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Abstract— This paper presents an efficient model for com-
bining automotive trajectory planning with predicted environ-
ment interactions, named progressively interacting trajectories
(PITRA). The model allows to plan trajectories for fully-
automated vehicles by actively considering how other traffic
participants will react to the trajectory, while retaining many of
the advantages of variational trajectory optimization methods,
in particular expressiveness and ease of computation. This
enables maneuvers such as proactively claiming a gap during a
lane change in dense traffic, which are impossible to model in
classical variational models. The PITRA approach does not rely
on a specific prediction model, but can be used in combination
with a wide range of existing models. Its model assumptions
and limitations are derived theoretically and demonstrated in
several realistic scenarios.

I. INTRODUCTION

Several recent approaches (e.g. [1], [2]) have proposed ex-
pressing the task of maneuver planning for automated driving
through models based on the calculus of variations. In this
formulation, a vehicle trajectory ξ is considered theoretically
continuous in time and state space (e.g. positions, velocities,
steering wheel angles, ...). A functional S[ξ] is defined which
maps any possible trajectory onto a real scalar (usually but
not necessarily non-negative). The sought optimal trajectory
∗ξ minimizes S. A key advantage of variational methods is
the way they can model desired and undesired properties of
trajectories in a unified way, which is intuitive, expressive,
computationally tractable and rather well-understood due to
its long-established physical relevance.

These models have been advanced in recent publications,
to replace purely local trajectory optimization by approxi-
mate global optimization (cf. [3], [4]), search space heuristics
(cf. [5]) and fail-safe emergency trajectories (cf. [6]). How-
ever, a feature that is both in considerable demand (voiced
e.g. in the peer reviews to our previous publication, [6])
and still absent in the described variational models, is the
ability to consider interaction during trajectory planning, in
the sense that explored trajectory candidates are evaluated
with respect to the reactions they cause in other traffic
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participants. Classical variational models require to define
an a-priori environment prediction (possibly fuzzy) that is
independent of the ego vehicle’s trajectory. In the case of a
merging maneuver, such models have to wait for large gaps,
instead of (safely) “widening” a narrow gap by initiating the
maneuver, expecting other cars to yield (cf. Fig. 1). If they
do not, the maneuver can still be aborted, but the ego vehicle
is at an advantage by taking into account the effects of its
actions. Similarly, the ego vehicle can realize that slowing
down before a lane change can cause rear cars to overtake
it, thus increasing the risk of the maneuver.

Interaction among traffic participants without reference
to trajectory optimization has been the subject of diverse
research. In these models, a given traffic situation is viewed
from the perspective of an “impartial” outside observer, who
predicts the future development of the situation, but does
not interfere and optimize the trajectory of any involved par-
ticipant. [7] predicts lane changes by modeling other traffic
participants as intelligent agents who base their decision on
expected safety distances after the maneuver; [8] predicts
traffic situations based on dynamic Bayesian networks and
determines the expected behavior of traffic participants based
on local “context” parameters such as relative distances and
velocities; car following models such as [9] describe how
cars adjust their speed with respect to cars ahead; social force
models have been applied to the interaction prediction of
pedestrians (e.g. [10]) and generalized to include vehicles in
[11]–[13]; [14] considers social forces alone as insufficient
and therefore combines them with game theoretic models
for merging decisions presented in [15]; cellular automata
are famously used in the Nagel–Schreckenberg model [16]
for freeway traffic and extended e.g. in [17], [18].

In this paper, we propose the progressively interacting tra-
jectories (PITRA) model which combines such “impartial”
interaction models with the previously described variational
models, to incorporate interaction into optimal trajectory
planning, while retaining many desirable qualities of the
variational models; in particular the efficient computability.

