreasing order of their ranking value.
4 return \(\mathcal{F} \mathcal{L P}\).
```


Complexity of Algorithm 4.1

The sorted sequence a_{1}, \ldots, a_{n} of points can be computed in $O(|B| \log |B|)$ time and the partition $L P\left(k^{*}\right)$ in $O(|B|)$. As $|Q| \leq 2$, the complexity of Step 2 to generate all feasible partitions is $O(K|B| \log |B|)$. To determine the ranking value of a partition in Step 3, we first compute the boundary of the convex hull of B and then we intersect the line with the boundary. These two steps can be done in $O(|B| \log |B|)$ and $O(|B|)$ time, respectively, see Klein (1997). As the ranking of the line partitions requires $O(K \log K)$ time, the overall complexity of the algorithm is $O(K|B| \log |B|+K \log K)$.

4.2 Exploring the Partition Tree

In the last section we explained how we generate and rank line partitions. The straightforward "greedy" approach to choose just the best partition according to this ranking is, however, often not sufficient. Even though we only consider feasible and well balanced partitions for a certain
line direction, there is no guarantee that we do not run into an infeasible subproblem further down in the partition tree. Therefore, we incorporate a backtracking mechanism into the heuristic that allows to revisit a partition problem at a higher level to revise the subdivision made there, and choose the next best line partition and continue with this partition.

The search encounters at least $2 p-1$ nodes until it terminates. However, due to backtracking operations, the number of nodes examined can be much larger. Especially proving infeasibility of the problem requires to examine all feasible partitions for all problems; in general, this number is exponential in K and p. Therefore, it is necessary to limit the search. As it is usually better to report some result, even an infeasible one, instead of no result, we decrease L and increase U by some amount after a given number NodeMax of nodes has been examined, and thus enlarge the number of feasible partitions. However, we do not restart the heuristic, so the relaxed bounds apply only to newly generated nodes of the search tree. This relaxation is repeated a few times, if necessary. If the heuristic still does not terminate after a given number RelMax of relaxations, we finally set $L=0$ and $U=\infty$. Afterward, the algorithm performs no more backtracking and terminates quickly. In our tests, NodeMax $=10 p$ and RelMax $=3$ proved to be suitable values. An outline of the procedure is given in Algorithm 4.2. (The list PP stores the yet untreated partition problems.)

Complexity of Algorithm 4.2

The most time consuming operation is to compute and rank all feasible partitions of a node. Using Algorithm 4.1, this can be done in $O(K|B| \log |B|+K \log K)$ time for a partition problem (B, q), where K is the number of different line directions. To determine the overall complexity, we distinguish two cases:

1. $L=0$ and $U=\infty$:

The complexity of the algorithm is $O(\log p K M \log M+p K \log K)$, where $M=|V|$. To see this, denote $P P_{1}^{i}, \ldots, P P_{s}^{i}, s \leq 2^{i}$, the partition problems on level i of the partition tree. Consequently, the point-sets $B_{k}^{i}, 1 \leq k \leq s$, of these problems are pairwise disjoint. Hence, the effort to compute the feasible partitions of all nodes on level i and determine their ranking value is $O\left(K\left|B_{1}^{i}\right| \log \left|B_{1}^{i}\right|+\ldots+K\left|B_{s}^{i}\right| \log \left|B_{s}^{i}\right|\right)=O(K M \log M)$. As the partition tree has $O(\log p)$ levels (see Theorem 3.5) and at most $2 p-1$ nodes, the result follows (we have to sort the line partitions for each node).

Input: Set of basic areas V with activity measures $w_{i}, i \in V$; number of territories p; parameters

$$
\tau, K, \beta, \text { NodeMax, and RelMax. }
$$

Output: Territory layout $T L=\left\{T_{1}, \ldots, T_{p}\right\}$.

1 Initialization

Set $L:=(1-\tau) \mu, U:=(1+\tau) \mu$, NodeCtr $:=0$, and RelCtr $:=0$.
Set $P P:=\left\{v^{0}=(V, p)\right\}$ and compute and rank all feasible partitions of v^{0}.

2 while $P P \neq \emptyset$ do
Let $v=\left(B_{v}, q_{v}\right) \in P P$ be a partition problem. Set NodeCtr $:=$ NodeCtr +1 .
if $q_{v}=1$ then set $T L:=T L \cup\{v\}, P P:=P P \backslash\{v\}$, and continue with Step 2.
if there are no more feasible partitions left for v then
/* Backtrack */
if $v=v^{0}$ is the root node then
if RelCtr \geq RelMax then set $L:=0$ and $U:=\infty$.
else set $L:=L-(U-L) / 2, U:=U+(U-L) / 2$, and RelCtr $:=$ RelCtr +1 .
Compute and rank again all feasible partitions of v^{0}.
else
set $P P:=P P \cup\left\{v_{f}\right\}$ for the father v_{f} of v and delete all descendants of v_{f} from $P P$.
end
else
/* Partition */
Implement the highest ranked partition creating two new nodes $v_{l}=\left(B_{v_{l}}, q_{v_{l}}\right)$ and $v_{r}=\left(B_{v_{r}}, q_{v_{r}}\right)$. Compute and rank all feasible partitions of v_{l} and v_{r}. Set
$P P:=P P \backslash\{v\} \cup\left\{v_{l}, v_{r}\right\}$.
end
if NodeCtr $=$ NodeMax then
if RelCtr \geq RelMax then set $L:=0$ and $U:=\infty$.
else set $L:=L / 2, U:=2 U$, and RelCtr $:=\operatorname{RelCtr}+1$.
Set NodeCtr $:=0$.
end
end

3 return $T L$.
2. $L>0$ and $U<\infty$:

The complexity depends now on the actual number of nodes explored in the search for a feasible territory plan. If we choose NodeMax $=10 p$ and Rel $M a x=3$, then the maximal number of nodes examined is linear in p and we get as complexity $O(p K(M \log M+\log K))$.

Observe that the heuristic is subquadratic in p, K, and M.
In Figure 3, we present an example of two sales territory layouts of German zip-code areas (marked as " x ") into 70 territories created by applying the above heuristic. Two different sets of line directions were used: one with 2 , see the left-hand side image, and the other with 16 directions, see the right-hand side picture. (For details on the quality of the solutions and the running times, we refer to Section 6.)

Figure 3: Two territory layouts based on German zip-code areas.

5 Extensions and Planning Scenarios

Several characteristics of territory design problems often encountered in practice are not covered by the basic model. In the following we distinguish between two different types that differ in the way they are included into a solution approach for the basic TDP. The former, simply called extensions, require a modification of the solution algorithm for the basic model itself and, consequently, their implementation strongly depends on the chosen solution method. Whereas the latter, called planning scenarios, leave the algorithm itself unchanged and embed it into a larger framework, calling it (repeatedly) with appropriate parameters.

First, we will discuss how to incorporate the extensions into the heuristic. Although we do this for each extension separately, they can easily be combined. Afterward, we show how to implement the two planning scenarios.

5.1 Extensions

5.1.1 Several activity measures

Often, more than one activity measure has to be considered in the planning process. Let R be the number of different activity measures. For $1 \leq r \leq R$, denote w_{i}^{r} the r-th activity measure of basic area $i \in V$. To incorporate multiple activity measures into the partition process, we aggregate them using weighting factors $\gamma^{r}, 1 \leq r \leq R$: $\bar{w}_{i}=\sum_{r=1}^{R} \gamma^{r} w_{i}^{r}$. Using these aggregate weights we then determine a well balanced line partition.

5.1.2 Neighborhood information

Assume that we are given neighborhood information about the basic areas that is stored in the so-called neighborhood graph $\mathcal{N G}=(\mathcal{V}, \mathcal{E})$. In this graph, every basic area $i \in V$ corresponds to a node $v_{i} \in V$ and two nodes v_{i} and v_{j} are connected by an edge, if and only if the respective basic areas i and j are neighboring. We call a territory contiguous, if the basic areas comprising the territory induce a connected subgraph in $\mathcal{N G}$. Given a partition problem $P P=(B, q)$, we denote $G(B)$ the subgraph of $\mathcal{N G}$ induced by the set of basic areas B. Moreover, if $G(B)$ is not connected, we denote $G_{1}, \ldots, G_{s}, s \geq 2$, the connected components of $G(B)$, and B_{i} the underlying set of basic areas of G_{i}. Then, $B_{i} \subset B$ and $B_{1} \cup \ldots \cup B_{s}=B$. A partition problem $P P=(B, q)$ is (not) contiguous if $G(B)$ is (dis)connected, and a line partition is called contiguous if the resulting two subproblems $P P_{l}$ and $P P_{r}$ are contiguous.

