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Figure 1: CareCam, a concept formeasuringmental and physical health in the workplace using a simple webcam. In this paper
we focus on the last part of the processing pipeline, the interventions.

ABSTRACT
High visual and cognitive demands characterize computer work.
Therefore, preventive, health-promoting support at the workplace
plays a central role in the competitiveness of companies. The eval-
uation of camera images, e.g. with a simple webcam, offers the
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possibility of gaining health-relevant data and using them for cor-
porate health management. We, therefore, present the CareCam,
a concept that can be used to record various data such as blink
rate, pulse rate and upper body posture at the workplace. These
data allow conclusions to be drawn about the health burden at
the workplace and can be used for personalized interventions or
health-promoting recommendations. However, how the collected
data can best be used for interventions to minimize health risks
at the VDU (Visual Display Unit) workplace in the long term has
not yet been clarified. Therefore, this work outlines a basic concept
for health interventions at the VDU workplace based on camera
data. We utilize the facial expression, blinking rate, eye distance to
screen and upper body posture to provide a targeted reminder and
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use their frequency as a marker to provide targeted user-tailored
interventions at the workplace using a simple webcam.

CCS CONCEPTS
•Human-centered computing→ Ubiquitous and mobile comput-
ing theory, concepts and paradigms; Empirical studies in HCI;
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1 INTRODUCTION
Workplace interventions recently emerged as an occupational health
strategy to improve work-related outcomes through structural, or-
ganizational changes, education-based interventions, physical activ-
ity programs, or other multi-component interventions. Especially
sedentary employees (e.g., office workers) are prone to muscu-
loskeletal disorders since most spend 3/4 of the day sitting. The
lack of physical activity that occurs with excessive sitting has been
shown to lead to various chronic diseases, as well as cardiovascular
and metabolic diseases [3].
Office workers tend to interact with the computer about 7 hours a
day, whether at home or work [10]. Working on the computer is
characterized by high visual and cognitive demands. Health prob-
lems of employees due to excessive sitting, mental overload or bad
posture during computer work result in reduced productivity, more
extended absences and even early retirement. For the competitive-
ness of companies, preventive, health-promoting support at the
workplace, therefore, plays a central role. Our approach to support-
ing office workers consists of contactless technology based solely
on optical sensors (e.g., camera). The evaluation of camera images,
e.g., using a simple webcam, either built-in or external, offers the
possibility of health-relevant (e.g., heart rate, posture, eye blink
frequency) data and use them for corporate health management
and user-centered interventions to reduce mental and physical
stress at the workplace. These crucial data allow conclusions to
be drawn about the strain at the workplace and can be used for
personalized interventions or health-promoting recommendations
to increase general acceptance of interventions. Workplace related
health programs are now widely accepted. They range from free
fitness memberships to technical solutions, e.g., smartwatches, spe-
cialized depth cameras, inertial measurement units attached to the
neck or other wearable solutions. Companies may also provide
height-adjustable desks or ergonomic chairs to promote dynamic
sitting during the day. However, these technical interventions are
not necessarily solving the problem of excessive and static sitting
since only 20% of the users use the function of adjusting the height

of the table [13]. Further, it has not yet been determined how the
data collected can best be used for interventions to minimize health
risks at the workplace in the long term. Therefore, this work aims
to outline a basic concept for individualized, user-tailored health
interventions at the workplace based on this camera data. First, a
field study will be conducted at the computer workstation, where
test persons receive and evaluate these interventions to test the
developed interventions. Subsequently, the test subjects will be in-
terviewed about the experiment to make possible change requests
or other comments and to evaluate the proposed interventions
accordingly.

