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Abstract

Aim of the present study is an analysis of the effect of microstructural uncertainties on the scatter in the
macroscopic material properties of highly porous materials consisting of metallic or other constituents. For the
numerical analysis of the uncertainty effects, a probabilistic homogenization scheme is proposed. In contrast
to direct Monte-Carlo approaches, the thermomechanical response of a limited number of pre-selected cases
throughout the range of possible microstructures is analyzed. Their effective properties are determined by
means of an energy based homogenization procedure. In a stochastic evaluation, the results of the individual
computations are weighted with the probability of the occurrence of the underlying microstructures. As a
result, the probability distributions for the effective properties are obtained. The basic uncertain microstructural
properties considered in the investigation are the microstructural geometry and orientation, the local relative
density and the local pore size distribution. In an application to an experimental data base from other sources, the
approach proves to be accurate and numerically efficient compared to direct Monte-Carlo approaches. Parameter
studies reveal that uncertainties in the local relative density are the most important factor leading to scatter in
the macroscopic material properties of cellular materials.

1 Introduction

Porous media and solid foams with high void volume fraction and thus low relative density gain increasing im-
portance in modern lightweight construction. Their main advantage is their low specific weight attained at a rea-
sonable macroscopic stiffness and strength. Hence, porous solids are a natural choice for all kinds of lightweight
application. Furthermore, porous media feature superior energy absorption properties due to their high com-
pressibility and the fact that compression occurs at an approximately constant effective stress level (Gibson and
Ashby [8]). Other advantages of cellular materials are their capability for non-structural functions such as heat
exchange, thermal and acoustic insulation or catalytic functions and thus their capability for multi-functional
application. On the other hand, one of the main disadvantages is their – in many cases – highly disordered mi-
crostructure. The uncertainty of the microstructural geometry and topology leads to distinct uncertainties in the
macroscopic material response.

For reasons of numerical efficiency, the numerical analysis of structural components made partially or in total
from cellular materials is preferrably performed in terms of averaged “effective” properties rather than by detailed
models of the microstructure. The effective properties can be determined either experimentally or numerically
by means of a homogenization analysis. Since the pioneering study by Gent and Thomas [7] was published,
numerous studies on the theoretical and numerical determination of the effective properties of solid foams and
other porous media appeared. Most of the available studies are based on idealized periodic models for the cellular
microstructure such as the well-known tetrakaidecahedral Kelvin [23] foam, the brick-like cell model employed
by Gibson and Ashby [8] or the pentagonal dodecahedron model proposed by Christensen [3]. In a more recent
study, Weaire and Phelan [25] proposed a periodic eight-cell model, which outperforms the classical Kelvin foam
with respect to Kelvin’s [23] energetic optimality criterion.

For the analytical and numerical analysis of the effective material properties, the idealized periodic foam
models have the advantage to require only limited numerical effort since only a single cell or – as in the case of
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Weaire and Phelan’s [25] model – a small number of cells needs to be analyzed. On the other hand, although
these models in general properly account for most of the essential microstructural effects and thus yield reliable
estimates of the average effective material properties, they are not able to recapture any disorder effects and the
resulting uncertainty in the macroscopic material response. The analysis of these types of effects requires the
application of stochastic approaches (Huyse and Maes [12]).

Although stochastic methods are well established in experimental investigations on the effective material re-
sponse of cellular materials (e.g. Blazy et al. [2], McCullough et al. [15], Ramamurty and Paul [16]), they are
still not widely established in theoretical and numerical investigations. Most of the available numerical studies
concerned with disorder effects are based on a single or repeated analysis of a large-scale representative volume
element with a large number of cells, generated by a Voronoı̈ process or similar method for the random division
of space. Roberts and Garboczi [17], Shulmeister et al. [21] as well as van der Burg et al. [24] found a strong
scatter of the effective material properties. In a recent study by the present authors (Hardenacke and Hohe [9])
on uncertainty effects in two-dimensional honeycombs, a submodel technique has been proposed, where subsets
of a large-scale representative volume element are employed as “testing volume elements”. Applying the ho-
mogenization procedure to the testing volume elements yields a data base for the possible range of the effective
properties which is evaluated by stochastic methods to determine their probability distributions. As an alternative,
the use of direct probabilistic models has been proposed. In this context, Fortes and Ashby [5] employed a model
based on the structural response of a single cell strut and the probabilities for its spatial orientation. A more
sophisticated model based on a stochastic enhancement of the deterministic Gibson and Ashby [8] formulae for
the effective foam properties has been provided by Schraad and Harlow [20]. Other approaches of this type are
e.g. the Taylor averaging scheme proposed by Cuitiño and Zheng [4].

For the numerical analysis of large-scale representative volume elements, the results of van der Burg et al. [24]
as well as Kanaun and Tkachenko [13] indicate that the necessary size of representative volume element might
be rather large, in order to be statistically representative, requiring cell numbers in the order of 1000 and be-
yond. Since the numerical analysis of microstructures of this type requires a rather large effort, approaches based
on repeated numerical experiments on small-scale testing volume elements with random microstructure are a
promising alternative. Approaches of this type have been used by Gan et al. [6], Li et al. [14], Zhu et al. [26],
[27] as well as by one of the present authors (Hohe and Becker [11]). All of these studies use Monte-Carlo type
simulations, where all microstructures analyzed in the numerical experiments are of equal probability. Despite
its simplicity, direct Monte-Carlo approaches have the disadvantage to require a rather large number of numer-
ical experiments in order to provide statistically reliable results not only for the mean and the variance of the
effective property – as considered in most of the mentioned studies – but also for the upper and lower tails of the
corresponding probability distributions.