Assume first that $P P$ is not contiguous. In this case, instead of subdividing $P P$ along a line, we partition the problem based on its connected components into s disjoint problems $P P_{1}=\left(B_{1}, q_{1}\right), \ldots, P P_{s}=\left(B_{s}, q_{s}\right)$. Whereas the partition of the set B is induced by the connected components, values for the q_{i} are not so obvious to determine. Here, we use the following approach. We determine values for the q_{i} such that the maximal balance of one of the resulting subproblems $P P_{1}, \ldots, P P_{s}$ is as small as possible. That is, we want to solve the problem

$$
\begin{equation*}
\min _{\substack{q_{1}+\cdots+q_{s}=q \\ q_{i} \geq 1, i=1, \ldots, s}} \max _{i=1, \ldots, s} \operatorname{bal}\left(B_{i}, q_{i}\right) \tag{5}
\end{equation*}
$$

As each connected component has to yield at least one territory, we enforce $q_{i} \geq 1$. Note that this problem is well-defined only if $s \leq q$, i.e., if the number of connected components is not larger than the number of territories $P P$ has to be partitioned into. Fortunately, problem (5) can be solved optimally using dynamic programming with a worst case time complexity of $O\left(|B|+s p^{2}\right)$.
(The stages correspond to the connected components and the states to the remaining number of territories that have to be assigned to connected components.)

Now, let the partition problem $P P$ be contiguous. Moreover, let α be an angle and a_{1}, \ldots, a_{n} the corresponding sorted sequence of points of B. For the basic model, we added, starting with a_{1}, iteratively basic areas to the left problem, $P P_{l}$, until both subproblems were well balanced. Now, we start again with a_{1}. But then we add the next basic area in the sorted sequence to left subproblem only if it is adjacent to a basic area already in $P P_{l}$. In this way, we try to obtain a contiguous left problem. If, however, we can not add enough adjacent basic areas to the left subproblem, we have to add a basic area that is not adjacent to $P P_{l}$. Nevertheless, if we continue adding basic areas, $P P_{l}$ might get contiguous again. This approach, however, not necessarily yields a contiguous right subproblem $P P_{r}$. To assure this, we could, in principle, add the next basic area to the left subproblem only if it is adjacent to a basic area already contained in $P P_{l}$ and if it does not lead to a non-contiguous right subproblem ($P P_{r}$ comprises the basic areas not yet assigned to $P P_{l}$). However, this is in general too restrictive as a non-contiguous right problem at an intermediate stage of the process may still result in $P P_{r}$ being contiguous at the end of the process. Therefore, we check the contiguity of $P P_{r}$ only after we have found a well balanced partition. If the left or right subproblem is not contiguous for the final line partition, we add the value 1 to the ranking value of the partition. By doing this, we assure that we first use contiguous line partitions for the subdivision of $P P$. Only if no feasible and contiguous partitions remain, we fall back to non-contiguous ones.

5.2 Planning Scenarios

5.2.1 Unknown number of territories

In some applications, the number of territories may not be known in advance. Instead, an upper or lower bound, or both, on the size of the territories is given and the region under consideration has to be partitioned into an appropriate number of territories such that these bounds are not violated. Consider a company providing on-site service for their products in a certain region. Due to the limited working time of the service staff, the size of each territory is bounded from above, e.g., in terms of the expected number of service calls an employee can handle in one month. The task is to partition all basic areas into an appropriate number of territories, each attended to by a single service person, such that the size of each service district does not exceed the threshold value. Hence, we are given an upper bound $U B$ or a lower bound $L B$, or both,
and we require the size of each territory to be within the interval $[L B, U B]$.
However, specifying just a lower or upper bound is usually not sufficient. Assume, that all basic areas have (almost) identical activity measures and we are given only an upper bound. Then, we always have the trivial but optimal solution where each territory consists of a single basic area. Therefore, we need to extend the problem formulation. Coming back to the example, the service company obviously wants to cover the region with as few territories as possible. This leads to the revised problem formulation: "Partition all basic areas into a minimal (maximal) number of territories such that they satisfy the planning criteria of balance, compactness, and contiguity and their size does not exceed (fall below) the upper (lower) bound." As both cases are analogous, we only discuss the case of an upper bound in the following.

Let $L B=0$ and $U B>w^{\max }$ (otherwise, the problem is infeasible). The smaller p is, the larger is the average territory size $\mu=w(V) / p$ and therefore also the actual size of the territories. Unfortunately, we cannot directly compute a minimal value for p due to the discrete structure of the problem and the fact that the problem is usually solved using a heuristic method. However, a good lower bound on p is given by $\lceil w(V) / U B\rceil$ and we can perform a binary or interval search to determine a minimal value for which a feasible layout still exists. Note, however, that this value is not necessarily optimal, as it may happen that the heuristic finds a feasible layout for a value q but not for $q+1$, although the average territory size for $q+1$ is smaller than for q.

5.2.2 Incomplete assignment

In the basic model we completely partition the basic areas into territories, i.e., all basic areas are assigned to a district. However, often not all basic areas have to be (or can be) partitioned into territories due to certain planning restrictions. For example, if a company can not afford to employ more than a given number of sales persons and each of them can only develop a certain maximal total market potential. Therefore, if the total market potential of the region is larger, a complete partition of all basic areas will not make sense; some will stay unassigned and will not be attended to by a representative of the company. Moreover, the sales territories should not only be designed such that their total market potential is below the maximal potential, but also as close as possible to this maximal potential to provide for a fair living for the sales staff. In the following, we assume that we are only given an upper bound. The situation just with a lower bound or a lower as well as an upper bound is analogous.

Let $L B=0$ and $U B \leq \mu, \mu=w(V) / p$. (If $U B>\mu$, then the bound does not pose a
restriction.) Hence, it will be impossible to subdivide all basic areas into territories. As $U B$ is not just a mere upper bound that has to be fulfilled but rather a target value for the size of the territories, we obtain the following, revised problem formulation: "Assign basic areas to a given number of territories such that the latter satisfy the planning criteria of balance, compactness and contiguity and their size is as close as possible but not above the upper bound."

A straightforward approach is to ignore the upper bound in a first step and compute a complete partition of the basic areas into territories using some heuristic for the basic model. Then, in a second step, we prune territories T for which $w(T)>U B$ by iteratively removing basic areas from the territory, e.g., starting with the ones farthest away from the center of the territory, until the size of T is within the upper bound. Unfortunately, if $U B$ is much smaller than μ this pruning often leads to rather dispersed territories. Moreover, the resulting territories are usually fairly uneven in terms of their geographical extent. That is, some territories cover a small region while others span a large area. The reason is, that territories are typically not centered around concentrations of basic areas with high activity measures. Coming back to the above example, this would mean that some sales persons have to travel very far to attend to their customers, e.g., in rural areas, whereas the territories of others are concentrated in a much smaller region, e.g., within a city. Obviously, this is undesirable. Hence, the geographical extent of all sales territories should be as small as possible, i.e., the territories should be located in areas where a high market potential is concentrated in a relatively small region.

To achieve this, we use a different approach. The idea is to partition the set V not into p territories but into a larger number, p^{\prime}, of territories. By increasing this number, the average territory size μ decreases and, for p^{\prime} sufficiently large, finally is below the upper bound $U B$. Hence, if we solve the problem with this new number of territories using an algorithm for the basic model, we obtain a layout where the size of each territory is below the upper bound. Then, we select a set of p territories from this layout whose geographical extent is as small as possible. What remains to be discussed is how to determine an appropriate value for p^{\prime}. This is done using the same approach as for the first scenario with an unknown number of territories, i.e., we assume that only the upper bound $U B$ is given but not the number of territories. Thereby, we obtain a value p^{\prime} for which a feasible layout exists and where the size of the territories is close to $U B$. Then, we choose the p territories with the smallest geographical extent.

6 Computational Results

We tested the heuristic on problems with 100 up to 1000 basic areas in steps of 100. For each number of basic areas, five instances were generated using real-world data obtained from the GIS Arc View: basic areas correspond to German zip-code areas and the activity measure equals the number of inhabitants. Therefore, we have in total 50 different instances. In addition, we created one instance containing all 8270 German zip-code areas to illustrate the efficiency of the heuristic for large-scale problems. The number of territories p was determined based on a parameter Q specifying the average number of basic areas per territory, i.e., $p=M / Q$. For Q, we chose values of $10,20,30,40$, and 50 . For the number of line directions we choose five different values: $K \in\{2,4,8,16,32\}$. The maximal allowed deviation τ from the average territory size μ was set to 5%. Finally, the weighting factor β required to determine the ranking value of a line partition equals 0.5 and for NodeMax and RelMax we chose $10 p$ and 3 .

The heuristic was implemented in $C++$ and the results were obtained on a Pentium 4, 2.6 GHz with 512 MB Ram. For each problem instance, the solution time and the quality of the resulting territories in terms of balance and compactness were obtained. These values were then averaged over all instances with the same set of parameters (i.e., number of basic areas, territories, line directions, etc.). First, we will analyze the behavior of the algorithm in terms of running times, balance, and compactness with respect to different numbers of line directions before we discuss the influence of the parameter β. For a comparison of the successive dichotomies heuristic with other methods for the basic model we refer to Kalcsics et al. (2005).

Varying the Number of Line Directions and the Tolerance

First, we will present results concerning the balance of the territory layouts.