2 LITERATURE REVIEW
2.1 Camera-based monitoring systems for VDU

workplaces
Camera-based health monitoring systems in VDU workplaces are
still the subject of research activities today. 2011 Mary et al. [6] al-
ready recognized the need for monitoring and based assessment of
health problems among IT professionals as they achieve exception-
ally high screen time. Common computer-related health problems
include visual problems from eyestrain and musculoskeletal prob-
lems such as back pain, wrist pain, and muscle fatigue. Stress and
headaches can also be triggered. Monitoring with health risk de-
tections offers the potential to take appropriate action at the early
stages. The authors, therefore, propose an automatic system that
focuses on avoiding stressful postures. For this purpose, gestures
are recognized from body movements or states originating from
the eyes, the neck or the hand. To enable continuous monitoring,
webcam recordings will be used to capture these gestures from
employees and then processed using several different techniques:
The video signals are converted into single frames and processed by
foreground segmentation. As a result, the features relevant to the
analysis (e.g., speed, position and orientation) can be extracted from
the image. After that, gestures, such as wrist position, are estimated.
The recognized gestures are then compared with an ideal: possible
ideal postures are stored in a system table. If there is no match
in the template matching, a warning is attracted in the computer
system. If there is a discrepancy, a warning is sent to the user. Other
systems have been developed that use a webcam, external cameras
and additional sensors to record data to monitor stress or other
health issues for office workers.
In [5], the concept of COSMS is outlined. COSMOS captures physio-
logical information about the standard equipment of a VDU work-
station: the camera measures vital signs such as heart rate, facial
expression and eye blinking. In addition, a mouse with embedded
sensors is used to measure temperature and humidity as potential
environmental stresses. Mouse movements and keystroke volume
are taken into account in a complementary manner. The collected
data is stored in the InfluxDB time-series database and displayed
using a visualization application. The system collects this infor-
mation continuously without disturbing the user while working
and without attaching sensors to the user. In the future, the col-
lected data could be analyzed to find correlations between different
work activities and mental health and set appropriate triggers in
the visualization application. No health interventions have been
implemented yet.
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Chen et al. [1] use the webcam and additional cameras at the work-
place to provide feedback on the ergonomic state of the worker. For
this purpose, parameters such as the average working and break
times, the distance to the screen, head movements, gaze directions,
and blinking frequencies are recorded. Furthermore, the additional
cameras installed at the workplace provide information on general
posture (standing vs sitting) and social interactions with others.
The user can thus be provided with statistics for self-reflection,
which an ergonomics expert can also evaluate. The data includes
information on activity levels, posture, and eye fatigue. By manu-
ally entering the user’s schedule, contextual information can also
be included. This allows the user to determine which activities are
associated with unhealthy habits. After analyzing the data, per-
sonalized recommendations can then be made. The system learns
the user’s behaviour pattern and provides ergonomic reminders.
This probabilistic model provides semantic interpretations such as
close to the screen, low head mobility or absent. Thus, personalized
reminders can be sent to the user. The system is compared to rule-
based reminders, as planned for this work. For this purpose, users
classify reminders into useful and disruptive. The proposed method
outperforms rule-based reminders by sending reminders tailored
to the user’s behaviour pattern and personal schedule. As a result,
more reminders are classified as useful.
Vildjiounaite et al. [12] propose in their work a person-specific
stress monitoring system that captures users’ motion trajectories
using depth cameras in the office. A method based on discrete hid-
den Markov models is used for the analysis. The system correctly
identified users’ most stressful work periods in the study.
Paliyawan et al. [9] focus their system on detecting prolonged
sitting of office workers. A Kinect camera is set up to provide inte-
grated skeletal tracking. A systematization in the form of a point
system with three danger levels was introduced to classify the
health risk. This classification is based on a traffic light: green sym-
bolizes a healthy state, yellow a warning state and red an unhealthy
state. Points are added or subtracted depending on time spent sit-
ting and moving. The number of points is then used to determine
the level of danger, and appropriate warnings are sent to the user
as real-time feedback. A visualization to create a daily summary
for reflection is also available [9]. The system also includes features
to detect unhealthy sitting postures. Mathematics is applied to con-
vert postures to body angles, and a threshold model detects posture
changes. This allows the detection of head tilts and contorted body
positions. The thresholds for these angles come from the RULA and
REBA procedures. To begin, the user must define a baseline body
posture: a healthy posture from which the relative changes in body
postures can be calculated [8]. To make ergonomic interventions
effective over the long term, a continuous process that includes
frequent feedback is necessary. In [11] the authors have confirmed
in a study the effectiveness of continuous feedback using webcam
photos of posture at work to reduce musculoskeletal risk among
workers at VDT workstations. A photo-training group received
traditional office training plus an automated feedback system that
displayed a photo of current sitting posture and a photo of correct
posture. The risk for musculoskeletal disorders was assessed us-
ing the RULA method. The training method achieved short-term
improvements in posture and sustained improvements, as the ap-
plication of this method can be used over a more extended period,

unlike office training alone. Further, the method achieved better
results in women, the elderly, and those with more pain. A com-
bination of complementary feedback for different target groups
should therefore be considered.

3 CONCEPTION AND METHOD CARECAM
The related work shows that objective data, long-term data over
weeks or months, are necessary for the user’s self-reflection. A
non-contact monitoring tool is essential to ensure that a measuring
procedure does not influence the measurement itself. For a compre-
hensive analysis of the user’s condition during this daily work, we
need the evaluation of the following parameter:

• Heart rate and heart rate variability
• Blinking frequency and blinking pattern
• Posture
• Time spend without movement
• Distance to camera
• Facial expression
• Respiration

The CareCam is a tool that measures these parameters using only
a standard webcam and aggregates the parameters into a stress
level by applying artificial intelligence. The aggregated parameters
are control variables for a control circuit and the use of interven-
tions. To give an example, as illustrated in Figure 2: If the heart
rate is higher than desired, the intervention (e.g., deep breathing)
will affect the vital data and lower the heart rate. The CareCam
measures the new heart rate and compares it to the control variable
again. This mechanism ensures that we track the success of an in-
tervention and may also apply for eye-blinking rate and breathing
rate. The same approach may enable the integration of biofeedback
techniques as well. In addition, short questionnaires at the end
of an intervention enable additional subjective feedback, further
tailoring the interventions to the user.