In order to predict the effective properties and their probability distributions in a numerically more efficient
manner, the present study employs a modified approach of this type. Therefore, a number of small to medium
scale testing volume elements for the microstructure is considered. Their microstructure is assumed to be defined
by a number of uncertain variables such as the (local) relative density, the variance in the pore size distribu-
tion or the orientation of the testing volume element in three-dimensional space. In contrast to the mentioned
direct Monte-Carlo simulations, pre-selected cases of the microstructure in terms of pre-defined sets of the un-
certain variables are analyzed, which cover the entire range of possible microstructural cases. The results of the
individual testing volume element analyses are evaluated by stochastic methods, considering the non-uniform
probability of occurrence of the microstructures analyzed. In this context, the author’s previous approach (Hohe
and Becker [11]) is extended to the analysis of three-dimensional microstructures together with a refined stochas-
tic analysis in terms of the complete probability distributions for the effective properties instead of the basic
stochastic parameters alone. The analysis of pre-selected cases throughout the relevant ranges of the essen-
tial microstructural parameters instead of the direct Monte-Carlo simulation employed in the previous study in
general requires a lower number of simulations and thus provides a higher numerical efficiency, especially for
evaluation of the upper and lower tails of the probability distributions of the effective properties.

2 Probabilistic homogenization

2.1 General energy based procedure

Within the present study, the macroscopic “effective” properties are determined numerically by means of a ho-
mogenization analysis. For this purpose, a deterministic, energy based homogenization scheme based directly
on Hill’s [1] lemma is adopted (Hohe and Becker [10]). The original deterministic concept is extended in or-
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der to cover uncertainty effects. As most homogenization schemes, the utilized deterministic homogenization
procedure considers a representative volume elementΩRVE for the given microstructure and a similar volume
elementΩRVE∗ consisting of the “effective” medium with yet unknown properties (Figure 1). Provided that the
characteristic lengthl of ΩRVE is much smaller than the characteristic lengthL of the entire body,

L À l À dl (1)

the consideration ofΩRVE andΩRVE∗ is sufficient for determinaion of the effective material properties for the
quasi-homogeneous bodyΩ∗, by which the microstructured bodyΩ is to be replaced. The material law and the
corresponding properties of the effective medium have to be determined such that the behaviour of both volume
elements,ΩRVE andΩRVE∗, is equivalent under any kind of loading conditions on the mesoscopic level.

For the definition of the mesoscopic equivalence of the mechanical response of the two volume elements,
different approaches have been proposed in the literature. Adopting Hill’s [1] lemma, the mechanical response of
ΩRVE andΩRVE∗ is assumed to be mesoscopically equivalent, if the average strain energy density in both volume
elements is equal

w̄ =
1

V RVE

∫

ΩRVE

w dV =
1

V RVE∗

∫

ΩRVE∗

w∗ dV = w̄∗ (2)

provided that both volume elements are subjected to a mesoscopically equivalent state of deformation. The
deformation of both volume elements is defined to be equivalent, if the volume average

F̄ij =
1

V RVE

∫

ΩRVE

Fij dV =
1

V RVE∗

∫

ΩRVE∗

F ∗ij dV = F̄ ∗ij (3)

of the deformation gradient for both volume elements is equal (Hohe and Becker [10], [11]).
The energy based homogenization of the cellular microstructure using Equations (2) and (3) requires the iden-

tification of an appropriate representative volume element, generation of a corresponding finite element model
its deformation according to a prescribed effective deformation gradientF̄ij and the computation of the effective
average strain energy densitȳw. Subsequently, the corresponding effective stress and strain components can be
determined fromF̄ij andw̄ using their definitions on the effective level. Within the present study, the effective
Green-Lagrange strain

γ̄ij =
1
2

(
F̄kiF̄kj − δij

)
(4)

and the effective second Piola-Kirchhoff stress tensor

τ̄ij =
∂w̄

∂γ̄ij

∣∣∣∣
dγ̄pl

ij
=0

(5)

are employed as measures for the effective strain and stress states. Notice that due to the nonlinear dependence
of the Green-Lagrange strain tensor on the deformation gradient, the present homogenization scheme does not
define the effective strains and stresses as their volume averages. Instead, the deformation componentsFij are
averaged with respect to the volume elementΩRVE. Assuming periodic microstructures set up by an array of
similar volume elements, this definition ensures that the distance between any arbitrary spatial point inside the
volume elementΩRVE and a corresponding point in a neighboring volume element is equal in the deformed
configuration whether the real microstructure or the effective medium are considered.

Although the energy based homogenization procedure in its original form defined by Equations (2) and (3)
is restricted to mechanical problems (Hohe and Becker [10], [11]), an extension to heat transfer problems is
straight forward. For this purpose, the volume elementsΩRVE andΩRVE∗ are loaded by prescribed mesoscopic
temperature gradients

T̄,i =
1

V RVE

∫

ΩRVE

T,i dV =
1

V RVE∗

∫

ΩRVE∗

T ∗,i dV = T̄ ∗,i (6)

for which the volume averages

¯̇qi =
1

V RVE

∫

ΩRVE

q̇i dV =
1

V RVE∗

∫

ΩRVE∗

q̇∗i dV = ¯̇q∗i (7)

of the heat flux density have to be equal. Details of the application of the numerical homogenization scheme are
given in Section 3.1.