Balance

In Table 1, we report the average and maximal balance for $K \in\{2,4,8,16,32\}$. For $Q=$ $10, \ldots, 50$, each entry in the left hand side (right hand side) part of the table is the average (maximal) balance over all 50 problem instances. Note that most values are considerably less than the 5%-tolerance. However, for $Q=10$ and $K=2,4$, the algorithm could not always find a territory layout within the 5%-tolerance. In these instances, the heuristic performed several backtracking operations and was forced to relax the upper and lower bound, L and U.

We note that the balance improves for larger numbers of basic areas per territory. This is to

Average Balance Max Balance

$Q \backslash K$	2	4	8	16	32	2	4	8	16	32
10	6.3	4.7	4.3	4.0	4.0	29.0	15.0	4.9	5.0	4.9
20	3.9	2.9	2.2	1.7	1.6	4.9	4.9	4.7	3.9	3.9
30	3.1	1.8	1.3	1.0	0.9	4.9	4.1	3.3	2.4	4.0
40	2.2	1.4	1.0	0.6	0.6	4.6	3.9	2.4	1.4	1.6
50	1.6	0.9	0.7	0.4	0.3	4.0	2.1	1.7	1.0	1.1

Table 1: Average and maximal balance in $\%$ for $\tau=0.05$.
be expected from a theoretical as well as a practical point of view. Theoretically, as the maximal balance of a territory is bounded from above by $2 w^{\max } / \mu$, and $w^{\max }$ is fix and $\mu=w(V) / p$ increases, if we increase Q. From a practical point, the more basic areas we have per territory, the less likely will larger than average areas lead to unbalanced partitions. Moreover, also with increasing K the average balance improves due to an increased number of options for choosing a well balanced (and compact) line partition. As the improvement from $K=16$ to $K=32$ is negligible, it is unlikely that larger values of K will further improve the results.

In Table 2 we report the average balance of the resulting territories for $K=16$, including the instance with all German zip-code areas. The entries are averaged over the different values for Q. We observe that the balance worsens with an increasing number of basic areas. This, however, can be expected as the number of territories also increases and, consequently, also the height of the partition tree. However, the imbalance is still acceptable.

Summing up the results, even for a small number of basic areas per territory, we obtain well balanced solutions for values of $K \geq 8$.

Running Times

In Table 3, we report the average running times in seconds, which are computed again over all 50 problem instances. As expected, the running times increase for an increasing number of angles and territories. However, the running times are still negligibly small. Another major factor influencing the execution times is the problem size. In Table 4 we give results depending

M	100	200	300	400	500	600	700	800	900	1000	8270
Balance	0.8	1.2	1.5	1.3	1.4	1.6	1.9	1.8	1.9	1.8	2.8

Table 2: Average balance in $\%$ for different numbers of basic areas for $K=16$.

$Q \backslash K$	2	4	8	16	32
10	0.03	0.04	0.08	0.14	0.24
20	0.02	0.03	0.05	0.09	0.17
30	0.02	0.03	0.04	0.07	0.13
40	0.02	0.03	0.04	0.07	0.12
50	0.02	0.03	0.04	0.06	0.10
Table 3: Running times in seconds.					

on the number of basic areas for $K=32$. Each entry is the mean over the five instances and $Q=10, \ldots, 50$ (except for the last column). As expected, the execution times increase proportional to the number of basic areas. However, for up to 1000 areas they are still below one second and for the large example below five seconds.

Compactness

Finally, we will compare the territory layouts resulting from different parameter settings in terms of compactness. As we measured compactness for efficiency reasons only indirectly in our algorithm, we use for the computational results the weighted moment of inertia to measure the compactness of a territory $T_{j} \subset V$, as proposed by Hess et al. (1965). This is the weighted sum of the squared Euclidean distances from the center of gravity, c_{j}, of the territory to the basic areas of $T_{j}: \overline{c p}\left(T_{j}\right)=\sum_{i \in T_{j}} w_{i} l_{2}^{2}\left(c_{j}, b_{i}\right)$. The smaller the moment of inertia is, the more compact the district is. The compactness of a territory layout $T L$ is the sum of the weighted moments of inertia of the territories comprising the layout $\overline{c p}(T L)=\sum_{T_{j} \in T L} \overline{c p}\left(T_{j}\right)$. As this is an absolute measure, to compare two solutions we determine the relative percentage deviation of the compactness of the territory plans for two different values K_{1} and K_{2} as

$$
\text { deviation }=\frac{\overline{c p}\left(T L_{1}\right)-\overline{c p}\left(T L_{2}\right)}{\overline{c p}\left(T L_{2}\right)} * 100 \%,
$$

where $T L_{i}$ is the layout obtained using K_{i}. Hence, for a positive (negative) deviation, layout $T L_{1}$ is less (more) compact than $T L_{2}$.

$\tau \backslash M$	100	200	300	400	500	600	700	800	900	1000	8270
0.05	0.02	0.05	0.06	0.10	0.13	0.16	0.20	0.22	0.28	0.31	4.91

Table 4: Running times in seconds for $K=32$.

$Q \backslash K$	$2 / 4$	$4 / 8$	$8 / 16$	$16 / 32$
10	7.5	4.1	-1.2	-0.2
20	6.6	3.3	2.8	1.1
30	7.1	4.0	0.6	2.7
40	6.1	4.1	1.2	0.3
50	1.9	6.5	1.5	1.1

Table 5: Pairwise comparison of the average compactness.

The average relative percentage deviations for the pairwise comparisons are given in Table 5. For example, for $K_{1}=2$, the average compactness is 7.5% worse compared to $K_{2}=4$. For larger values of K this difference reduces more and more. That is, the territory layouts generated using 8,16 , and 32 different line directions are, more or less, equally compact. We observe that for $Q=10$ and $K=16,32$, the deviation is negative, i.e., the compactness of, at least, some territory layouts is worse than for the previous number of angles. Hence, there is not necessarily a monotone improvement of the compactness for increasing values of K. Note that there is no significant difference between different values of Q.

Summing up the results, $K=16$ or $K=32$ seem to be suitable values to provide stable and high quality results, even for a small number of basic areas per territory.

Trade off between balance and compactness

Next, we will discuss the influence of the parameter β on the quality of the solutions. Recall that β was the weighting factor between balance and compactness for computing the ranking value of a partition $L P$. For the comparisons, we choose $K=16$ and $\beta \in\{0.25,0.33,0.5,0.66,0.75\}$. The results obtained in terms of balance are reported in Table 6. As expected, the average balance improves for an increasing β. But to the same extent as the balance improves, the compactness deteriorates, as we can see in right hand side of the table. However, for larger values, i.e., a decreased emphasis on the compactness of the territories, the compactness deteriorates disproportionately to the improvement of the balance, which is almost uniform for increasing values of β. Consequently, from a certain point on, we have to pay more in terms of compactness for a certain improvement of the balance. We finally decided to use $\beta=0.5$. As the average running times are identical for varying values of β, namely 0.09 seconds, we do not list them here.

Balance								Compactness				
$Q \backslash \beta$	0.25	0.33	0.5	0.66	0.75	$0.33 / 0.25$	$0.5 / 0.33$	$0.66 / 0.5$	$0.75 / 0.66$			
10	4.1	4.5	4.0	3.9	3.5	1.0	1.3	3.6	5.5			
20	2.7	2.3	1.7	1.3	1.1	-0.3	3.0	4.9	2.0			
30	1.7	1.4	1.0	0.7	0.7	0.3	1.9	2.1	1.1			
40	1.2	1.0	0.6	0.5	0.4	0.1	2.1	1.2	1.8			
50	0.6	0.5	0.4	0.3	0.3	0.7	1.0	2.3	4.3			
Avg	2.1	1.9	1.5	1.4	1.2	0.4	1.8	2.8	2.9			

Table 6: Balance and Compactness in \% for varying values of Q and β.

7 Integration into GIS

Enhanced with the extensions discussed in Section 5, the successive dichotomies heuristic can be integrated into a Geographic Information System (GIS). The user benefits from this integration in several ways. First, he can access the manifold of maps and data available in GIS. Moreover, GIS are common tools in geo-marketing and the user has access to all GIS functionality to work on his planning data and the resulting territories. Secondly, the seamless integration of territory design heuristics allows the user to access these methods without being an expert in Operations Research. After the computations performed by the heuristics in the background are finished, an immediate visualization of the results in the GIS allows the user to examine the proposed solution. Then, he has the option to manually adjust the solution or to change the planning parameters and start a new run of the optimization engine. It is this interactive type of work with the heuristics that requires the fast generation of solutions, already mentioned. The technical side of the integration into the GIS is sketched in Figure 4. While the user interaction and data management is all done within the GIS, the optimization engine is an external, underlying component. In line with the distinction between different extensions of the basic model discussed in Section 5, we distinguish two layers in the optimization engine. The lower layer contains the implementation of the successive dichotomies heuristic and the extensions detailed in Section 5.1. An intermediate layer contains the so-called scenario manager. This layer selects and combines the algorithms in the heuristics layer that are suited to produce an answer to the user's planning problem. This layer comprises, among others, the planning scenarios discussed in Section 5.2.

