
Research Article Vol. 3, No. 6 / 15 June 2020 / OSA Continuum 1376

Mueller matrix cone and its application to
filtering

TIM ZANDER1,2,* AND JUERGEN BEYERER1,2

1Karlsruhe Institute of Technology, Vision and Fusion Laboratory (IES), Karlsruhe, Germany
2Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB), Karlsruhe,
Germany
*tim.zander@iosb.fraunhofer.de

Abstract: We show that there is an isometry between the real ambient space of all Mueller
matrices and the space of all Hermitian matrices that maps the Mueller matrices onto the positive
semidefinite matrices. We use this to establish an optimality result for the filtering of Mueller
matrices, which roughly says that it is always enough to filter the eigenvalues of the corresponding
“coherency matrix.” Then we further explain how the knowledge of the cone of Hermitian
positive semidefinite matrices can be transferred to the cone of Mueller matrices with a special
emphasis towards optimisation. In particular, we suggest that means of Mueller matrices should
be computed within the corresponding Riemannian geometry.
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1. Introduction

In polarisation optics Mueller matrices are of great importance, as they describe the change of
polarisation of light after interacting with a medium in a linear fashion. In order to be a Mueller
matrix the matrix has to satisfy the Stokes criterion, which states that every Stokes vector has
to be mapped onto a Stokes vector. Cloude then showed in [1], after establishing an additional
criterion for the realisability of Mueller matrices, that Mueller matrices can be associated with
Hermitian matrices with non-negative eigenvalues the so called coherency or covariance matrices.
This was then used for filtering measured matrices in order to make them physically meaningful,
i.e. satisfying the Stokes criterion and Cloude’s criterion. Moreover, it was shown that any
coherency matrix of a non-depolarising Mueller matrix also known as a Jones-Mueller matrix
has only one non-zero eigenvalue. This then easily suggests that any Mueller matrix can be
expressed as the sum of no more than four non-depolarising matrices. In [2] and [3] matrices,
which can be decomposed into a non-depolarising part and one perfectly depolarising part, have
been analysed and in the latter a filtering method was proposed. Optimality of filtering was
analysed in [4] by using a maximum likelihood method originally developed for quantum process
tomography and does such as [5] rely on the Cholesky decomposition of the coherency matrix
for filtering. More about optimality filtering of Mueller matrices was derived in [6], [7], [8] and
[5]. In [9] then the optimality of the Cloude filter was rigorously proved.
The purpose of this work is to connect the methodologies of filtering of measured Mueller

matrices to well-established mathematical theories. We will show how this can be used to prove
a more general theorem about the optimality of filtering of Mueller matrices. This simplifies and
generalises part of the results of [9]. Moreover, we then review the mathematical theory about
the Hermitian positive semidefinite cone and explain, along with reviewing existing results, how
this gives rise to the differential geometry of the manifold of all Mueller matrices.

2. Isometry of the ambient space

In this section we explain how a well know result about the connection of Mueller matrices and
Hermitian positive definite matrices establishes an isometry between them. But first we will
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define some elementary concepts. The polarisation state and intensity of a (partially) polarised
light beam can be described by a four-dimensional real vector (I,Q,U,V), where I is the intensity
and (Q,U,V) describe the intensity and state of the polarised part. This vector satisfies the Stokes
criterion

I2 ≥ Q2 + U2 + V2, (1)

which implies that the degree of polarisation is ≤ 1 and is called the Stokes vector. We then
call a real 4 × 4-matrix which maps Stokes vectors onto Stokes vector a pre-Mueller matrix
[10]. If a system is mapping pure-states, i.e. fully polarised beams, onto pure-states, i.e. fully
polarised beams, then this system is called a Jones system. Note that in a pure-state the degree of
polarisation is 1 which means that the Eq. (1) is an equality. Normally such systems are described
by 2 × 2-complex matrices known as Jones matrices, where the phase and amplitude of the light
beam is described by a two-dimensional complex vector. But a Jones matrix J can be also be
transferred in to the Mueller calculus by a simple transformation [11]. This transformed Jones
matrix is then called a pure Mueller matrix (alternatively a non-depolarising or Jones-Mueller
matrix) [12]. Note that a pre-Mueller is not necessarily physically realisable, which was noted in
[1]. Consequently, in the same paper a criterion for physically realisability was developed, which
is known as Cloude’s criterion. The criterion can be phrased as follows; a pre-Mueller matrix
M is a Mueller matrix if it can be written as a positive linear combination of Jones-Mueller
matrices, i.e. there exists some Jones-Mueller matricesMi and some positive real parameter ci
with 1 ≤ i ≤ N such that

M =
N∑
i=1

ciMi.