Figure 2: Control Circuit of CareCam, example of heat rate
influencing by interventions.

The overall concept of the CareCam has already been outlined in
[4]. We use various computer vision concepts to extract vital signs
from simple RGB images (Figure 3), which are used to provide help-
ful reminders and interventions to the user during the workday
(Figure 4). The interventions and reminders are tailored to the user
as we measure the vital signs in real-time and adjust them based
on the current situation at work.

496



PETRA ’22, June 29-July 1, 2022, Corfu, Greece Kraft, Schmidt, Buettner, Oschinsky, Lambusch, v. Laerhoven, Bieber, Fellmann

Figure 3: Snapshot of the CareCam user interface. The up-
per left panel shows the current camera image with the de-
tected face, pose markers and facial expression detection.
The upper right panel shows the pulse, which contains some
artefacts due to poor lighting. The lower left panel shows
aggregated information (e.g., pulse rate, pose classification,
and distance to the camera). The lower right panel currently
shows the variability of the pulse rate.

4 INTERVENTIONS
4.1 Reminder
Reminders are short messages that should not interrupt the work-
flow. They, therefore, contain only a short headline and a short
descriptive sentence and appear as a pop-up notification via the op-
erating system. In addition, the reminders contain various icons so
that the messages have a recognition value and can thus be grasped
more quickly (Figure 4). Table 1 shows all implemented reminders.
When the condition for a reminder is met, the triggers are used
to decide whether to display a reminder. This notification is sent
directly to the user via the operating system. When a reminder
is triggered, it is stored in a buffer: only after five minutes have
elapsed can this reminder lead to a notification again by the trigger.
This prevents a reminder from appearing too frequently, thus inter-
rupting and disturbing the user in his work. The decisions for the
reminders and their triggers are based on the literature listed earlier.
The blink reminder is intended to help the user maintain a blink
frequency high enough to prevent tearing the tear film even during
periods of concentration on the screen. Since the blink frequency
is subject to many fluctuations and influencing factors, the limit
value of 12 blinks per minute was selected and according to [2]
the normal spontaneous blink rate is between 12 and 15 blinks per
minute. For a healthy posture, reducing the duration of sitting by
incorporating dynamic sitting techniques is essential. Since the
webcam only records the upper body posture, it is not so easy to
distinguish between sitting and standing activities. For this reason,
a reminder for dynamic sitting was chosen: The sitting position
should be changed frequently. For this purpose, the distance of
the posture points recorded by the CareCam is measured. If this
distance changes by 12 pixels, this is classified as a movement. If
there is no movement after 300 captured images, the reminder is
triggered. This corresponds to approximately two minutes (pose es-
timation is not triggered in each frame). The distance of the eyes to

the screen depends on the size of the screen or font size, depending
on the activity. Since 50 cm emerged as the smallest value in the
recommended distances of [7], a minimum distance of 50 cm was
simplified for this reminder. It was decided not to query the screen
size for the time being since the viewing distance may be smaller for
reading tasks. Determining the currently performed activity to find
out whether the user is trying to capture the entire screen or is per-
forming a reading activity was considered too complex within this
work. Maintaining the distance to the screen is important, as this
has an influence on the posture as well as the eyes. An attempt to
counteract negative emotions is implemented through motivational
messages. These messages are also sent as short reminders in the
operating system’s notifications: Once per second, the emotional
state is saved. After one minute, when 60 emotion states have been
stored, the predominant emotion is determined. This is the emo-
tional state that has appeared most frequently during this time. The
reminder is triggered if the facial expression is predominantly char-
acterized by a negative emotion (sadness or fear). This randomly
outputs different motivational messages. No Reminder depends on
pulse rate or pulse rate variability. Although these metrics offer
the potential for health interventions, particularly for detecting
stress, it was decided not to use them within this work. Pulse and
pulse rate variability are highly individual and complex, as they
depend on many factors. Pulse rate variability is also subject to
significant inter-day variations. In addition, the system is tested in
a natural working environment: The qualitative measurement of
the pulse values depends heavily on the right lighting conditions, a
good webcam and the movements of the test subjects. Accordingly,
meaningful use of these measured values requires a more complex
system, including a calibration phase and outlier management.