The various heuristics, embedded in the above methodology, are the algorithmic base of a commercial software product for geo-marketing called BusinessManager. The BusinessManager

Figure 4: Integration of the heuristics into ArcView GIS.
is an extension of ESRI's ArcView GIS and has been developed by geomer GmbH (www.geomer.de) together with Fraunhofer ITWM (www.itwm.fraunhofer.de). The interface is integrated with the GIS so the user can access data from arbitrary shape files. Figure 5 shows a screenshot of the BusinessManager software.

Figure 5: Screenshot of the BusinessManager software.

8 Conclusions

In this treatise we presented a generic approach to the territory design problem. Based on the basic model, its extensions, and the planning scenarios, we introduced a general framework
adequately supporting decision makers to solve a large variety of applications in an interactive environment. As nowadays GISs provide the user with very detailed and comprehensive data, fast and flexibel algorithms are needed to solve large-scale practical problems. To this end, we presented a new algorithm that covers common criteria encountered in a manifold of applications. This method is based on techniques from Computational Geometry and utilizes the underlying geographical information of the problem. Although being a construction heuristic, our computational analysis shows that the algorithm provides very good results in almost negligible running times even for large problem instances with over 8000 basic areas. Therefore, the heuristic is suitable for a stand-alone, operational use in an interactive planning tool.

Apart from the computational tests, we also presented a theoretical analysis of the quality of the solutions obtained in terms of balance, which is usually the most important design criterion. By bounding the worsening of the balance of a partition problem compared to the balance of its father problem, we could derive an upper bound on the maximal balance of the final territories. Moreover, to solve different planning scenarios, we developed a new framework that repeatedly calls the algorithm for the basic model with varying numbers of territories until a satisfactory result has been obtained. As most applications for territory design problems have a strong spatial relation, we showed how to integrate them into a Geographical Information System.

There are still several open topics to work on. One open question is whether we obtain better results if we use a direct measure for the compactness of a line partition instead of the implicit one currently used? And in which time? Moreover, a computational study to fathom the applicability of the solution approaches for the extensions and planning scenarios of the basic model has to be done. The fast and efficient algorithm for the TDP gives rise to a promising decomposition heuristic for multifacility location problems. The idea is to partition the problem into a certain number of territories and then solve in each territory a location problem with a now reduced number of demand points and facilities. By doing so, we can likely solve the smaller problems to optimality, even for more elaborate location models. An open questions is, for example, how "far" should we decompose the problem? That is, what is an appropriate number of territories? Moreover, the approach to use the heuristic for demand point aggregation deserves further investigation.

References

P. Bergey, C. Ragsdale, and M. Hoskote. A simulated annealing genetic algortihm for the electrical power districting problem. Annals of Oper. Res., 121:33-55, 2003.
M. Blais, S. Lapierre, and G. Laporte. Solving a home-care districting problem in an urban setting. Journal of the Opl. Res. Society, 54:1141-1147, 2003.
B. Bozkaya, E. Erkut, and G. Laporte. A tabu search heuristic and adaptive memory procedure for political districting. European Journal of Operational Research, 144(1):12-26, 2003.
S. D'Amico, S.-J. Wang, R. Batta, and C. Rump. A simulated annealing approach to police district design. Computers E Operations Research, 29:667-684, 2002.
A. Drexl and K. Haase. Fast approximation methods for sales force deployment. Management Science, 45:1307-1323, 1999.
E. Fernández and R. Ríos-Mercado. A reactive GRASP for a commercial territory design problem with multiple balancing requirements. Computers \& Operations Research, 36(3):755-776, 2009.
B. Fleischmann and J. Paraschis. Solving a large scale districting problem: A case report. Computers \& Operations Research, 15(6):521-533, 1988.
S. Forman and Y. Yue. Congressional districting using a TSP-based genetic algorithm. In E. Cantú-Paz et al., editor, Genetic and evolutionary computation - GECCO 2003. Genetic and evolutionary computation conference, Chicago, IL, USA, July 12-16, 2003, Proceedings, Part II. Berlin: Springer. Lect. Notes Comput. Sci. 2724, pages 2072-2083, 2003.
E. Forrest. Apportionment by computer. American behavioral scientist, 23(7):23-35, 1964.
J. George, B. Lamar, and C. Wallace. Political district determination using large-scale network optimization. Socio-Economic Planning Sciences, 31:11-28, 1997.
S. Hanafi, A. Freville, and P. Vaca. Municipal solid waste collection: An effective data structure for solving the sectorization problem with local search methods. INFOR, 37:236-254, 1999.
S. Hess, J. Weaver, H. Siegfeldt, J. Whelan, and P. Zitlau. Nonpartisan political redistricting by computer. Operations Research, 13:998-1008, 1965.
J. Kalcsics, S. Nickel, and M. Schröder. Towards a unified territorial design approach - Applications, algorithms and GIS integration. TOP, 13(1):1-74, 2005.
R. Klein. Algorithmische Geometrie. Addison-Wesely-Longman, Bonn, 1997.
A. Mehrotra, E. Johnson, and G. Nemhauser. An optimization based heuristic for political districting. Management Science, 44:1100-1114, 1998.
L. Muyldermans, D. Cattrysse, D. van Oudheusden, and T. Lotan. Districting for salt spreading operations. European Journal of Operational Research, 139(3):521-532, 2002.
A. Novaes, J. Souza de Cursi, A. da Silva, and J. Souza. Solving continuous location-districting problems with Voronoi diagrams. Computers \& Operations Research, 36:40-59, 2009.
B. Nygreen. European assembly constituencies for Wales: comparing of methods for solving a political districting problem. Math. Program., 42:159-169, 1988.
N. Perrier, A. Langevin, and J. Campbell. A survey of models and algorithms for winter road maintainance. Part I: system design for spreading and plowing. Computers \mathcal{E}^{3} Operations Research, 33:209-238, 2006a.
N. Perrier, A. Langevin, and J. Campbell. A survey of models and algorithms for winter road maintainance. Part II: system design for snow disposal. Computers \mathcal{B} Operations Research, 33:239-262, 2006b.
F. Ricca and B. Simeone. Local search algorithms for political districting. European Journal of Operational Research, 189(3):1409-1426, 2008.
F. Ricca, A. Scozzari, and B. Simeone. Weighted Voronoi region algorithms for political districting. Mathematical and Computer Modelling, 48:1468-1477, 2008.