The main focus of this paper is “interaction” in the
particular sense of traffic participants knowing only the past
trajectories of others, and planning their own future trajec-
tories, as opposed to cases where Car2Car communication
is used to cooperatively plan maneuvers. The trajectory is
planned only for one vehicle, the ego vehicle. This however
does not rule out the possibility that other vehicles are
automated, or communicate state and intentions via Car2Car
to the ego vehicle—as long as there is no joint optimization.
The methods presented here can be extended to include
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Fig. 1: A motivating scenario for incorporating interaction. The ego vehicle
e wants to leave its parking space and merge into flowing traffic, but

no predicted gap is wide enough to complete the maneuver before the
following car. While classical, non-interactive models would need to wait
for a sufficiently wide gap, or use a separate merging logic, an explicit
interaction model, as proposed here, could exploit the fact that following
cars will likely slow down and yield if the ego vehicle backs up slowly.
Two main challenges pertain to this task: Providing models and statistical
data for the behavior of other traffic participants, and incorporating these
models into an efficient, real-time capable trajectory planner. The PITRA
model addresses the latter challenge, while allowing for a wide range of
possible interaction and environment models.

this case, but by “interaction” we explicitly refer to mutual
reactions, not coordinated actions.

Another relevant issue lying beyond the scope of this paper
is determining the actual need for interaction models as such.
Previous works, such as [1], [2], [19], have considered it
sufficient to disregard interaction entirely during a trajec-
tory planning step, and implicitly include it by frequently
repeating the planning step after the reactions become ap-
parent. In which cases this approach is sufficient, and where
the additional prediction and parametrization effort, that is
inevitable in interaction modeling, is outweighed by the
improved planning results, cannot be determined without
extensive analysis of real-world traffic situations.

This paper focuses on the task of extending variational
trajectory planning models to consider interaction with other
traffic participants in a way that is efficient to compute,
sufficiently expressive and adequate for the safety-critical
real-time system that automated driving represents.

II. PROBLEM DESCRIPTION

This section introduces the problem of interactions as ad-
dressed in this paper, from the perspective of Euler–Lagrange
models (ELMs) which we aim to generalize while retaining
their efficiency. Section II-B outlines the classical ELM
that does not incorporate interaction; Sec. II-C presents the
natural extension of ELMs to incorporate interactions, and
concludes, why this model, unlike classical ELMs, cannot be
globally optimized efficiently. Based on these considerations,
Sec. III can then present an algorithm for reducing the search
space to render the solution tractable.

Definition 1 (Time): We consider a real-valued time inter-
val T = [tb, te], where tb is the current time of the maneuver
planning algorithm, and te is the planning horizon of about
5–10 seconds after tb. Elements of T are denoted t.

Definition 2 (State space): The state space of a dynamic
object (a traffic participant or the ego vehicle) is denoted
X and describes the relevant properties of the object at
each point in time. As states and state changes are part
of the model, first derivatives of the properties can be used

implicitly; for higher-order derivatives, the state space must
be extended. If some states are excluded at certain times, the
currently active subset at time t is denoted X(t) ⊆ X .
In the models presented here, X is assumed to contain
position and positional derivatives (heading, acceleration);
depending on the choice of the optimization criteria, the
number of dimensions and derivatives can vary. For example,
[2] mainly uses a one-dimensional position space, and deriva-
tives up to ξ̇ (implicitly: ξ̈), while [1] uses a two-dimensional
position space and derivatives up to ξ̈ (implicitly: ξ).

Definition 3 (Trajectory): A trajectory is a function ξ that
maps time onto the state space of a given dynamic object,
ξ : T → X , and is assumed to be sufficiently differentiable
for the required model. The main relevant trajectory in this
paper is the trajectory of the ego vehicle, which is assumed
to have a fixed starting point ξ(tb) = xb but a flexible ξ(te).

Definition 4 (Subtrajectory): A trajectory ξ can be split
along the time axis into subtrajectories

ξba : [a, b]→ X s.t. ξba(t) ≡ ξ(t) for all t ∈ [a, b]. (1)

A. Goal Description
The goal is to find a trajectory ξ for the ego vehicle

over a given interval T in a given initial situation γb that
satisfies classical optimality criteria of an Euler–Lagrange
model (which will be given in Sec. II-B) and incorporates
the reactions of other traffic participants in γb on ξ into
the planning. The optimization process should be real-time
capable with realistic on-board technology.