3



2.2 Probabilistic evaluation

The thermo-mechanical homogenization scheme described in Section 2.1 is basically a deterministic scheme. For
a specific microstructure, it enables to determine the effective stress componentsτ̄ij corresponding to a prescribed
effective strain statēγij or, alternatively, the determination of an effective heat flux density¯̇qi corresponding to an
applied effective temperature gradientT̄,i. On the other hand, the microstructure of solid foams and other highly
porous solids is a stochastic feature involving several constitutive parameters with distinct uncertainties rather
than being defined deterministically in the rigorous sense. Important geometric features with uncertainties are the
spatial position and the size of the individual cells. Furthermore, the relative densityρ̄ = (V tot − V void)/V tot is
subject to distinct local uncertainties as it has been shown in experimental studies by Ramamurty and Paul [16] on
ALPORAS foam or in a more recent contribution by Solórzano et al. [22]. Another microstructural constitutive
parameter subject to uncertainties is the orientation of the microstructure with respect to the loading direction.

If only the arithmetric averages of the effective material properties are required, the effect of the uncertainties
can be accounted for by choosing a large-scale and thus statistically representative volume element. On the other
hand, the required size of the volume element in order to be statistically representative might be larger than a
characteristic length of the macroscopic structure (Kanaun and Tkachenko [13]), e.g. if a large-cell solid foam is
used as a sandwich core material. Hence, the inequality (1) would be violated and thus no well defined effective
properties exist. An alternative to deal with this problem is the application of a stochastic homogenization ap-
proach, where the homogenization is performed in a number of repeated numerical experiments using small to
medium scale (statistically non representative) testing volume elements. In this case, the results of the individual
numerical experiments have to be evaluated by means of stochastic methods.

For this purpose, assume that the microstructure of the testing volume elements is defined by a number
of microstructural constitutive variablesy such as the relative densitȳρ. The actual values of the variablesy are
uncertain. The uncertainties are described by the probability density distributionsf(y) or probability distributions
F (y) =

∫ y

0
f(y) dy can be determined experimentally by a stochastic characterization of the microstructure using

tomographic or similar methods. If a number of individual cases of microstructures defined by specific valuesyi

of the variablesy are considered,

p(yi) =

yi+yi+1
2∫

yi−1+yi
2

f(y) dy (8)

is the individual probability for occurrence of the respective microstructural case considered in the individual
testing volume element analysis (Figure 2). The homogenization resultsZ̄(y) (e.g. the effective stresses) based
on the respective microstructure have the same probability of occurrence as the microstructure itself. Hence, the
expectation valueE(Z̄(y)) and the varianceV (Z̄(y)) of the effective propertȳZ(y) are determined by

E(Z̄) =
n∑

i=1

Z̄(yi)p(yi) (9)

V (Z̄) =
n∑

i=1

(
Z̄(yi)− E(Z̄(y))

)2
p(yi) (10)

as a function of the probability density distributionf(y) for the microstructural constitutive parametery, where
n is the number of numerical experiments. If required, higher order stochastic moments can be determined in a
similar manner. For the case that alln microstructures analyzed and thus all homogenization resultsZ̄(yi) have
the same individual probabilityp(yi) = 1/n, the direct Monte-Carlo approach as employed in previous studies is
recovered (Gan et al. [6], Hohe and Becker [11], Li et al. [14], Zhu et al. [26]).

With the probabilitiesp(yi) of the analyzed microstructures, the probability distribution of the effective prop-
erty Z̄(y) is obtained by

F (Z̄(yj)) =
j−1∑

k=1

p(yk) +
1
2
p(yj) (11)

after re-arrangement of the homogenization resultsZ̄(yi) into ascending order. The corresponding probability
density distributionf(Z̄(yj)) is obtained as the (numerical) derivative ofF (Z̄(yj)) with respect to its argument.
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In order to avoid difficulties with the numerical determination of the derivativef(Z̄(yj)) of the probability
distribution from a limited number of homogenization results, the obtained probability distributions are approxi-
mated by a (continuous) logarithmic normal distribution

fln(Z̄) =
1

Z̄σ(2π)1/2
e−

(lnZ̄−µ)2

2σ2 , Fln(Z̄) =

Z̄∫

0

fln(Z̄) dZ̄ (12)

with the shape and position parametersσ andµ. These parameters are determined from the numerical data in
such a manner that the expectation value and the variance

Eln(Z̄) =

∞∫

−∞
Z̄ fln(Z̄) dZ̄ = eµ+ σ2

2 (13)

Vln(Z̄) =

∞∫

−∞

(
Z̄ − Eln(Z̄)

)2
fln(Z̄) dZ̄ = e2µ+σ2

(
eσ2 − 1

)
(14)

of the computed probability distribution (11) and its approximation (12) are equal. Thus, the basic statisti-
cal equivalence of the numerically determined probability distribution and its approximation is guaranteed. If
necessary, alternative definitions for the approximated probability distribution may be used. For the problems
investigated in the present study, the choice of the logarithmic normal distribution is validated in Section 3.3.

2.3 Application to porous solids

In the present study concerned with porous and cellular solids, brick-shaped testing volume elements are con-
sidered. Their microstructure is assumed to contain an identical number of void spheres. The sphere volume
is assumed to obey a logarithmic normal distribution (12) with a prescribed shape parameterσcsz. The position
parameterµcsz is determined such that the prescribed relative densityρ̄ is obtained and thus does not form an
independent constitutive parameter. The spheres are positioned randomly into a brick-like testing volume element
such that a minimum overlap is achieved. For this purpose, in a preliminary step spheres with a reduced diam-
eter are packed closely into the volume element. Subsequently, the diameter is increased such that the required
relative densitȳρ is reached. The microstructures are assumed to be spatially periodic. Hence, if a void sphere
intersects with the testing volume element boundaries, the cut-off part of the respective void sphere is added on
the opposite side of the testing volume element.