M. Schröder. Gebiete optimal aufteilen. PhD thesis, Univ. Karlsruhe, 2001. http://www.ubka.uni-karlsruhe.de/eva.
J. J. Williams. Political redistricting: A review. Papers in Regional Science, 74:13-40, 1995.
H. Young. Measuring the compactness of legislative districts. Legislative Studies Quarterly, 13: 105-115, 1988.

Published reports of the Fraunhofer ITWM

The PDF-files of the following reports are available under:
www.itwm.fraunhofer.de/de/ zentral__berichte/berichte

1. D. Hietel, K. Steiner, J. Struckmeier

A Finite - Volume Particle Method for Compressible Flows
(19 pages, 1998)
2. M. Feldmann, S. Seibold

Damage Diagnosis of Rotors: Application of Hilbert Transform and Multi-Hypothesis Testing
Keywords: Hilbert transform, damage diagnosis, Kalman filtering, non-linear dynamics
(23 pages, 1998)
3. Y. Ben-Haim, S. Seibold

Robust Reliability of Diagnostic MultiHypothesis Algorithms: Application to Rotating Machinery
Keywords: Robust reliability, convex models, Kalman filtering, multi-hypothesis diagnosis, rotating machinery, crack diagnosis
(24 pages, 1998)
4. F.-Th. Lentes, N. Siedow

Three-dimensional Radiative Heat Transfer in Glass Cooling Processes
(23 pages, 1998)
5. A. Klar, R. Wegener

A hierarchy of models for multilane vehicular traffic
Part I: Modeling
(23 pages, 1998)
Part II: Numerical and stochastic investigations (17 pages, 1998)
6. A. Klar, N. Siedow

Boundary Layers and Domain Decomposition for Radiative Heat Transfer and Diffusion Equations: Applications to Glass Manu-
facturing Processes
(24 pages, 1998)
7. I. Choquet

Heterogeneous catalysis modelling and numerical simulation in rarified gas flows Part I: Coverage locally at equilibrium (24 pages, 1998)
8. J. Ohser, B. Steinbach, C. Lang

Efficient Texture Analysis of Binary Images (17 pages, 1998)
9. J. Orlik

Homogenization for viscoelasticity of the integral type with aging and shrinkage (20 pages, 1998)
10. J. Mohring

Helmholtz Resonators with Large Aperture (21 pages, 1998)
11. H. W. Hamacher, A. Schöbel

On Center Cycles in Grid Graphs
(15 pages, 1998)
12. H. W. Hamacher, K.-H. Küfer Inverse radiation therapy planning a multiple objective optimisation approach (14 pages, 1999)

13. C. Lang, J. Ohser, R. Hilfer

On the Analysis of Spatial Binary Images
(20 pages, 1999)
14. M. Junk

On the Construction of Discrete Equilibrium Distributions for Kinetic Schemes
(24 pages, 1999)
15. M. Junk, S. V. Raghurame Rao

A new discrete velocity method for NavierStokes equations
(20 pages, 1999)
16. H. Neunzert

Mathematics as a Key to Key Technologies (39 pages (4 PDF-Files), 1999)
17. J. Ohser, K. Sandau

Considerations about the Estimation of the Size Distribution in Wicksell's Corpuscle Problem
(18 pages, 1999)
18. E. Carrizosa, H. W. Hamacher, R. Klein, S. Nickel

Solving nonconvex planar location prob-
lems by finite dominating sets
Keywords: Continuous Location, Polyhedral Gauges, Finite Dominating Sets, Approximation, Sandwich Algorithm, Greedy Algorithm
(19 pages, 2000)

19. A. Becker

A Review on Image Distortion Measures
Keywords: Distortion measure, human visual system (26 pages, 2000)
20. H. W. Hamacher, M. Labbé, S. Nickel, T. Sonneborn

Polyhedral Properties of the Uncapacitated Multiple Allocation Hub Location Problem Keywords: integer programming, hub location, facility location, valid inequalities, facets, branch and cut (21 pages, 2000)
21. H. W. Hamacher, A. Schöbel

Design of Zone Tariff Systems in Public Transportation
(30 pages, 2001)
22. D. Hietel, M. Junk, R. Keck, D. Teleaga The Finite-Volume-Particle Method for Conservation Laws
(16 pages, 2001)
23. T. Bender, H. Hennes, J. Kalcsics, M. T. Melo, S. Nickel

Location Software and Interface with GIS and Supply Chain Management
Keywords: facility location, software development, geographical information systems, supply chain management
(48 pages, 2001)
24. H. W. Hamacher, S. A. Tjandra

Mathematical Modelling of Evacuation Problems: A State of Art
(44 pages, 2001)
25. J. Kuhnert, S. Tiwari

Grid free method for solving the Poisson equation
Keywords: Poisson equation, Least squares method, Grid free method
(19 pages, 2001)
26. T. Götz, H. Rave, D. Reinel-Bitzer, K. Steiner, H. Tiemeier

Simulation of the fiber spinning process
Keywords: Melt spinning, fiber model, Lattice Boltzmann, CFD
(19 pages, 2001)

27. A. Zemitis

On interaction of a liquid film with an obstacle
Keywords: impinging jets, liquid film, models, numeri-
cal solution, shape
(22 pages, 2001)

28. I. Ginzburg, K. Steiner

Free surface lattice-Boltzmann method to model the filling of expanding cavities by Bingham Fluids
Keywords: Generalized LBE, free-surface phenomena, interface boundary conditions, filling processes, Bingham viscoplastic model, regularized models (22 pages, 2001)
29. H. Neunzert »Denn nichts ist für den Menschen als Menschen etwas wert, was er nicht mit Leidenschaft tun kann"
Vortrag anlässlich der Verleihung des Akademiepreises des Landes Rheinland-
Pfalz am 21.11.2001
Keywords: Lehre, Forschung, angewandte Mathematik, Mehrskalenanalyse, Strömungsmechanik
(18 pages, 2001)
30. J. Kuhnert, S. Tiwari

Finite pointset method based on the projection method for simulations of the incompressible Navier-Stokes equations
Keywords: Incompressible Navier-Stokes equations, Meshfree method, Projection method, Particle scheme, Least squares approximation
AMS subject classification: 76D05, 76M28
(25 pages, 2001)
31. R. Korn, M. Krekel

Optimal Portfolios with Fixed Consumption

or Income Streams

Keywords: Portfolio optimisation, stochastic control, HJB equation, discretisation of control problems (23 pages, 2002)

32. M. Krekel

Optimal portfolios with a loan dependent credit spread
Keywords: Portfolio optimisation, stochastic control, HJB equation, credit spread, log utility, power utility, non-linear wealth dynamics
(25 pages, 2002)
33. J. Ohser, W. Nagel, K. Schladitz

The Euler number of discretized sets - on the choice of adjacency in homogeneous lattices Keywords: image analysis, Euler number, neighborhod relationships, cuboidal lattice
(32 pages, 2002)

34. I. Ginzburg, K. Steiner

Lattice Boltzmann Model for Free-Surface flow and Its Application to Filling Process in Casting

Keywords: Lattice Boltzmann models; free-surface phenomena; interface boundary conditions; filling processes; injection molding; volume of fluid method; interface boundary conditions; advection-schemes; up-wind-schemes
(54 pages, 2002
35. M. Günther, A. Klar, T. Materne, R. Wegener
Multivalued fundamental diagrams and stop and go waves for continuum traffic equations Keywords: traffic flow, macroscopic equations, kinetic derivation, multivalued fundamental diagram, stop and go waves, phase transitions
(25 pages, 2002)
36. S. Feldmann, P. Lang, D. Prätzel-Wolters Parameter influence on the zeros of network determinants
Keywords: Networks, Equicofactor matrix polynomials, Realization theory, Matrix perturbation theory (30 pages, 2002)
37. K. Koch, J. Ohser, K. Schladitz Spectral theory for random closed sets and estimating the covariance via frequency space
Keywords: Random set, Bartlett spectrum, fast Fourier transform, power spectrum
(28 pages, 2002)
38. D. d'Humières, I. Ginzburg

Multi-reflection boundary conditions for lattice Boltzmann models
Keywords: lattice Boltzmann equation, boudary condistions, bounce-back rule, Navier-Stokes equation (72 pages, 2002)
39. R. Korn

Elementare Finanzmathematik
Keywords: Finanzmathematik, Aktien, Optionen, Port-folio-Optimierung, Börse, Lehrerweiterbildung, Mathematikunterricht
(98 pages, 2002)
40. J. Kallrath, M. C. Müller, S. Nickel

Batch Presorting Problems:

Models and Complexity Results
Keywords: Complexity theory, Integer programming,
Assigment, Logistics
(19 pages, 2002)
41. J. Linn

On the frame-invariant description of the phase space of the Folgar-Tucker equation Key words: fiber orientation, Folgar-Tucker equation, injection molding
(5 pages, 2003)

42. T. Hanne, S. Nickel

A Multi-Objective Evolutionary Algorithm for Scheduling and Inspection Planning in Software Development Projects
Key words: multiple objective programming, project management and scheduling, software development, evolutionary algorithms, efficient set
(29 pages, 2003)
43. T. Bortfeld, K.-H. Küfer, M. Monz, A. Scherrer, C. Thieke, H. Trinkaus

Intensity-Modulated Radiotherapy - A Large Scale Multi-Criteria Programming Problem Keywords: multiple criteria optimization, representative systems of Pareto solutions, adaptive triangulation, clustering and disaggregation techniques, visualization of Pareto solutions, medical physics, external beam radiotherapy planning, intensity modulated radiotherapy (31 pages, 2003)
44. T. Halfmann, T. Wichmann

Overview of Symbolic Methods in Industrial Analog Circuit Design
Keywords: CAD, automated analog circuit design, symbolic analysis, computer algebra, behavioral modeling, system simulation, circuit sizing, macro modeling, dif-ferential-algebraic equations, index
(17 pages, 2003)
45. S. E. Mikhailov, J. Orlik

Asymptotic Homogenisation in Strength and Fatigue Durability Analysis of Composites
Keywords: multiscale structures, asymptotic homogenization, strength, fatigue, singularity, non-local conditions
(14 pages, 2003)
46. P. Domínguez-Marín, P. Hansen, N. Mladenovi'c, S. Nickel

Heuristic Procedures for Solving the
Discrete Ordered Median Problem
Keywords: genetic algorithms, variable neighborhood search, discrete facility location
(31 pages, 2003)
47. N. Boland, P. Domínguez-Marín, S. Nickel, J. Puerto

Exact Procedures for Solving the Discrete

Ordered Median Problem

Keywords: discrete location, Integer programming (41 pages, 2003)
48. S. Feldmann, P. Lang

Padé-like reduction of stable discrete linear systems preserving their stability
Keywords: Discrete linear systems, model reduction, stability, Hankel matrix, Stein equation
(16 pages, 2003)
49. J. Kallrath, S. Nickel

A Polynomial Case of the Batch Presorting Problem
Keywords: batch presorting problem, online optimization, competetive analysis, polynomial algorithms, logistics
(17 pages, 2003)

50. T. Hanne, H. L. Trinkaus

knowCube for MCDM -
Visual and Interactive Support for Multicriteria Decision Making
Key words: Multicriteria decision making, knowledge management, decision support systems, visual interfaces, interactive navigation, real-life applications.
