

PROJEKTGRUPPE
RESSOURCENEFFIZIENTE MECHATRONISCHE VERARBEITUNGSMASCHINEN

VERLUSTE VERMEIDEN, RESSOURCEN SCHONEN, ROHSTOFFE ZURÜCKGEWINNEN – BEISPIEL CFK-RECYCLING

Dipl.-Ing. Christian Seidel 15.04.2015

AGENDA

- 2 Motivation
- 3 Enzymatisches Recycling von CFK

KURZVORSTELLUNG DER PROJEKTGRUPPE RMV KERNKOMPETENZEN

RESSOURCENEFFIZIENZ IN PRODUKTEN UND PROZESSEN

Industrielle Biotechnologie | Qualität und technische Sauberkeit

INTELLIGENT VERNETZTE PRODUKTION

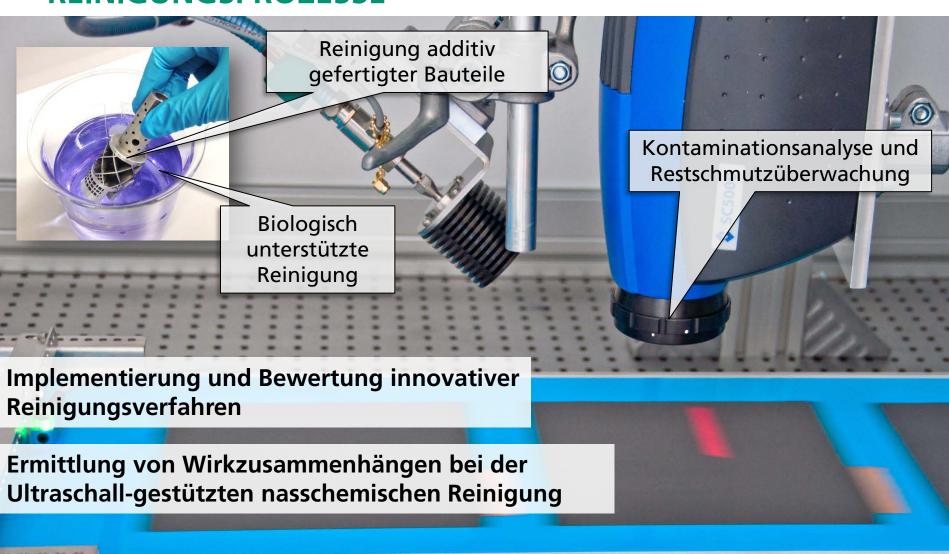
Produktionsplanung und -steuerung | Industrie 4.0

VERNETZTE MODELLBILDUNG UND SIMULATION

Verkettete Simulation | Virtuelle Inbetriebnahme | Physikbasierte Modelle

FLEXIBILISIERUNG DER PRODUKTION

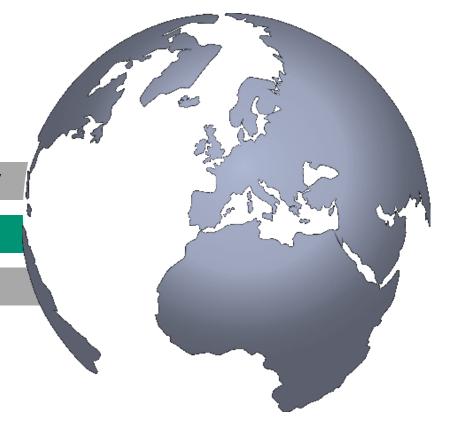
Flexible Greifsysteme | Lastmanagement | Flexible Verpackung