The procedure provides appropriate models for the microstructure of porous solids, replicated foams or mi-
crocellular materials. The microstructure is primarily governed by the relative densityρ̄ and the shape parameter
σcsz of the cell size distribution. In order to account for uncertainties in the microstructural geometry and topol-
ogy, several testing volume elements are generated for each pair(ρ̄i, σcsz j) of specific values considered for
the parameters̄ρ andσcsz. In addition, the orientation of the generated testing volume element relative to the
considered loading direction is assumed to be uncertain.

Hence, four different stochastic variables govern the uncertainty in the effective properties of the material
considered. The probability for occurrence of the individual homogenization results is given by

p = pdnspcszportpmod (15)

wherepdns, pcsz, port andpmod are the individual probabilities for the relative density, the cell size distribu-
tion, the spatial orientation and the microstructural geometry respectively. For the basic parametersρ̄ andσcsz,
logarithmic normal distributions are assumed, whereas uniform distributions are assumed for all microstructures
generated for each pair(ρ̄i, σcsz j) as well for their spatial orientation. Different types of statistical distributions
may be used, if required for any other type of cellular solid.

The main advantage of the proposed scheme compared to a direct Monte-Carlo analysis as employed in
previous studies (see Gan et al. [6], Hohe and Becker [11], Li et al. [14], Zhu et al. [26]) is the possible reduction
of numerical effort. Since the considered particular valuesyi of the microstructural constitutive parametersy for
the individual testing volume elements are pre-selected, areas of particular importance within the total possible
ranges ofy can easily be provided with a higher density of data points than less important ranges (Figure 2(b)).
Therefore, the spacing of the data points in the accumulated probability distributionsF (y) and thusF (Z̄(y)) is
not necessarily uniform withp(yi) = 1/n, as it would be in a direct Monte-Carlo approach, where the valuesyi
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in the individual numerical experiments would be determined randomly. In a direct Monte-Carlo simulation, the
uniform individual probabilitiesp(Z̄(yi) would lead to a uniform spacing of the data points inF (Z̄(y))-direction
(see Figure 2(b)). Hence, the only possibility to increase the number of data points – and thus the reliability of
the probability distribution of the results – in any particular range of theZ̄(y)-F (Z̄(y))-diagram is an increase in
the total number of simulations. In contrast, the present approach allows a selected increase of the number of data
points in particular ranges of the probability distribution such as e.g. the lower tail of the probability distribution
in Figure 2(b). This feature is especially important in analyses of the effective strength or other limit analyses,
where the upper or lower bounds of the effective properties rather than their mean values need to be determined.
In this case, the scheme proposed in the present study allows the increase in the density of the data points in these
regions without the necessity for an increase in the data density in other regions of the probability distribution.
Thus, the proposed scheme is in general numerically more efficient than a direct Monte-Carlo simulation, since
it requires a fewer number of individual homogenization analyses for achieving a particular data density and thus
a particular accuracy of the probability distributions of the effective properties. Alternatively, the accuracy of the
results in a particular region of the probability distribution of the effective properties can be increased without
increase in the required numerical effort by specifying a higher density of homogenization data in the respective
range.

3 Numerical implementation

3.1 Finite element computation

As testing volume elements for the analysis of uncertainty effects in the thermo-mechanical response of porous
solids, unit cubes are considered, containing 20 void spheres each. The relative size of the void spheres is
described by a logarithmic normal distribution of the type (12) which is defined by the shape parameterσcsz. A
vanishing shape parameterσcsz → 0 results in a microstructure with uniform cell size whereas increasingσcsz

result in microstructures with increasing non-uniformity in the cell size. For analysis of the effective material
response, the finite element method is employed. Therefore, the non-void areas of the testing volume elements
are meshed with standard displacement based four-node tetrahedral elements. A corresponding temperature based
element formulation is employed in the thermal analyses.

In order to cover the entire relevant range for highly porous and foamed materials, relative densities of
ρ̄i = 0.05, 0.08, 0.11, 0.13, 0.15, 0.17, 0.19, 0.22 and0.25 are considered. Five individual shape parameters
σcsz j = 0.1, 0.2, 0.3, 0.4 and0.5 are analyzed in order to cover the entire range of possible local variations in
the cell size distribution. For each pair(ρ̄i, σcsz j), five different testing volume elements are generated in order
to account for disorder effects caused by the random positioning of the pores. Effects of the spatial orientation
of the microstructure are included by an analysis of the model in the orientation as generated as well as in two
alternative orientations where the microstructure is rotated by90◦ with respect to two different axesxi of the
global Cartesian system.

Examples for the finite element meshes of the random microstructures at different relative densities and differ-
ent cell size distributions are presented in Figure 3. The number of nodes in the model varies from 4906 to 14718
whereas the number of elements ranges from 11664 to 51038. The extreme case of a relative densityρ̄ = 0.25
constitutes a porous solid with nearly non-intersecting pores. In the lower limitρ̄ = 0.05 of the considered den-
sity range, microstructures with a rather low relative density are obtained. Due to the limited connection by cell
struts between opposite surfaces, low effective stiffnesses will be obtained. In rare cases, even non-percolating
microstructures may develop, resulting in a zero stiffness. In the present study, this effect occurs in12% of the
cases for̄ρ = 0.05, whereas no such event occurs for all other relative densities. Nevertheless, since all of the
homogenization results based on these cases are located in the lower tails of the probability distributions for the
effective properties (see Section 4) and thus their individual probabilityp according to Equation (15) is almost
negligible, no crucial effects develop in the stochastic numerical analysis. Notice that discretized areas in the
lower limit ρ̄ = 0.05 in Figure 3, which seem to be unconnected to the main discretized body of the microstruc-
ture are in general located on the boundaries and thus have a connection to the remainder of the microstructure
through the boundary conditions.