(26 pages, 2003)

51. O. lliev, V. Laptev

On Numerical Simulation of Flow Through Oil Filters
Keywords: oil filters, coupled flow in plain and porous media, Navier-Stokes, Brinkman, numerical simulation (8 pages, 2003)
52. W. Dörfler, O. Iliev, D. Stoyanov, D. Vassileva On a Multigrid Adaptive Refinement Solver
for Saturated Non-Newtonian Flow in

Porous Media

Keywords: Nonlinear multigrid, adaptive refinement, non-Newtonian flow in porous media
(17 pages, 2003)

53. S. Kruse

On the Pricing of Forward Starting Options under Stochastic Volatility
Keywords: Option pricing, forward starting options, Heston model, stochastic volatility, cliquet options (11 pages, 2003)
54. O. Iliev, D. Stoyanov

Multigrid - adaptive local refinement solver for incompressible flows
Keywords: Navier-Stokes equations, incompressible flow, projection-type splitting, SIMPLE, multigrid methods, adaptive local refinement, lid-driven flow in a cavity (37 pages, 2003)

55. V. Starikovicius

The multiphase flow and heat transfer in porous media
Keywords: Two-phase flow in porous media, various formulations, global pressure, multiphase mixture model, numerical simulation (30 pages, 2003)
56. P. Lang, A. Sarishvili, A. Wirsen

Blocked neural networks for knowledge extraction in the software development process Keywords: Blocked Neural Networks, Nonlinear Regression, Knowledge Extraction, Code Inspection (21 pages, 2003)
57. H. Knaf, P. Lang, S. Zeiser

Diagnosis aiding in Regulation
Thermography using Fuzzy Logic
Keywords: fuzzy logic, knowledge representation, expert system
(22 pages, 2003)
58. M. T. Melo, S. Nickel, F. Saldanha da Gama Largescale models for dynamic multicommodity capacitated facility location Keywords: supply chain management, strategic planning, dynamic location, modeling
(40 pages, 2003)

59. J. Orlik

Homogenization for contact problems with periodically rough surfaces
Keywords: asymptotic homogenization, contact problems (28 pages, 2004)
60. A. Scherrer, K.-H. Küfer, M. Monz,
F. Alonso, T. Bortfeld

IMRT planning on adaptive volume struc-
tures - a significant advance of computa-
tional complexity
Keywords: Intensity-modulated radiation therapy (IMRT), inverse treatment planning, adaptive volume structures, hierarchical clustering, local refinement, adaptive clustering, convex programming, mesh generation, multi-grid methods
(24 pages, 2004)
61. D. Kehrwald

Parallel lattice Boltzmann simulation of complex flows
Keywords: Lattice Boltzmann methods, parallel computing, microstructure simulation, virtual material design, pseudo-plastic fluids, liquid composite moulding (12 pages, 2004)

62. O. Iliev, J. Linn, M. Moog, D. Niedziela, V. Starikovicius

On the Performance of Certain Iterative Solvers for Coupled Systems Arising in Discretization of Non-Newtonian Flow Equations
Keywords: Performance of iterative solvers, Preconditioners, Non-Newtonian flow
(17 pages, 2004)
63. R. Ciegis, O. Iliev, S. Rief, K. Steiner

On Modelling and Simulation of Different Regimes for Liquid Polymer Moulding

Keywords: Liquid Polymer Moulding, Modelling, SimuIation, Infiltration, Front Propagation, non-Newtonian flow in porous media
(43 pages, 2004)
64. T. Hanne, H. Neu

Simulating Human Resources in

Software Development Processes

Keywords: Human resource modeling, software process, productivity, human factors, learning curve
(14 pages, 2004)
65. O. Iliev, A. Mikelic, P. Popov

Fluid structure interaction problems in deformable porous media: Toward permeability of deformable porous media
Keywords: fluid-structure interaction, deformable porous media, upscaling, linear elasticity, stokes, finite elements
(28 pages, 2004)
66. F. Gaspar, O. Iliev, F. Lisbona, A. Naumovich, P. Vabishchevich

On numerical solution of 1-D poroelasticity equations in a multilayered domain
Keywords: poroelasticity, multilayered material, finite volume discretization, MAC type grid
(41 pages, 2004)
67. J. Ohser, K. Schladitz, K. Koch, M. Nöthe Diffraction by image processing and its application in materials science
Keywords: porous microstructure, image analysis, random set, fast Fourier transform, power spectrum, Bar-
tlett spectrum
(13 pages, 2004)

68. H. Neunzert

Mathematics as a Technology: Challenges

for the next 10 Years

Keywords: applied mathematics, technology, modelling, simulation, visualization, optimization, glass processing, spinning processes, fiber-fluid interaction, trubulence effects, topological optimization, multicriteria optimization, Uncertainty and Risk, financial mathematics, Malliavin calculus, Monte-Carlo methods, virtual material design, filtration, bio-informatics, system biology (29 pages, 2004)
69. R. Ewing, O. Iliev, R. Lazarov, A. Naumovich On convergence of certain finite difference discretizations for 1D poroelasticity interface problems
Keywords: poroelasticity, multilayered material, finite volume discretizations, MAC type grid, error estimates (26 pages, 2004)
70. W. Dörfler, O. Iliev, D. Stoyanov, D. Vassileva On Efficient Simulation of Non-Newtonian Flow in Saturated Porous Media with a Multigrid Adaptive Refinement Solver Keywords: Nonlinear multigrid, adaptive renement, non-Newtonian in porous media (25 pages, 2004)
71. J. Kalcsics, S. Nickel, M. Schröder Towards a Unified Territory Design Approach - Applications, Algorithms and GIS Integration Keywords: territory desgin, political districting, sales territory alignment, optimization algorithms, Geographical Information Systems
(40 pages, 2005)
72. K. Schladitz, S. Peters, D. Reinel-Bitzer, A. Wiegmann, J. Ohser

Design of acoustic trim based on geometric modeling and flow simulation for non-woven

Keywords: random system of fibers, Poisson line process, flow resistivity, acoustic absorption, Lattice-Boltzmann method, non-woven (21 pages, 2005)

73. V. Rutka, A. Wiegmann

Explicit Jump Immersed Interface Method for virtual material design of the effective elastic moduli of composite materials Keywords: virtual material design, explicit jump immersed interface method, effective elastic moduli, composite materials
(22 pages, 2005)

74. T. Hanne

Eine Übersicht zum Scheduling von Baustellen
Keywords: Projektplanung, Scheduling, Bauplanung, Bauindustrie
(32 pages, 2005)
75. J. Linn

The Folgar-Tucker Model as a Differetial Algebraic System for Fiber Orientation Calculation
Keywords: fiber orientation, Folgar-Tucker model, invariants, algebraic constraints, phase space, trace stability
(15 pages, 2005)
76. M. Speckert, K. Dreßler, H. Mauch, A. Lion, G. J. Wierda

Simulation eines neuartigen Prüfsystems für Achserprobungen durch MKS-Modellierung einschließlich Regelung
Keywords: virtual test rig, suspension testing, multibody simulation, modeling hexapod test rig, optimization of test rig configuration
(20 pages, 2005)
77. K.-H. Küfer, M. Monz, A. Scherrer, P. Süss, F. Alonso, A. S. A. Sultan, Th. Bortfeld, D. Craft, Chr. Thieke

Multicriteria optimization in intensity modulated radiotherapy planning
Keywords: multicriteria optimization, extreme solutions, real-time decision making, adaptive approximation schemes, clustering methods, IMRT planning, reverse engineering
(51 pages, 2005)

78. S. Amstutz, H. Andrä

A new algorithm for topology optimization using a level-set method
Keywords: shape optimization, topology optimization, topological sensitivity, level-set
(22 pages, 2005)
79. N. Ettrich

Generation of surface elevation models for urban drainage simulation
Keywords: Flooding, simulation, urban elevation models, laser scanning
(22 pages, 2005)
80. H. Andrä, J. Linn, I. Matei, I. Shklyar, K. Steiner, E. Teichmann

OPTCAST - Entwicklung adäquater Strukturoptimierungsverfahren für Gießereien Technischer Bericht (KURZFASSUNG)
Keywords: Topologieoptimierung, Level-Set-Methode, Gießprozesssimulation, Gießtechnische Restriktionen, CAE-Kette zur Strukturoptimierung (77 pages, 2005)
81. N. Marheineke, R. Wegener Fiber Dynamics in Turbulent Flows Part I: General Modeling Framework

Keywords: fiber-fluid interaction; Cosserat rod; turbulence modeling; Kolmogorov's energy spectrum; dou-ble-velocity correlations; differentiable Gaussian fields (20 pages, 2005)

Part II: Specific Taylor Drag

Keywords: flexible fibers; k-e turbulence model; fi-ber-turbulence interaction scales; air drag; random Gaussian aerodynamic force; white noise; stochastic differential equations; ARMA process
(18 pages, 2005)

82. C. H. Lampert, O. Wirjadi

An Optimal Non-Orthogonal Separation of the Anisotropic Gaussian Convolution Filter Keywords: Anisotropic Gaussian filter, linear filtering, orientation space, nD image processing, separable filters (25 pages, 2005)