B. The Non-Interactive Euler–Langrange Model
The classical approach to automated driving is to optimize

the trajectory ξ of the ego vehicle, in the sense of “rating” it
by a penalty functional S[ξ] : Ξ→ R and optimizing for ∗ξ ∈
arg minξ S[ξ]. In the worst case, such an approach would
require a time complexity of TIME

(
|X||T |

)
to optimize

globally by evaluating S[ξ] over all ξ ∈ Ξ, and picking
the best-rated trajectory ∗ξ. The computational effort of this
brute-force approach is clearly prohibitive. Recent works,
such as [1], [2], have chosen a model from the calculus
of variations, which expresses the optimality criteria of
trajectories by defining a Lagrangian L such that the penalty
functional of a given trajectory ξ is given by

E [ξ] =

∫ te

tb

dt L(ξ(t), ξ̇(t), ξ̈(t), ...,
dnξ(t)

(dt)n
, t). (2)

This functional, called here the Euler–Lagrange model
(ELM), leads to a trajectory optimization goal which is
efficiently soluble by two complementary approaches, an
iterative descent from an “initial guess” (cf. [1], [2]), or by
discretization and global optimization by transforming (2)
into an equivalent Hidden Markov Model (HMM, cf. [3],
[6]). The latter provides a complexity of TIME

(
|X|2 · |T |

)
,

which we notice is linear in T . The approaches are compared
in [4]. The key to this efficient solution is that the ELM in
eq. (2) assumes that all optimality criteria of a trajectory can
be established locally along its time parameter. As stated in
[1], [2], this is true for a wide range of criteria, including
• comfort and efficiency, by penalizing |ξ̈| and |ξ|,
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Fig. 2: Potential long-range effects of trajectory decisions. The ego vehicle
e has the option of yielding to vehicle A . This decision can adversely

affect the future trajectory options: If A lines up at the traffic light behind
the bus (candidate position Ā ), the ego vehicle must wait as well, since
the right turning lane is blocked. If e does not yield to A , it can
continue directly to the goal position. An exhaustive search could deliberate
this trade-off, but at prohibitive computational effort. State-of-the-art non-
interactive models instead are entirely unable to distinguish how the two
outcomes depend on the potential behavior of e . The proposed PITRA
model provides a compromise by explicitly considering the dependence
without exhaustively optimizing the consequences.

• speed limits, by penalizing certain ranges of ξ̇,
• reaching a goal, by penalizing certain ξ(te), and
• collision avoidance or mitigation with static and non-

interacting dynamic objects, by penalizing particular
tuples of [ξ, ξ̇, t], based on whether other objects are
expected to occupy [ξ, t] and at which relative speed.

The assumption of non-interaction is vital to the approach,
since the locality of the ELM immediately implies that
actions cannot have consequences that become relevant later
along t. The evaluation requires that the last step along a
trajectory can be rated independently of e.g. the first.

C. Extension to Incorporate Interaction

Interaction does not necessarily conform to this assump-
tion. If the ego vehicle decelerates, a rear vehicle may change
to the fast lane to overtake it. Even if the ego vehicle
accelerates again, the fast lane is now blocked for some
time, and the ego vehicle could not change to the fast
lane itself without risking a collision. Had the ego vehicle
not decelerated earlier, it would be able to change to the
fast lane without risk. We conclude that actions of the ego
vehicle can, through interaction, have long-term effects on
the environment, which in turn affects the trajectory planning
(cf. also Fig. 2). In the following, we will formulate and
analyze a model to express this effect based on ELMs.