Table 1: Overview of reminder with corresponding trigger
description and required function.

Reminder Trigger Condition

Blinking Blinking rate <12 bpm Blink detection

Dynamic sitting No movement
within 2 minutes Pose estimation

Distance to camera
Distance to camera
less than 50 cm
for 30 seconds

Blink detection

Motivational message
Predominantly negative

facial expression
within one minute

Facial expression
recognition

4.2 Breaks
Break interventions can be divided into three groups: eye exer-
cises, physical breaks andmindfulness. To decide which intervention
group has priority during the break, the reminders are counted
during the 55-minute work period. The assignment can be seen
in Table 2 2: since blink frequency and maintaining distance from
the screen have an impact on eye health, the counter for this inter-
vention group is increased by one each time these reminders are
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(a) Reminder: Distance to camera

sitting 2.png

(b) Reminder: Dynamic sitting (c) Reminder: Motivating message

Figure 4: Example for reminders (Windows 10). The reminder are implemented as operating system notifications.

triggered. Furthermore, since a short distance to the screen may
involve forward bending of the head and thus favour the devel-
opment of a text Neck, the counter for the intervention group of
physical breaks (i.e. posture-related interventions) is also increased
by one. Additionally, reminders to sit dynamically will increase
the numerator for this intervention group by one, as static muscle
activity can lead to tension. Finally, the motivational message re-
minder increases the mindfulness intervention group. Furthermore,
the counter increases by one when the user has completed two
work phases. This was chosen to include high work periods. The
exercises are to be performed within the scheduled five-minute
break. The performance of the exercises does not fill the five min-
utes: This allows that the break time does not have to be exceeded,
and the user, on the one hand, has enough time to read through the
intervention accordingly and, on the other hand, can use the rest of
the break individually, for example, to get a glass of water, exchange
with colleagues or have an additional mental break without a task.
After an intervention group is triggered, the counter for that group
is reset. The counter of the other groups remains the same. Thus,
compensation occurs since the intervention supported the group
and the associated health aspect. An intervention buffer manages
the interventions’ frequency and occurrence, preventing repeating
interventions and thus reducing monotony. When the software is
restarted - for example, on the next working day - the counters for
all groups are back to zero.

Table 2: Overview of active breaks with corresponding trig-
ger description and required function.

Intervention Trigger Condition

Relax eyes,
Change viewpoint

Blink reminder,
distance

from screen
Blink detection

Standing pause,
stretching

and relaxation

Sitting position,
distance

from screen
Pose estimation

Deep breathing,
meditation,
mental break

Motivational messages
every two work periods

Face expression
recognition

Examples for active breaks are depicted in Figure 5. These in-
terventions are designed to take around two minutes and may be
followed within a five minute break.

(a) Active break: Lower back stretching

Figure 5: The instructions for active pauses are displayed as
an additional widget consisting of a progress bar and a small
icon for closing the intervention.

5 LIMITATIONS
Our multimodal approach consists of several components (e.g.,
pulse rate estimation, facial expression recognition), each of which
works independently and supports during the workday. However,
these components are themselves subject to several limitations
(e.g., lighting, motion, camera noise, eyeglasses) that reduce their
accuracy and thus the credibility of reminders and interventions.
Therefore, an intelligent mechanism must be created that assigns a
credibility value to each measurement and only measures and inter-
venes when the circumstances are right (ideal lighting conditions,
user movement) to achieve sufficient accuracy. A balance between
ideal conditions, measurement time and accuracy, should be sought.
In addition, the user must be informed why these interventions
and reminders are occurring and why they are essential to enhance
adherence to the software.

6 CONCLUSION
In this paper, we have shown that a simple sensor, a webcam, is
capable of detecting almost any internal state of the user in the
work environment and providing interventions tailored to the user
and based on the context. We hypothesize that long-term moni-
toring and analysis of the user can lead to a reduced physiological
f̈ootprintöf high work demands leading to healthier work. Also, the
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system could be used to establish healthier working habits both
in terms of physiological and mental habits and thus help to in-
crease the resilience and overall long-term health of employees.
This should increase happiness and keep us all healthier. We also
provided an overview of camera-based monitoring systems in the
workplace and adapted our approach to interventions based on
various workplace safety guidelines. Finally, we outlined how and
what interventions (reminders and active breaks) can be integrated
during work and under what conditions these interventions should
occur. A qualitative study highlighting the benefits of these inter-
ventions is still in progress. A field study will be conducted at the
VDU workplace, where subjects will receive and evaluate these
interventions to test the intervention and reminder concept. Subse-
quently, the subjects will be interviewed about the experiment to
obtain any requests for changes or other comments and evaluate
the proposed interventions accordingly.
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