83. H. Andrä, D. Stoyanov

Error indicators in the parallel finite element solver for linear elasticity DDFEM Keywords: linear elasticity, finite element method, hierarchical shape functions, domain decom-position, parallel implementation, a posteriori error estimates (21 pages, 2006)
84. M. Schröder, I. Solchenbach

Optimization of Transfer Quality in

Regional Public Transit

Keywords: public transit, transfer quality, quadratic assignment problem
(16 pages, 2006)
85. A. Naumovich, F. J. Gaspar

On a multigrid solver for the three-dimensional Biot poroelasticity system in multilayered domains
Keywords: poroelasticity, interface problem, multigrid, operator-dependent prolongation
(11 pages, 2006)
86. S. Panda, R. Wegener, N. Marheineke Slender Body Theory for the Dynamics of Curved Viscous Fibers
Keywords: curved viscous fibers; fluid dynamics; NavierStokes equations; free boundary value problem; asymptotic expansions; slender body theory
(14 pages, 2006)

87. E. Ivanov, H. Andrä, A. Kudryavtsev

Domain Decomposition Approach for Automatic Parallel Generation of Tetrahedral Grids Key words: Grid Generation, Unstructured Grid, Delaunay Triangulation, Parallel Programming, Domain Decomposition, Load Balancing
(18 pages, 2006)
88. S. Tiwari, S. Antonov, D. Hietel, J. Kuhnert, R. Wegener

A Meshfree Method for Simulations of Interactions between Fluids and Flexible

Structures

Key words: Meshfree Method, FPM, Fluid Structure Interaction, Sheet of Paper, Dynamical Coupling (16 pages, 2006)
89. R. Ciegis, O. Iliev, V. Starikovicius, K. Steiner Numerical Algorithms for Solving Problems of Multiphase Flows in Porous Media Keywords: nonlinear algorithms, finite-volume method, software tools, porous media, flows (16 pages, 2006)
90. D. Niedziela, O. Iliev, A. Latz

On 3D Numerical Simulations of Viscoelastic Fluids

Keywords: non-Newtonian fluids, anisotropic viscosity, integral constitutive equation
(18 pages, 2006)
91. A. Winterfeld

Application of general semi-infinite Programming to Lapidary Cutting Problems
Keywords: large scale optimization, nonlinear programming, general semi-infinite optimization, design center-
ing, clustering
(26 pages, 2006)
92. J. Orlik, A. Ostrovska

Space-Time Finite Element Approximation
and Numerical Solution of Hereditary
Linear Viscoelasticity Problems
Keywords: hereditary viscoelasticity; kern approximation by interpolation; space-time finite element approxi mation, stability and a priori estimate
(24 pages, 2006)
93. V. Rutka, A. Wiegmann, H. Andrä

EJIIM for Calculation of effective Elastic Moduli in 3D Linear Elasticity
Keywords: Elliptic PDE, linear elasticity, irregular domain, finite differences, fast solvers, effective elastic moduli
(24 pages, 2006)
94. A. Wiegmann, A. Zemitis

EJ-HEAT: A Fast Explicit Jump Harmonic Averaging Solver for the Effective Heat Conductivity of Composite Materials
Keywords: Stationary heat equation, effective thermal conductivity, explicit jump, discontinuous coefficients, virtual material design, microstructure simula-
tion, EJ-HEAT
(21 pages, 2006)
95. A. Naumovich

On a finite volume discretization of the three-dimensional Biot poroelasticity system in multilayered domains
Keywords: Biot poroelasticity system, interface problems, finite volume discretization, finite difference method (21 pages, 2006)
96. M. Krekel, J. Wenzel

A unified approach to Credit Default Swaption and Constant Maturity Credit Default

Swap valuation

Keywords: LIBOR market model, credit risk, Credit Default Swaption, Constant Maturity Credit Default Swapmethod
(43 pages, 2006)
97. A. Dreyer

Interval Methods for Analog Circiuts

Keywords: interval arithmetic, analog circuits, tolerance analysis, parametric linear systems, frequency response, symbolic analysis, CAD, computer algebra (36 pages, 2006)
98. N. Weigel, S. Weihe, G. Bitsch, K. Dreßler Usage of Simulation for Design and Optimization of Testing
Keywords: Vehicle test rigs, MBS, control, hydraulics, testing philosophy
(14 pages, 2006)
99. H. Lang, G. Bitsch, K. Dreßler, M. Speckert Comparison of the solutions of the elastic and elastoplastic boundary value problems Keywords: Elastic BVP, elastoplastic BVP, variational inequalities, rate-independency, hysteresis, linear kinematic hardening, stop- and play-operator (21 pages, 2006)
100. M. Speckert, K. Dreßler, H. Mauch

MBS Simulation of a hexapod based suspension test rig
Keywords: Test rig, MBS simulation, suspension,
hydraulics, controlling, design optimization
(12 pages, 2006)

101. S. Azizi Sultan, K.-H. Küfer

A dynamic algorithm for beam orientations in multicriteria IMRT planning
Keywords: radiotherapy planning, beam orientation optimization, dynamic approach, evolutionary algorithm, global optimization
(14 pages, 2006)
102. T. Götz, A. Klar, N. Marheineke, R. Wegener

A Stochastic Model for the Fiber Lay-down
Process in the Nonwoven Production
Keywords: fiber dynamics, stochastic Hamiltonian system, stochastic averaging
(17 pages, 2006)
103. Ph. Süss, K.-H. Küfer

Balancing control and simplicity: a variable aggregation method in intensity modulated radiation therapy planning
Keywords: IMRT planning, variable aggregation, clustering methods
(22 pages, 2006)
104. A. Beaudry, G. Laporte, T. Melo, S. Nickel Dynamic transportation of patients in hospitals
Keywords: in-house hospital transportation, dial-a-ride, dynamic mode, tabu search
(37 pages, 2006)
105. Th. Hanne

Applying multiobjective evolutionary algorithms in industrial projects
Keywords: multiobjective evolutionary algorithms, discrete optimization, continuous optimization, electronic circuit design, semi-infinite programming, scheduling (18 pages, 2006)

106. J. Franke, S. Halim

Wild bootstrap tests for comparing signals and images
Keywords: wild bootstrap test, texture classification, textile quality control, defect detection, kernel estimate, nonparametric regression
(13 pages, 2007)

107. Z. Drezner, S. Nickel

Solving the ordered one-median problem in the plane
Keywords: planar location, global optimization, ordered median, big triangle small triangle method, bounds, numerical experiments
(21 pages, 2007)
108. Th. Götz, A. Klar, A. Unterreiter, R. Wegener

Numerical evidance for the non-existing of solutions of the equations desribing rotational fiber spinning
Keywords: rotational fiber spinning, viscous fibers, boundary value problem, existence of solutions (11 pages, 2007)

109. Ph. Süss, K.-H. Küfer

Smooth intensity maps and the BortfeldBoyer sequencer
Keywords: probabilistic analysis, intensity modulated radiotherapy treatment (IMRT), IMRT plan application, step-and-shoot sequencing (8 pages, 2007)
110. E. Ivanov, O. Gluchshenko, H. Andrä, A. Kudryavtsev

Parallel software tool for decomposing and meshing of 3d structures
Keywords: a-priori domain decomposition, unstructured grid, Delaunay mesh generation
(14 pages, 2007)
111. O. Iliev, R. Lazarov, J. Willems Numerical study of two-grid preconditioners for 1d elliptic problems with highly oscillating discontinuous coefficients Keywords: two-grid algorithm, oscillating coefficients, preconditioner
(20 pages, 2007)
112. L. Bonilla, T. Götz, A. Klar, N. Marheineke, R. Wegener

Hydrodynamic limit of the Fokker-Planckequation describing fiber lay-down processes
Keywords: stochastic dierential equations, FokkerPlanck equation, asymptotic expansion, OrnsteinUhlenbeck process
(17 pages, 2007)
113. S. Rief

Modeling and simulation of the pressing section of a paper machine
Keywords: paper machine, computational fluid dynamics, porous media
(41 pages, 2007)
114. R. Ciegis, O. Iliev, Z. Lakdawala

On parallel numerical algorithms for simu-
lating industrial filtration problems
Keywords: Navier-Stokes-Brinkmann equations, finite volume discretization method, SIMPLE, parallel computing, data decomposition method
(24 pages, 2007)
115. N. Marheineke, R. Wegener

Dynamics of curved viscous fibers with surface tension
Keywords: Slender body theory, curved viscous bers with surface tension, free boundary value problem (25 pages, 2007)
116. S. Feth, J. Franke, M. Speckert Resampling-Methoden zur mse-Korrektur und Anwendungen in der Betriebsfestigkeit Keywords: Weibull, Bootstrap, Maximum-Likelihood, Betriebsfestigkeit
(16 pages, 2007)

117. H. Knaf

Kernel Fisher discriminant functions - a concise and rigorous introduction
Keywords: wild bootstrap test, texture classification, textile quality control, defect detection, kernel estimate, nonparametric regression
(30 pages, 2007)
118. O. Iliev, I. Rybak

On numerical upscaling for flows in heterogeneous porous media