The finite element models of the testing volume element are subjected to periodic displacement or temperature
boundary conditions. These conditions require that the gradients of the displacement componentsui and the
temperatureT along the testing volume element surfaces are equal on each pair of corresponding (opposite)
surfaces of the unit cube. The discrete boundary conditions for each pair of corresponding nodes on the external
testing volume element surfaces are obtained by transforming the volume integrals in the kinematic equivalence
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conditions (3) or (6) respectively into boundary integrals using Green’s theorem. Substituting the periodicity
requirements into the results and evaluating the integrals (Hohe and Becker [10], [11]) yields

u
(j+)
i − u

(j−)
i

lj
= F̄ij − δij (16)

T (j+) − T (j−)

lj
= T̄,j (17)

whereu
(j+)
i andu

(j−)
i are the displacement componentsui on the testing volume element surfaces with an out-

ward normal unit vector pointing towards the positive and negativexj-direction, respectively. The temperatures
T (j+) andT (j−) are defined in a similar manner. Four additional boundary conditions are required to prevent
translatoric rigid body motions and temperature shifts of the testing volume element. Equations (16) and (17) al-
low the direct specification of a prescribed macroscopic state of deformation or macroscopic temperature gradient
without evaluation of the integrals in the kinematic equivalence conditions (3) and (6).

The material behaviour on the microscopic level is assumed to be elastic-plastic. The elastic part is governed
by Hooke’s law whereasJ2-plasticity with polylinear hardening is assumed for the plastic part. In the heat
transfer analyses, the linear Fourier heat transfer equation is employed.

3.2 Effective material parameters

For determination of the effective heat transfer properties, the testing volume elements are subjected to an effec-
tive temperature gradient̄T,i within thexi-direction whereas the effective temperature gradients in the remaining

spatial directions remain unrestrained. From the finite element analysis, the total heat flux vector˙̄Qi through the
cross sectionAi of the testing volume element is obtained. Subsequently, the effective thermal conductivity

λ̄i = −
˙̄Q(i)

A(i)T̄(,i)

(18)

with respect to thexi-direction can be determined. Embraced indices indicate that no summation is to be per-
formed.

For determination of the elasto-plastic material response on the effective level, the testing volume elements
are loaded in a uniaxial manner by a prescribed effective normal strainγ̄ij with j = i within the xi-direction
whereas all other effective strain components are left unrestrained. The corresponding componentsFij of the
deformation gradient are computed by Equation (4). The prescribed effective normal strain component is in-
creased incrementally into the compressive range. For each increment, the resulting effective stress components
are computed resulting in an incremental effective stress-strain curve. For determination of the effective elastic
properties, an evaluation incrementkeval is chosen, which is the last increment, where the maximum equivalent
plastic strainγpl

e on the microscopic level does not exceed a prescribed small valueγpl
e,limit. From the effective

stress and strain componentsτ̄ij andγ̄ij , the effective elastic constants

Ē =
τ̄load

γ̄load
(19)

and

ν̄ ≈ −1
2

γ̄p1 + γ̄p2

γ̄load
(20)

are determined, wherēτload andγ̄load are the effective normal stress and strain components within the actual load-
ing direction whereas̄γp1 andγ̄p2 are the effective normal strain components perpendicular to the macroscopic
loading direction.

The effective hardening curve is defined directly as the computed uniaxial effective stress-strain curve, where
the effective plastic strain is approximated by

γ̄pl
e = γ̄load − τ̄load

Ē
(21)

assuming that the elastic properties do not change significantly during the plastic deformation at least during its
initial stage. A macroscopic yield stressτ̄y is defined is the sense of an0.2% offset stress as the effective stess at
γ̄pl
e = 0.002.
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By determination of the effective thermal conductivityλ̄, the effective elastic constants̄E and ν̄ as well as
the effective yield stress̄τy for a variety of relative densities, cell size distributions, microstructural geometries
and orientations, a numerical raw data base for the subsequent stochastic evaluation according to Section 2.2
is established. The raw data base is presented in Figure 4. As a material example for the cell wall material,
aluminium withE0 = 70 GPa, ν0 = 0.3, τy0 = 190 MPa andλ0 = 238W/(mK) is assumed. Nevertheless, all
computed effective material constants are normalized with respect to their microscopic counterparts in order to
provide a more general representation. As expected, the effective Young’s modulusĒ, the effective yield stress
τ̄y as well as the effective thermal conductivityλ̄ exhibit a strong dependence on the relative densityρ̄. No such
effect is observed for the effective Poisson’s ratioν̄, since this quantity is a mechanism controlled property relying
on the underlying microscopic mechanism of deformation rather than on the microscopic material properties. For
the cell size distribution of the porous medium, no distinct effect is visible in the raw data presentation in Figure 4.
Both effects will be discussed in detail in the stochastic evaluation of the raw data presented in Section 4.

3.3 Validation

Prior to the application of the probabilistic homogenization approach proposed in Section 2 in parametric studies,
the raw data base is validated against experimental results. In Figure 5, the raw data determined in Section 3.2 are
compared with experimental data from different literature resources. In Figure 5(a), the elastic modulusĒ of the
porous material normalized with the Young’s modulusE0 of the cell wall material is plotted as a function of the
the relative densitȳρ of the porous solid. Figure 5(b) shows an enlarged detail of Figure 5(a). The numerical raw
data obtained in the numerical homogenization analysis are found in a rather good agreement with the stochastic
experimental measurements provided by Ramamurty and Paul [16]. In this context, the experimental data were
re-calculated to the measured data instead of the specimen length normalized data presented by Ramamurty and
Paul [16].