That this introduces an additional constraint which cannot be derived from the Stokes criterion,
i.e. that not all pre-Mueller matrices are Mueller matrices, can be seen by two Mueller matrix
examples in [13]. Now after we having setup a definition of Mueller matrices, we will restate
the theorem which establishes the connection between Mueller matrices and Hermitian positive
definite matrices. The Theorem implicitly first appeared in [1].

Theorem 1 (Theorem A.1 of [14]) Every matrix M ∈ R4×4 with M = (mij) is a Mueller matrix
if and only if the Hermitian matrix H = (hij) defined by the following linear equations has
non-negative eigenvalues. Moreover, if the matrix H has only one non-zero eigenvalue, then it is
a pure Mueller matrix.

h00 =
1
2
(m11 + m22 + m33 + m44),

h11 =
1
2
(m11 + m22 − m33 − m44),

h22 =
1
2
(m11 − m22 + m33 − m44),

h33 =
1
2
(m11 − m22 − m33 + m44)

(2)

h03 =
1
2
(m14 + m41 − im23 + im32),

h30 =
1
2
(m14 + m41 + im23 − im32),

h12 =
1
2
(m14 − im41 + m23 + m32),

h21 =
1
2
(−m14 + im41 + m23 + m32)

(3)
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h01 =
1
2
(m12 + m21 − im34 + im43),

h10 =
1
2
(m12 + m21 + im34 − im43),

h23 =
1
2
(m12 − im21 + m34 + m43),

h32 =
1
2
(−m12 + im21 + m34 + m43)

(4)

h02 =
1
2
(m13 + m31 − im24 + im42),

h20 =
1
2
(m13 + m31 + im24 − im42),

h13 =
1
2
(m13 − im31 + m24 + m42),

h31 =
1
2
(−m13 + im31 + m24 + m42)

(5)

Note that we altered the result of these linear equations by a factor of 2 in order to simplify
oncoming observations, but this does of course not change the validity of the theorem.
What to our knowledge has not yet discussed explicitly about the above result and the above

equations is the following simple observation. The whole trick is to realise that the Mueller
matrices and Hermitian matrices are vectors and then conclude that the Frobenius inner product
coincide with the Hermitian/Euclidean inner product.

Lemma 2 Let T be a linear map, which is defined by the Eqs. (2), (3), (4) and (5). The linear
automorphism T of the Hilbert space C4×4 with the usual Hermitian inner product is unitary.
Moreover, the eigenvalues are {1,−1} with multiplicity 12 and 4 respectively and has therefore
determinant 1.

Proof: We may assume that we are working in C16 by taking the canonical bijection from
C4×4 to C16. It will be enough now to write down the complex 16 × 16-matrix T corresponding
to the Eqs. (2), 3, 4 and 5. Compute the eigenvalues of T with your favourite solver and then
conclude that T†T = TT† = 1 where T† is the conjugate transpose follows as we show in Code 1
“symbolic.ipynb” (Ref. [15]). �

The nice thing about unitary operators is that they preserve the Hermitian inner product, i.e. we
have that 〈x, y〉 = 〈T(x), T(y)〉 for any x, y ∈ C4×4. Hence, the Hermitian norm (which coincides
with the euclidean norm, in case there are only real entries) is preserved under these map.

Moreover, by Theorem 1 we know that T maps the set of all Mueller matrices to the set of all
positive semidefinite Hermitian matrices. We further investigate some properties of the map T .
We denote as C the R-vector space of all Hermitian 4 × 4-matrices and denote as R the R-vector
space of all 4 × 4-R-matrices both with the usual trace scalar product. As a side note we believe
that it could be of interest to some, that we can define a Lie group structure on 4 × 4-Hermitian
positive semidefinite matrices corresponding to the non-singular Mueller matrices by defining
A · B = T(T−1(A)T−1(B)).