Keywords: numerical upscaling, heterogeneous porous media, single phase flow, Darcy's law, multiscale problem, effective permeability, multipoint flux approximation, anisotropy
(17 pages, 2007)
119. O. lliev, I. Rybak

On approximation property of multipoint
flux approximation method

Keywords: Multipoint flux approximation, finite volume method, elliptic equation, discontinuous tensor coeffi-
cients, anisotropy
(15 pages, 2007)
120. O. Iliev, I. Rybak, J. Willems

On upscaling heat conductivity for a class of industrial problems
Keywords: Multiscale problems, effective heat conductivity, numerical upscaling, domain decomposition (21 pages, 2007)
121. R. Ewing, O. Iliev, R. Lazarov, I. Rybak

On two-level preconditioners for flow in porous media
Keywords: Multiscale problem, Darcy's law, single phase flow, anisotropic heterogeneous porous media, numerical upscaling, multigrid, domain decomposition, efficient preconditioner
(18 pages, 2007)

122. M. Brickenstein, A. Dreyer

POLYBORI: A Gröbner basis framework for Boolean polynomials
Keywords: Gröbner basis, formal verification, Boolean polynomials, algebraic cryptoanalysis, satisfiability (23 pages, 2007)

123. O. Wirjadi

Survey of 3d image segmentation methods
Keywords: image processing, 3d, image segmentation, binarization
(20 pages, 2007)

124. S. Zeytun, A. Gupta

A Comparative Study of the Vasicek and the

CIR Model of the Short Rate

Keywords: interest rates, Vasicek model, CIR-model, calibration, parameter estimation
(17 pages, 2007)
125. G. Hanselmann, A. Sarishvili Heterogeneous redundancy in software quality prediction using a hybrid Bayesian approach
Keywords: reliability prediction, fault prediction, nonhomogeneous poisson process, Bayesian model averaging
(17 pages, 2007)
126. V. Maag, M. Berger, A. Winterfeld, K.-H. Küfer
A novel non-linear approach to minimal area rectangular packing
Keywords: rectangular packing, non-overlapping constraints, non-linear optimization, regularization, relaxation
(18 pages, 2007)
127. M. Monz, K.-H. Küfer, T. Bortfeld, C. Thieke Pareto navigation - systematic multi-crite-ria-based IMRT treatment plan determination
Keywords: convex, interactive multi-objective optimization, intensity modulated radiotherapy planning (15 pages, 2007)
128. M. Krause, A. Scherrer

On the role of modeling parameters in IMRT plan optimization
Keywords: intensity-modulated radiotherapy (IMRT), inverse IMRT planning, convex optimization, sensitivity analysis, elasticity, modeling parameters, equivalent uniform dose (EUD)
(18 pages, 2007)

129. A. Wiegmann

Computation of the permeability of porous materials from their microstructure by FFF-

Stokes

Keywords: permeability, numerical homogenization,
fast Stokes solver
(24 pages, 2007)
130. T. Melo, S. Nickel, F. Saldanha da Gama Facility Location and Supply Chain Management - A comprehensive review
Keywords: facility location, supply chain management, network design
(54 pages, 2007)
131. T. Hanne, T. Melo, S. Nickel

Bringing robustness to patient flow management through optimized patient transports in hospitals
Keywords: Dial-a-Ride problem, online problem, case study, tabu search, hospital logistics
(23 pages, 2007)
132. R. Ewing, O. lliev, R. Lazarov, I. Rybak, J. Willems

An efficient approach for upscaling properties of composite materials with high contrast of coefficients
Keywords: effective heat conductivity, permeability of fractured porous media, numerical upscaling, fibrous insulation materials, metal foams
(16 pages, 2008)

133. S. Gelareh, S. Nickel

New approaches to hub location problems in public transport planning
Keywords: integer programming, hub location, transportation, decomposition, heuristic
(25 pages, 2008)
134. G. Thömmes, J. Becker, M. Junk, A. K. Vaikuntam, D. Kehrwald, A. Klar, K. Steiner, A. Wiegmann

A Lattice Boltzmann Method for immiscible multiphase flow simulations using the Level Set Method
Keywords: Lattice Boltzmann method, Level Set method, free surface, multiphase flow
(28 pages, 2008)

135. J. Orlik

Homogenization in elasto-plasticity

Keywords: multiscale structures, asymptotic homogenization, nonlinear energy
(40 pages, 2008)
136. J. Almquist, H. Schmidt, P. Lang, J. Deitmer, M. Jirstrand, D. Prätzel-Wolters, H. Becker

Determination of interaction between MCT1 and CAII via a mathematical and physiological approach
Keywords: mathematical modeling; model reduction; electrophysiology; pH -sensitive microelectrodes; proton antenna
(20 pages, 2008)
137. E. Savenkov, H. Andrä, O. lliev

An analysis of one regularization approach for solution of pure Neumann problem
Keywords: pure Neumann problem, elasticity, regularization, finite element method, condition number (27 pages, 2008)
138. O. Berman, J. Kalcsics, D. Krass, S. Nickel The ordered gradual covering location problem on a network

Keywords: gradual covering, ordered median function, network location
(32 pages, 2008)
139. S. Gelareh, S. Nickel

Multi-period public transport design: A novel model and solution approaches
Keywords: Integer programming, hub location, public transport, multi-period planning, heuristics (31 pages, 2008)
140. T. Melo, S. Nickel, F. Saldanha-da-Gama Network design decisions in supply chain planning
Keywords: supply chain design, integer programming models, location models, heuristics
(20 pages, 2008)
141. C. Lautensack, A. Särkkä, J. Freitag,
K. Schladitz

Anisotropy analysis of pressed point processes
Keywords: estimation of compression, isotropy test, nearest neighbour distance, orientation analysis, polar ice, Ripley's K function
(35 pages, 2008)
142. O. lliev, R. Lazarov, J. Willems

A Graph-Laplacian approach for calculating the effective thermal conductivity of complicated fiber geometries
Keywords: graph laplacian, effective heat conductivity, numerical upscaling, fibrous materials
(14 pages, 2008)
143. J. Linn, T. Stephan, J. Carlsson, R. Bohlin Fast simulation of quasistatic rod deformations for VR applications
Keywords: quasistatic deformations, geometrically exact rod models, variational formulation, energy minimization, finite differences, nonlinear conjugate gradients
(7 pages, 2008)

144. J. Linn, T. Stephan

Simulation of quasistatic deformations using discrete rod models
Keywords: quasistatic deformations, geometrically exact rod models, variational formulation, energy minimization, finite differences, nonlinear conjugate gradients
(9 pages, 2008)
145. J. Marburger, N. Marheineke, R. Pinnau

Adjoint based optimal control using meshless discretizations
Keywords: Mesh-less methods, particle methods, Eul-erian-Lagrangian formulation, optimization strategies, adjoint method, hyperbolic equations (14 pages, 2008
146. S. Desmettre, J. Gould, A. Szimayer Own-company stockholding and work effort preferences of an unconstrained executive
Keywords: optimal portfolio choice, executive compensation
(33 pages, 2008)
147. M. Berger, M. schröder, K.-H. Küfer

A constraint programming approach for the two-dimensional rectangular packing problem with orthogonal orientations
Keywords: rectangular packing, orthogonal orientations non-overlapping constraints, constraint propagation
(13 pages, 2008)
148. K. Schladitz, C. Redenbach, T. Sych, M. Godehardt

Microstructural characterisation of open

foams using 3d images

Keywords: virtual material design, image analysis, open
foams
(30 pages, 2008)
149. E. Fernández, J. Kalcsics, S. Nickel, R. Ríos-Mercado

A novel territory design model arising in the implementation of the WEEE-Directive Keywords: heuristics, optimization, logistics, recycling (28 pages, 2008)
150. H. Lang, J. Linn

Lagrangian field theory in space-time for geometrically exact Cosserat rods
Keywords: Cosserat rods, geometrically exact rods, small strain, large deformation, deformable bodies, Lagrangian field theory, variational calculus
(19 pages, 2009)
151. K. Dreßler, M. Speckert, R. Müller, Ch. Weber
Customer loads correlation in truck engineering
Keywords: Customer distribution, safety critical components, quantile estimation, Monte-Carlo methods (11 pages, 2009)
152. H. Lang, K. Dreßler

An improved multiaxial stress-strain correction model for elastic FE postprocessing
Keywords: Jiang's model of elastoplasticity, stress-strain correction, parameter identification, automatic differentiation, least-squares optimization, Coleman-Li algorithm
(6 pages, 2009)
153. J. Kalcsics, S. Nickel, M. Schröder

A generic geometric approach to territory design and districting
Keywords: Territory design, districting, combinatorial optimization, heuristics, computational geometry (32 pages, 2009)