PROZESSKETTE ADDITIVE FERTIGUNG

Design for Additive | Prozessoptimierung

INDUSTRIELLE BIOTECHNOLOGIE OPTIMIERUNG DER BIOGASPRODUKTIONSKETTE

QUALITÄT UND TECHNISCHE SAUBERKEIT REGELKREIS FÜR RESSOURCENEFFIZIENTE REINIGUNGSPROZESSE



AGENDA

1 Kernkompetenzen des Fraunhofer IWU – RMV

2 Motivation

Enzymatisches Recycling von CFK

FOLGEN DES GLOBALEN ROHSTOFFHUNGERS

DIE DREI HANDLUNGSFELDER¹

Energie

Wasser und Nahrungsmittel

Weitere Rohstoffe – die Top 3

→ Bevölkerungswachstum + globales Wirtschaftswachstum

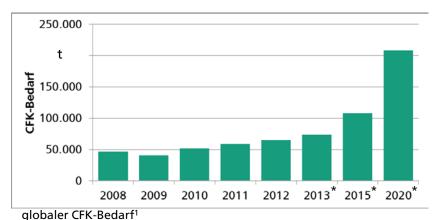
→ Ressourcenbewusstsein zukünftig unvermeidbar

² KfW, Lorenz Erdmann, IZT Berlin

AGENDA

1 Kernkompetenzen des Fraunhofer IWU – RMV

2 Motivation


Enzymatisches Recycling von CFK

AUSGANGSSITUATION UND MOTIVATION

CFK IM AUFWIND

- zunehmender Einsatz von CFK in der Produktion hat steigende CFK-Abfallmengen zur Folge
- Richtlinie 2000/53/EG: bis 2015 Recycling von mindestens 85 % der Fahrzeugmasse

* Bedarf für 2013 – 2020: Schätzungen

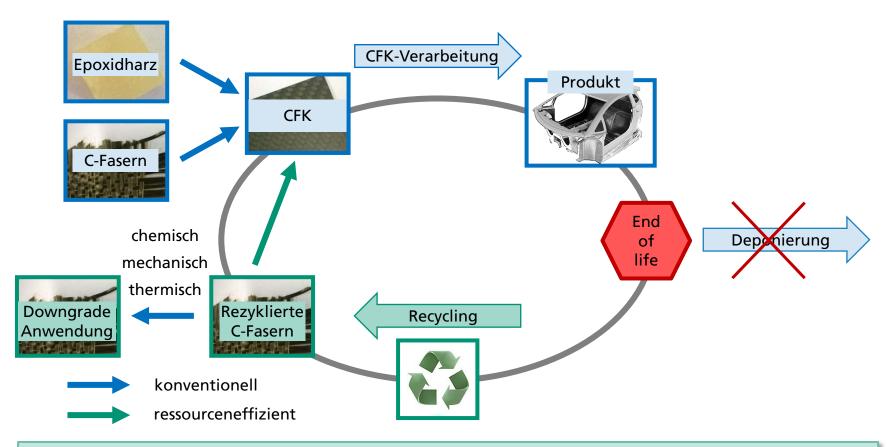
BMW i3³

end of life

Autos auf Schrottplatz⁵

→ Bedarf eines effizienten Recyclingverfahrens für CFK-Abfälle

¹ nach Witten und Jahn, 2013


² Bayer Material Science

³ BMW AG

⁴ www.k-zeitung.de

⁵ www.umweltbundesamt.de

ENZYMATISCHES CFK-RECYCLING ZIEL UND EINGLIEDERUNG IN DEN CFK-LEBENSZYKLUS

→ Bioenzymatisches Recyclingverfahren mit dem Ziel, C-Fasern in Ausgangsqualität zu erhalten

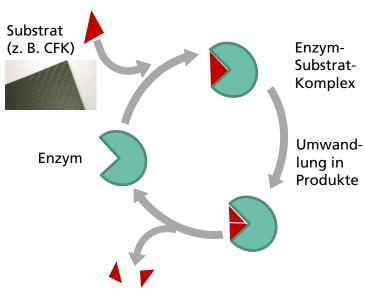
ENZYMATISCHES CFK-RECYCLING

BEGRIFFSERLÄUTERUNGEN

Mikroorganismus¹

Lebewesen, dessen Größe unter einem Millimeter liegt (Enzymproduktion)