In light of the oncoming stochastic evaluation of the raw data base in Section 4, it should be noticed that the
stochastic experimental investigation by Ramamurty and Paul [16] has been performed on closed cell ALPORAS
aluminum foam samples with a nominal relative density ofρ̄ ≈ 0.096. Despite the unique nominal relative
density of the plate, where their specimens were cut from, a distinct uncertainty in the relative density of the
individual specimens occurs. The scatter in the relative density might become even more distinct, if subsets of
the tested specimens would be analyzed.

In comparison to the stochastic approach of Ramamurty and Paul [16], McCullough et al. [15] do not provide
a rigorous stochastic analysis of their experimental results. On the other hand, their study on density effects in the
effective material response of highly porous materials covers a rather wide range of relative densities and therefore
provides a good reference for the present numerical raw data. In average, the experimental data of McCullough
et al. [15] are in good agreement with the raw data obtained by the present numerical homogenization analysis.
Hence, the accurracy and reliability of the numerical scheme is evident.

For the normalized yield stress̄τy/τy0, more exhaustive experimental investigations are available in the lit-
erature. In addition to the previously considered publications by Ramamurty and Paul [16] and McCullough et
al. [15], experimental studies by Blazy et al. [2] as well as by Ruan et al. [18], [19] are considered as reference
cases for the accurracy of the present numerical raw data base. A comparison of the experimental results with the
numerical raw data of the present study is presented in Figure 5(c) as well as in the enlarged detail in Figure 5(d).
In general, the experimental results are found in a good agreement with the numerical data. Nevertheless, it has
to be mentioned that the numerical results obtained in the present study are rigorous 0.2% offset stress values
whereas the yield stress in most experimental approaches is defined either as the peak stress preceding the stress
plateau in compression or directly as the plateau stress. Especially if taken at larger (macroscopic) compressive
effective strain levels, the plateau stress can be linked with an already damaged microstructure and therefore
might underestimate the initial yield limit. Hence, the numerical values and experimental results might not be di-
rectly comparable in the rigorous sense. Nevertheless, the good qualitative agreement of the experimental results
and the numerical raw data again underlines the apropriateness of the numerical raw data base.

In the probabilistic evaluation scheme proposed in Section 2.2, the probability distributions for the effective
properties are determined from the raw data base by weighting the individual homogenization results with the
probability for occurrence of the underlying microstructure. Subsequently, the numerically determined discrete
probability density distribution for the considered property is approximated by a logarithmic normal distribu-
tion (12). In Figure 6, the discrete probability distributionsF (Ē/E0), F (ν̄/ν0), F (τ̄y/τy0) andF (λ̄/λ0) for the
effective elastic constants, the effective yield stress and the effective thermal conductivity are plotted under the as-
sumption of a logarithmic normal distribution of the relative densityρ̄ with an expectation value ofE(ρ̄) = 0.15

8



and a standard deviation of
√

V (ρ̄) = 0.02. In all four cases, an almost perfect coincidence of the numerically
computed discrete probability distributions with the continuous approximation is obtained. For other expectation
values and standard deviations of the relative densityρ̄, similar results are obtained. Hence, the approximation
of the discrete numerical probability distributions by a continuous logarithmic normal distribution for further
evaluation purposes is clearly justified.

4 Parametric studies

4.1 Effects of uncertainties in the relative density

In a first parametric study, the effect of the uncertainty in the local relative densityρ̄ of the cellular material is
studied. Experimental results reported by Ramamurty and Paul [16] reveal that distinct variations of the relative
density around its nominal value might occur for cellular solids even on laboratory specimens size level with
a larger characteristic length scale as for the microstructural models considered in the present study. The local
variation of the relative density is characterized by a logarithmic normal distribution defined by the expectation
valueE(ρ̄) and the corresponding standard deviationσ(ρ̄). Five different levels of the standard deviation ranging
from σ(ρ̄) = 0.004 up to0.02 are considered. The lowest level corresponds to a spatially nearly constant relative
density of the material whereas the highest level defines a material with distinct uncertainties in the local relative
density. In Figure 7, the probability distributionsf(Ē/E0), f(ν̄/ν0), f(τ̄y/τy0) andf(λ̄/λ0) for the effective
elastic constants, the effective yield stress and the effective thermal conductivity are presented. Three different
levels of the average relative density of the material are considered, characterized by the respective expectation
valueE(ρ̄). The corresponding probability density distributionsf are presented in Figure 8.

In the case of a low standard deviationσ(ρ̄) = 0.004 and thus an insignificant scatter of the relative density,
the scatter in the effective propertiesĒ, ν̄, τ̄y andλ̄ is caused solely by the scatter in the microstructural geometry
and the uncertainty of the cell size distribution. With increasing standard deviationσ(ρ̄), the scatter in the local
relative density of the material increases. Consequently, the scatter to be expected in the effective properties
increases, resulting in less steep increases of the corresponding probability functionsF in Figure 7 as well as
wider ranges with a non-zero probability densityf of the respective effective material properties (Figure 8).
Especially for the lowest considered expectation valueE(ρ̄) = 0.1, strongly asymmetric distributions of the
probability density develop. Hence, a characterization of the scatter in the effective material properties in terms
of the basic stochastic parametersE andσ alone without the explicit analysis of the corresponding probability
distribution might be insufficient.