Lemma 3 The restriction T � R of the linear map T (as defined in Lemma 2) is some
non-singular orthogonal linear transformation from R to C.

Proof: We first consider T to be a map from R to 4× 8-R-matrices (map the complex numbers
to R2). Moreover, the space of all Hermitian matrices can be considered a 16-dimensional
subspace of R4×8. The orthogonality and non-singularity follows as the eigenvalues of the T are
1,−1 by Lemma 2. �

Now the next result follows by Theorem 1.

https://github.com/LogikerKit/MuellerConeFilter
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Corollary 4 The map T is an isometry on C4×4 (with the Hermitian norm) and an isometry
between R4×4 and C (with the Euclidean norm) which maps the set of all Mueller matrices onto
the set of all semidefinite matrices.

3. Optimal filtering revisited

Now we are able to translate the following problem into a question about Hermitian matrices:
Given a real 4×4-matrix (a Mueller matrix one got from a measurement), we ask what the nearest
(in terms of the euclidean distance) physically feasible Mueller matrix is. The same holds for the
question, which asks for the nearest non-depolarising matrix to a given measurement. Which
now by Lemma 2, Lemma 3 and Corollary 4 can be translated to the question; What is the nearest
positive semidefinite matrix (with rank 1 in the non-depolarising case) to a given Hermitian
matrix. The answer to the first question by implicitly answering the second was already given in
[9]. But we can now rely on well-established mathematical theory to show this. We will further
derive a more general result and apply it in way such that we derive two additional filters.

Notation; By [a] we denote the diagonal matrix with entries an ≤ . . . ≤ a1 and byUn the set
of all unitary n × n-matrices.

The following is true in fact for any unitarily-invariant matrix norm | |∗| | such as the Hermitian
norm. It can be considered a Hermitian version of Theorem 4.5 of [16].

Theorem 5 Let c be some fixed real number. Let Y be some non-empty closed subset of

{(x1, . . . , xn) ∈ Rn : x1 ≥ . . . ≥ xn ≥ c}.

Further, let SY be the set
{V†[d]V : V ∈ Un, d ∈ Y}.

Given some Hermitian A = U†[a]U with a1 ≥ . . . ≥ an ≥ c and U ∈ Un, we then have that for
some b ∈ Y the following holds

| |A − U†[b]U | | ≤ | |A − X | | for all X ∈ SY .

Proof: The proof of Theorem 4.5 in [16] can be easily modified. Conclude in the same way
that there exists some b ∈ Y such that | |A − U†[b]U | | ≤ | |[a − x]| | for any x ∈ Y . Since our
matrices are Hermitian, we know then by Theorem 2 of [17] that | |[a] − [x]| | ≤ | |A − X | | for any
X ∈ SY which has x as its eigenvalues. �

This Theorem together with Corollary 4 now lets us translate any nearness problems of Mueller
matrices into a problem of nearness of the eigenvalues. The following corollary roughly states
that any system which limitations can be described as an eigenvalue criterion of the corresponding
coherency matrix can be optimally filtered by filtering the eigenvalues of the corresponding
coherency matrix.

Corollary 6 Let c be some fixed real number. Let Y be a non-empty closed set in

{(x1, . . . , x4) ∈ Rn : x1 ≥ . . . ≥ x4 ≥ c}

and let M be a real 4 × 4-matrix such that the eigendecomposition of T(M) is U†[a]U. Let

MY = {T−1(V†[d]V) : V ∈ Un, d ∈ Y}.

Then the nearest Mueller matrix in MY in terms of the euclidean norm to M is the matrix
T−1(U†[d]U) where d ∈ Y is chosen such that | |d − a| | is minimal among all elements of Y .