→ Pilze, Bakterien


Enzym²

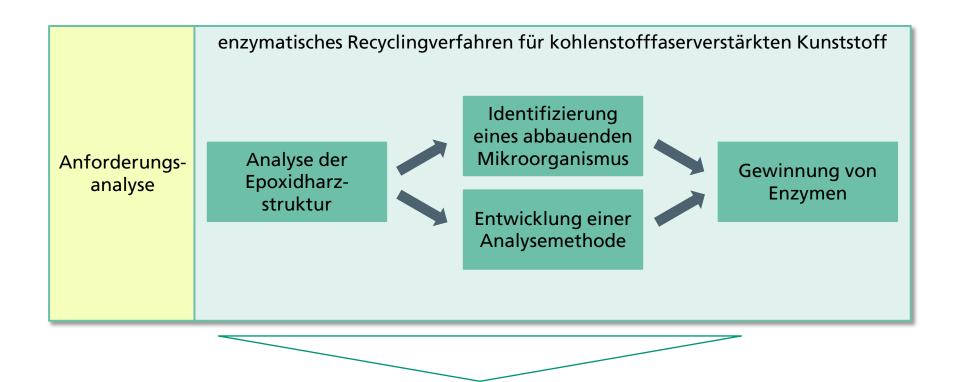
Katalysator biologischen Ursprungs, der chemische Reaktionen ermöglicht und beschleunigt

→ spaltet chemische Verbindungen

Eigenschaften

- Reaktion unter geringem Energiebedarf
- umweltverträglich
- → gute Eignung für das CFK-Recycling

Freisetzung der Produkte

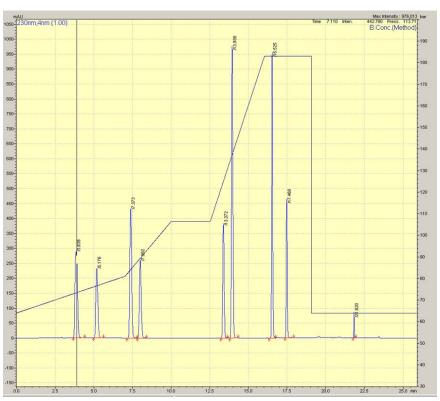

Funktionsweise eines Enzyms

² Koolman, Taschenatlas der Biochemie, 2003

ENZYMATISCHES CFK-RECYCLING

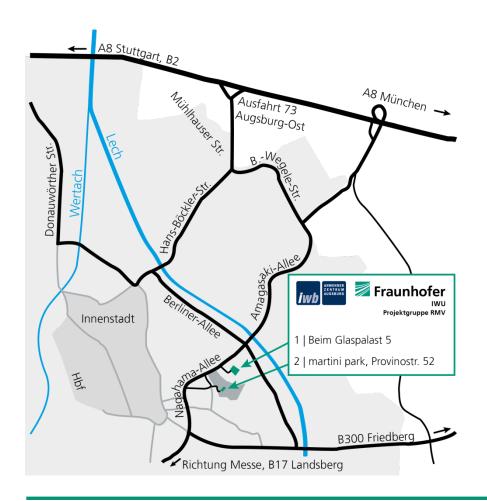
LÖSUNGSANSATZ

Absicherung der Enzymaktivität in realem Einsatzumfeld



ENZYMATISCHES CFK-RECYCLING

ERGEBNISSE


Aktueller Stand

- Nachweismethode für Bisphenol A und Epoxidharzpräpolymere mittels HPLC etabliert
- Entwicklung einer Methode zum Nachweis von festem Epoxidharz
- gezielte Auswahl und Untersuchung einzelner kommerziell erhältlicher Enzyme → kein ausreichender Erfolg
- Versuche mit aussichtsreichen Mikroorganismus-Kandidaten laufend
- → Ausgangspunkt für Suche nach abbauendem Mikroorganismus

Chromatogramm einer HPLC-Analyse von Bisphenol A und dessen vermuteten Abbauprodukten (Absorption in Abhängigkeit der Zeit)

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT! IHR WEG ZU UNS

Dipl.-Ing. Christian Seidel Abteilungsleiter

Projektgruppe Ressourceneffiziente mechatronische Verarbeitungsmaschinen

Beim Glaspalast 5 I 86153 Augsburg Telefon +49 821 56883-44 I Fax -50 christian.seidel@iwu.fraunhofer.de www.iwu.fraunhofer.de/rmv