An interesting effect to be observed in Figures 7 and 8 is the fact that the amount of uncertainty in the relative
densityρ̄ does not only affect the standard deviation of the effective properties but in some cases their median
(and expectation) values as well. For an average relative density ofρ̄ = 0.15, the accumulated probability of
F = 0.5 for the effective Young’s modulus̄E/E0, the effective yield stress̄τy/τy0 and the effective thermal
conductivityλ̄/λ0 is reached at almost identical values of the respective effective properties, irrespectively of the
scatterσ(ρ̄) in the relative density. ForE(ρ̄) = 0.2 an increasing standard deviationσ(ρ̄) and thus an increasing
scatter in the local relative density of the material results in increasing median values of the respective effective
material constant. For the less dense material withE(ρ̄) = 0.1, the opposite effect is observed as the median
effective properties decrease with increasing uncertainty in the local relative densityρ̄.

The dependence of the mean valuesE and standard deviationsσ of the effective material constants on the
uncertainty in the local relative density in terms of the standard deviationσ(ρ̄) is evaluated in more detail in
Figure 9. Black lines are related to the expectation value whereas the standard deviations are represented with
gray lines. In case of the normalized effective Young’s modulusĒ/E0, the normalized effective yield stress
τ̄y/τy0 and the normalized effective thermal conductivityλ̄/λ0, the above mentioned effect of an increase in
the mean effective properties for increasing scatter in the local relative densityρ̄ is observed in the initial range
of the standard deviationσ(ρ̄) only (see Figures 9(a), (c) and (d)). For a scatter in the relative density beyond
σ(ρ̄) = 0.02, the reverse effect is observed, although the significance in both ranges is limited. The strongest
effect of the density scatter on an effective material constant is observed for the normalized effective Poisson’s
ratio ν̄/ν0 at the smallest mean relative density (E(ρ̄) = 0.1, see Figure 9(b)). The mean normalized effective
Poisson’s ratio decreases from approximately0.66 atσ(ρ̄) = 0.004 to 0.48 atσ(ρ̄) = 0.05. For the uncertainties
in the effective properties characterized by their standard deviationsσ, in all cases monotonously increasing
uncertainties are obtained with increasing uncertaintyσ(ρ̄) of the local relative density (see Figure 9).

A comparison of the statistical meansE(Ē/E0) andE(τ̄y/τy0) of the effective Young’s modulus and the
effective yield stress with the experimental data by Ramamurty and Paul [16] on an ALPORAS aluminum foam
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with a mean relative density of slightly less thanρ̄ = 0.1 yields a rather good agreement. The numerical results
for ρ̄ = 0.1 at the respective standard deviationσ(ρ̄) underpredict the experimental observations only slightly.

4.2 Effect of the sample size

In experimental investigations, the scatter in the effctive stiffness and transport properties in general strongly
depends on the specimen size. Larger scatter is determiend when using smaller specimens. The reason is the self-
averaging effect of the material. In a similar manner, the effective properties determined by the numerical scheme
proposed in the present study depend on the size of the testing volume elements employed. A simple method to
quantify the expected effect based on the available raw data base in Figure 4 consists in a re-combination of two
or more raw data points based on testing volume elements with the same nominal microstructural properties. For
these ensembles, the effective material constants are determined as the averages of the results from the individual
testing volume element analyses. Subsequently, the stochastic evaluation is performed based on the ensemble
averages instead of the individual results. By means of this procedure, the scatter in the effective constants to be
expected when using testing volume elements with more than 20 cells can be estimated.

Based on this idea, a stochastic evaluation of the effective material properties is performed using samples
consisting of a single testing volume element as well as ensembles of up to 16 testing volume elements and thus
samples containing 20 up to 320 cells. In Figure 10, the results for the standard deviation of the normalized
elastic constants̄E/E0 and ν̄/ν0, the normalized yield stress̄τy/τy0 and the normalized thermal conductivity
λ̄/λ0 are presented in dependence on the numbernc of cells in the ensembles. For all four effective material
constants investigated, increasing sample sizes result in decreasing uncertainties characterized by a decreasing
standard deviationσ of the effective properties.

For comparison, the standard deviations of the normalized effective Young’s modulus as well as the normal-
ized yield stress derived from the experimental data presented by Ramamurty and Paul [16] are added. In this
context, the number of pores in the tested specimens is estimated from the average pore size. Again, the result
for the elastic modulus does not incorporate the correction procedure for the specimen length suggested in Ra-
mamurty and Paul’s original contribution [16]. The scatter predicted by the present numerical scheme for the
effective Young’s modulus is found in a good agreement with the experimental results on an aluminum foam with
a scatter in the relative density of approximatelyσ(ρ̄) = 0.005. For the scatter to be expected in the effective yield
stress, a comparison of the experimental and numerical data is difficult since Ramamurty and Paul [16] define the
yield stress as the peak stress preceding the stress plateau in uniaxial compression whereas a definition in terms
of the 0.2% offset stress is used in the present investigation. Since the plateau stress and quantities related to it
are expected not to be affected by the scatter in the elastic properties, a less distinct scatter has to be expected
for the yield stress determined in terms of the plateau stress compared to the yield stress defined as the stress at a
0.2% offset limit close to the elastic range. Since this quantity is expected to be affected by the elastic properties
and thus the scatter therein, both yield stress values might not be directly comparable, especially in terms of their
uncertainty.

4.3 Effect of the cell size distribution

In all previous parametric studies, a similar cell size distribution has been assumed. The size distribution is of
the logarithmic normal type (12) with an uncertain shape parameterσcsz. The expectation value and the standard
deviation of the uncertain shape parameter were assumed to beE(σcsz) = 0.3 andσ(σcsz) = 0.1 respectively,
both normalized with the volume of the testing volume elements.