Now we can now easily conclude that the filtering proposed by Cloude [1] is optimal. For this
let M be the measured matrix and let T(M) = U†[a]U has a minimal eigenvalue of c. We further
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assume that c<0 as otherwise we do not have to apply any filter. Let [a′] be the tuple where we
set all negative eigenvalues of [a] to 0. As the set

{(x1, . . . , x4) ∈ R4 : x1 ≥ . . . ≥ x4 ≥ 0}

is closed in
{(x1, . . . , x4) ∈ R4 : x1 ≥ . . . ≥ x4 ≥ c},

Corollary 6 lets us conclude that T(U†[a′]U) is the nearest Mueller matrix estimate of M. Note
thatMY in this case is the space of a Mueller matrices satisfying Cloude’s criterion. In similar
fashion we can conclude that setting all but the biggest eigenvalue of T(M) to 0 will give us the
best estimate for non-depolarising Mueller matrices.
Let us now consider all Mueller matrices M which can be decomposed as a sum of a non-

depolarising part P and a perfectly depolarising matrix D, i.e. D’s only non-zero element is the
upper left entry. Now if we map D via T onto the Hermitian matrices we will see that T(D) is a
diagonal matrix [(d . . . d)]. We continue by stating some simplified version of Weyl’s inequality.

Theorem 7 Let A,B,C be Hermitian matrices. If A+B = C and an ≤ . . . ≤ a1, bn ≤ . . . ≤ b1
and cn ≤ . . . ≤ c1 be their eigenvalues, then we have that ai + bn ≤ ci ≤ ai + b1 for all 1 ≤ i ≤ n.
Now in our case, if we take T(P) = A, T(D) = B and T(M) = C and let pi be the eigenvalues

of T(P) and xi be the eigenvalues of T(M), we get that pi + d = xi for all i where 1 ≤ i ≤ 4
holds. Of course, it is not logically necessary to apply Weyl’s inequality here as B is diagonal
under any basis. But we do for the sake of introducing longstanding mathematical results.
Hence the matrix T(M) has eigenvalues of the form x1 ≥ x2 = x3 = x4 ≥ 0. On the other
hand, take any matrix H which has eigenvalues of this form. Then subtracting [x4, . . . , x4]
will give us by applying Weyl’s inequality again, that C = H − [x4, . . . , x4] has eigenvalues
x1 − x4, 0, 0, 0 and therefore T−1(C) is non-depolarising. Hence we know that T−1(SE) with
E = {(x1, x2, x3, x4) ∈ R4 : x1 ≥ x2 = x3 = x4 ≥ 0} is the set of all Mueller matrices which can
be decomposed in a non-depolarising part and perfectly depolarising part. This was already
mentioned in [18]. Now asking what the best estimate for a measured matrix, which has this
type of composition, can be answered by applying Corollary 6 with E (which is closed). Now if
a1 ≥ a2 ≥ a3 ≥ a4 are the eigenvalues of T(M) then b = (a1, c, c, c) with c = 1

3
∑4

i=2 ai is the
best estimate in E. And hence, we have that for a measurement M the best estimate in T−1(SE) is
T−1(U†[b]U). This also shows us that Equation (17) of [3] is in fact the best a priori estimate for
the perfectly depolarising part, contrary to what was stated in that paper.

Now we want to the preserve the upper left entry of the measured Mueller matrix M, e.g. the
change in intensity of an unpolarised beam is believed to be measured correctly. Note that the
upper left element m11 is equal to the trace of the coherency matrix. And hence as the trace of
matrix is equal to the sum of all eigenvalues, we need to find the closest element in

E = {(x1, x2, x3, x4) ∈ R4 : x1, x2, x3, x4 ≥ 0 ∧ x1 + x2 + x3 + x4 = m11}.

So let a1, a2, a3, a4 be the sorted eigenvalues of the coherency matrix corresponding to the
measured Mueller matrix. We assumed that a4<0, |a4 |< |a3 | and a1, a2, a3>0. We define the
filtered eigenvalues b by first setting b4 = 0. It will be not hard to see, that we find the closest
element in E by further setting the filtered eigenvalue to bi = ai + a4

3 for all i with 1 ≤ i ≤ 3.
Now Corollary 6 lets us again conclude T−1(U†[b]U) is the nearest Mueller matrix estimate.
An implementation of this filter and the other two above are made in Code 1 “numeric.ipynb”
(Ref. [15]). We also test out this filter on some example measurement and see an 8 to 14 percent
improvement against naive scaling of the Mueller matrix and a 7 percent improvement against
the maximum-likelihood estimate example of [4].

https://github.com/LogikerKit/MuellerConeFilter
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4. Geometry of the semidefinite cone

The reader may wonder why we could so easily compute the nearest Mueller matrix to a given real
matrix or respectively solve the corresponding problem namely the nearest semidefinite matrix to
a given Hermitian matrix. This ultimately has to do with the nature of the object consisting of all
complex semidefinite matrices. It turns out that this is a deeply studied object which is known
under the name complex semidefinite cone or more generally symmetric cones and is used among
other things for complex semidefinite programming. Many very nice properties such as convexity
are known about it. In fact, it is a cone. So it is closed under positive linear combinations, i.e.
αH1 + βH2 is also positive definite with H1,H2 positive definite and α, β positive numbers. Of
course, this implies that the set of all Mueller matrices is a cone by linearity of T . It is also known
what the interior of this cone is, namely all positive definite matrices and also the boundary of
this cones is known, namely all singular positive semidefinite matrices. Moreover, there is a
Riemannian metric tensor on its interior (see [19] and Chapter 6 of [20]).

Now the practitioner can use this knowledge and grab ready available tools and mathematical
theory. For example, take a subset of Mueller matrices S and a function f : S→ R one wants
to optimise. We have just seen such functions namely the distance of the Mueller matrices (or
certain subsets of them) to a given measurementM. As done before, we can translate the problem
by optimising the map f ◦ T−1 from T(S) to R instead. This can be either done by finding suitable
theory about the semidefinite cone such as Theorem 5 and then solve the problem directly. Or a
more general approach would be to use available tools for solving optimisation problems. As a
start one would transfer the complex optimisation problem into a real one (with tools as YALMIP
[21]). Although voices have been raced to consider optimisation in the complex numbers directly
[22]. In any way, there are many available software tools for computing the optimum of a function
on the complex or real semidefinite cone such as Manopt [23], Pymanopt [24] and SeDuMi [25].

We highlight one approach of characterising the space of semidefinite matrices of some fixed
rank taken from [26] and [27] which is also described in the code of [23] and [24]. Now if the
rank is 1 then this space is in correspondence via T with the non-depolarising Mueller matrices.
The differential geometry of the non-depolarising Mueller matrices was already studied in [28].
We going to outline now the differential geometry of the Hermitian positive semidefinite cone.

A semidefinite matrix H from C4×4 of rank k can be written as an outer product YY† of a matrix
Y of C4×k of full rank. On the other hand any such outer product YY† is positive semidefinite
and of rank k. Note that the same factorisation was already used in [29], although they did not
consider the subtleties of the rank and the oncoming uniqueness properties. As in [26] we define
an equivalence relation on C4×k by identifying YU with Y for all unitary matrices U (as the outer
product does not change, i.e. YY† = YU(YU)†). We denote the manifold of all C4×k matrices of
full rank as C4k. Now by the quotient manifold theorem (see for example Theorem 9.16 of [30])
the manifold C4k/U(k) is a Riemann quotient manifold, if U(k) is the Lie group of all unitary
matrices.

One can note a striking similarity to Cholesky decomposition, which is used in [4] and [5]. In
particular, in case of positive definite matrices the Cholesky decomposition is unique and C44
can be replaced with all triangular matrices with real diagonal entries. In the case k<4 one can
find a unique decomposition after a twisting with permutation matrices [31] and hence one would
end up with a finite-to-one map (bounded by 24, the number of 4 × 4-permutation matrices). For
all k the metric of the manifold is given by the real-trace inner product, if identifying the complex
numbers with R2. Moreover, when k = 1 we can find a representative of the equivalence classes
by requiring that the first non-zero element of the tuple c ∈ C4 is a real number. This lets us
conclude that its dimension is 7.

Further, if we identify the C with R2 then the quotient manifold theorem tells us also that the
dimension of the Riemannian manifold of all complex positive semi-definite matrices of rank k
has dimension 4 · k − k2. Of course, all this analysis extends to the Mueller matrices by extending
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the mapping via T−1. This then implies that the manifold of Mueller matrices is a decomposition
of this quotient manifolds C4k/U(k) with 1 ≤ k ≤ 4 and the zero element. Furthermore, in case
where the Mueller matricesM are assumed to be the sum of a non-depolarising matrix and an
ideal depolariser and hence the corresponding coherency matrices T(M) are a sum of a rank-1
positive semidefinite matrix and a diagonal matrix with positive entries, it is not hard to see that
this manifold is the product manifold of the positive real numbers R+ and the manifold of all
complex rank-1 positive semidefinite matrices.