In a final investigation, the effect of the uncertainty in the local cell size distribution on the expectation
value and the standard deviation of the effective material propertiesĒ, ν̄, τ̄y and λ̄ is studied. The results
are presented in Figure 11, where three different expectation valuesE(σcsz) of the shape parameter for the
cell size distribution are considered. The lowest considered expectation value ofE(σcsz) = 0.2 is related to
a slightly disordered microstructure whereas the intermediate value ofE(σcsz) = 0.3 and the highest value of
E(σcsz) = 0.4 characterize moderatly and distinctively disordered microstructures respectively. In all three cases,
the standard deviationσ(σcsz) is varied over the intervall[0.01, 0.2] covering the range from certain to highly
uncertain shape parametersσcsz of the local cell size distribution (see Figure 3). The expectation value of the
relative density and the corresponding standard deviation are kept constant atE(ρ̄) = 0.15 and σ(ρ̄) = 0.01
respectively.

With respect to the expectation valuesE(Ē/E0), E(ν̄/ν0), E(τ̄y/τy0) andE(λ̄/λ0) of the effective material
properties, no significant effect of an uncertainty in the cell size distribution is observed. Equivalent results for
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all four effective properties are obtained irrespectively of the expectation valueE(σcsz) of the shape parameter
of the cell size distribution and its standard deviationσ(σcsz). Due to the limited numerical data base, some
slight differences between the curves for the three different expectation valuesE(σcsz) develop at low standard
deviationsσ(σcsz). In these cases, only narrow scatter bands of the shape parameterσcsz of the cell size dis-
tribution are assumed. Hence, the results for the effective properties depend solely on the results based on the
testing volume element analyses with a shape parameterσcsz of the cell size distribution equal to the respective
assumed expectation valueE(σcsz). With increasingσ(σcsz) and thus an increasing scatter band width for the
parameterσcsz, an increasing number of testing volume element analyses affects the statistical evaluation with
non-negligible individual probablityp. Hence, smoother probability distributions are obtained for largerσ(σcsz)
resulting in more stable results for the expectation values of the effective properties.

Qualitatively similar results are obtained for the effect of the standard deviationσ(σcsz) of the shape param-
eterσcsz of the cell size distribution on the standard deviation of the effective material properties. Whereas no
significant effect is observed forσ(σcsz) > 0.1, numerically unstable results are obtained for lowerσ(σcsz) due
to the statistically insufficient numerical data base in this range. The insufficiency is caused by the limitation
of the stochastic evaluation to the testing volume element analyses based on cell size distributions with a shape
parameterσcsz equal to the assumed expectation valueE(σcsz).

5 Conclusions

The objective of the present study is the probabilistic numerical analysis of the effective properties of three-
dimensional porous solids. For this purpose, a stochastic homogenization developed previously for the analysis
of two-dimensional honeycombs is extended to the three-dimensional case. The procedure is based on the mul-
tiple homogenization of testing volume elements with prescribed values of the uncertain constitutive parameters
defining the microstructure. The results of the testing volume element analyses are weighted with the individual
probablities for occurrence of the underlying microstructural case. As basic uncertain microstructural constitutive
properties, the local relative density, the cell size distribution, the spatial orientation of the testing volume element
and the microstructural geometry are considered. The scatter and uncertainty of these properties is quantified in
terms of their probability distributions.

In the present study, logarithmic normal distributions are assumed for the relative density and the shape
parameter of the cell size distribution whereas homogeneous distributions are assumed for the orientation of the
testing volume elements in space as well as for the topology of the randomly generated microstructures. For the
homogenization itself, a strain energy based approach is utilized, assuming the mesoscopic equivalence of the
microstructure and the quasi-homogeneous effective medium, if equal average strain energy density states are
obtained provided that the testing volume elements for the microstructure and the effective medium are deformed
in deformation states, which are equal in a volume average sense.

In a number of parametric studies on an aluminum foam, the local relative density proves to be the most
important stochastic variable. The microstructural scatter caused by the uncertainty of the local relative density
does not only affect the scatter in the effective properties but may also affect the median or expectation values
respectively. For the local cell size distribution, significant effects are observed neither in the scatter of the
effective properties nor in their expectation values. Nevertheless, it has to be considered that for real porous
materials, especially for foams, the cell size might be correlated with the local relative density. This correlation
is caused by the fact that for low density solid foams the cell wall thickness for small and large cells is in many
cases similar. Hence, zones with small pores feature a larger density of cell walls and thus a larger local material
density than areas with large pores.

The parametric studies reveal that the stochastic homogenization scheme proposed in the present study en-
ables a numerically efficient prediction of the uncertainty in the effective properties from the known uncertainty
in the microstructural properties of the material. Nevertheless, care has to be taken in order to assure the use of
a sufficiently large numerical data base, since the significant part of the total numerical data base might shrink
significantly in the case of narrow scatter band widths of the uncertain variables. Therefore, a sufficiently fine res-
olution of the ranges for the basic uncertain microstructural properties is necessary in order to obtain convergent
results based on a statistically sufficient numerical data base.
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Figure 1: Concept of the representative volume element.

Figure 2: Probability and probability density of constitutive parameters and effective properties.

Figure 3: Examples for the microstructuress of the random testing volume element.
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Figure 4: Raw data for the normalized effective elastic constants.

Figure 5: Comparison of the raw data base with experimental data.
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Figure 6: Stochastic evaluation of the numerical data base.

Figure 7: Effect of the uncertainty in the relative density, probability distributions.
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Figure 8: Effect of the uncertainty in the relative density, probability density distributions.

Figure 9: Effect of the uncertainty in the relative density.
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Figure 10: Effect of the testing volume element size.

Figure 11: Effect of the cell size distribution.
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