What also can be interfered from the above analysis is the following. We set the above together
to receive a map F which is defined as follows

R2×4×k →R2=C C
4×k →YY† HPSD→T−1 M (6)

where HPSD is the space of all Hermitian positive semidefinite matrices andM the space of
the Mueller matrices. Now a short calculation gives us then that F is a quadratic homogeneous
polynomial and hence any F(λx) = λ2F(x). In order to do that calculation follow the arrows of
Eq. (6). Hence we start with an matrix of symbols of size R2×4×k, transform it into a matrix
in C4×k. Then compute the outer product of this matrix with its conjugate transpose, here the
quadratic part of the polynomial comes in. Then applying T−1 to this result give us that F is
the quadratic homogeneous polynomial. The exact symbolic computation can be made with a
computer algebra system as we show in Code 1 “symbolic.ipynb” (Ref. [15]). Moreover, we can
see that | |x| |2Euclidean = F(x)11, where F(x)11 is the upper left element of the Mueller matrix. This
means that it is almost always enough to study the reduced case of Mueller matrices which have
upper left element 1 or treat it as scalar if one is interested in the polarise-independent loss of
light (see [32]). But this of course an practise which is already well established in the field.

Another question which now arises is that of the mean of two or more matrices. In the euclidean
space this of course just the standard Arithmetic mean. But in manifolds the geodesic might look
very different from a straight line and hence the average of two matrices, i.e. the middle point
on the geodesic between these two, might be significantly different from the arithmetic mean.
This case of the geometric average of two Mueller matrices was already covered in [33]. The
generalisation of this concept namely the Riemannian barycenter of matrices A1 . . .An, i.e. the
matrix which is the minimum of the function

∑n
i=1 d(X,Ai) where d is the distance measure on

the manifold. Again we can rely on a well studied area of means of semidefinite linear operators.
Studying of the mean of two linear operators began through a study of connections of electrical
networks [34]. This was then followed by more axiomatic studies on general Hermitian operators
[35], [36]. Means between more than two matrices have been studied in [37]. In [38] means have
been studied in case of real semidefinite matrices of fixed rank. An exposition of the geometric
nature of means can be found in Chapter 6 of [20]. All together this suggests that computing the
mean of multiple Mueller matrices should be done using the Riemannian geometric mean. In
practice this would be done by transferring them via T to the semidefinite cone and then using
available implementation of the Riemannian mean such as the tool Yalmip [21].

5. Conclusion

We have established a connection between the area of Mueller matrices and the areas of general
matrix analysis, Riemannian geometry and optimisation. All basically by interpreting existing
results and making the simple observation that the real ambient space of the Hermitian positive
semidefinite matrices and the space of Mueller matrices isometrically map onto each other. With
this new knowledge, we showed how matrix analysis can be directly used to prove an optimality
result (see Corollary 6) for the filtering of measured Mueller matrices.
We further reviewed mathematical results about the complex semidefinite cone and noted

how this can be used with our previous results and how this suggests a new mean for Mueller
matrices. Of course, such connection have been partly discovered in the past or general results

https://github.com/LogikerKit/MuellerConeFilter
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about semidefinite matrices have been reproved in the special case of Mueller matrices and
4 × 4-Hermitian semidefinite matrices. But our connection makes this precise and provides a
way to bring well-established mathematical theories and tools into the polarimetric world. One
can also speculate that the analysis which we have established here, might bring new insight to
quantum optics and quantum information as they share some mathematical objects [4].

What is still missing in our analysis is to bring together this analysis with the study of the Lie
group structure of invertible Mueller matrices, or more generally the Lie semigroup structure of
all Mueller matrices. Of course, by our analysis of the geometry it is easy now to compute the
tangent space at the identity and therefore the Lie algebra. But this is nothing new, the study of
the Lie group and Lie algebra was already done in [39]. What is still missing is a study how the
geometry of the additive structure of the Mueller matrix, which corresponds to parallel optical
elements [40], and the geometry of the multiplicative structure, which corresponds to successive
optical elements [40], interact.
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