If we consider a state space for the environment Γ with
an appropriate Lebesgue measure λ(γ), γ ∈ Γ, then the
interaction penalty functional can be defined, in analogy to
the Euler–Lagrange model, as

I[ξ]=

∫
Γ

dλ(γ)

(
p(γ|ξ) ·

∫ te

tb

dt L′(ξ(t), ..., dnξ(t)
(dt)n , t, γ)

)
. (3)

Here, γ is passed to the extended Lagrangian L′, so that for
example locations ξ(t) can be penalized based on whether
this location is occupied at t in a possible environment γ. All
environments are accumulated based on their probabilities
given ξ, p(γ|ξ). Thus, I represents the expected penalty
given ξ. It should be noted that this formulation presupposes
a given initial situation (or situation density), which we will

label γtb (or p(γtb)), and which corresponds to the observed
environment at t = tb.

Since non-cooperating traffic participants can only base
their future actions on the past actions by the ego vehicle
(and not its future intentions, like explicit cooperation would
permit), and since only the situation at time t, γt, is relevant
to evaluate L′, the model can be simplified to

J [ξ]=

∫ te

tb

dt

∫
Γt

dλ(γt)
(
p(γt|γtb , ξttb , t) · L

′′(..., t, γt)
)
. (4)

The order of integration is swapped, the entire situation γ is
replaced by only the time slice γt, whose probability depends
only on the portion of the trajectory between tb and t, labeled
ξttb (and time t, for formal reasons). Equations (3) and (4)
are equivalent based on the assumption of non-cooperating
traffic participants, in the sense that I ≡ J for all ξ.

It is relevant to note that (4) reduces to an ELM as in
(2) if p(γt|γtb , ξttb , t) = p(γt|γtb , t) (i.e. the probability of a
future situation does not depend on ξ) by defining

L(ξ(t), ..., t) =

∫
Γt

dλ(γt)
(
p(γt|t) · L′′(ξ(t), ..., t, γt)

)
, (5)

which is identical to the formulation used in [2], [3], [6],
[19] (and similar to that used in [1]), a probabilistic yet non-
interacting trajectory planning model. Hence, we have es-
tablished that these previous approaches remain as a special
case of the interaction model developed here.

By contrast, neither (3) nor (4) can be reformulated equiv-
alently (i.e. without simplifying assumptions) as an ELM
over Ξ, so that the efficient solutions presented in [1]–[3],
[6] do not apply, and the worst-case effort of TIME

(
|X||T |

)
must again be assumed for global optimization.

Another factor not considered so far is the complexity
of evaluating the reactions of the environment γ. For a
global optimization of (4), the term

∫
Γt

dλ(γt) p(γt|ξttb , t)
must be evaluated for all possible ξttb , which is |ξttb | ≤
|X||T |. For each ξttb , all possible reactions of other traffic
participants must be evaluated. An exhaustive search over a
set S of traffic participants, each with a state space of |Xs|,
would require TIME((

∏
s∈S |Xs|)|T |), which is generally

exponential in both |S| and T . We conclude that no real-
time implementation is feasible that evaluates all possible
developments this way, and thus, for realistic scales of the
traffic situation Γ, S and Xs, the planning horizon T , the
state space of the ego vehicle X and the computational
power in mass-production automated vehicles, the global
optimization of interacting trajectories is not tractable with
the Euler–Langrange formulations.

III. THE PITRA MODEL

A. Fundamental Considerations

If variational models as the ELM are to be used for
trajectory planning, there are mainly two ways to address the
issue of computational complexity for interaction modelling:

1) Formulate a simplified functional S[ξ] that can be
efficiently optimized globally. This problem would
likely not incorporate the full available information
and optimality criteria, and thus the globally optimal



results would not be truly “optimal” (except within
the model). But if its formulation is well-founded, the
model limitations and assumptions remain explicit and
can easily be validated. One example is the original,
non-interacting ELM, but models involving interaction
are conceivable as well. The result S[∗ξ] would gener-
ally not be comparable with J [∗ξ].

2) Use the complete formulation of J [ξ] as in (4) and
introduce a heuristic or local solution method that can
efficiently find a solution ~ξ. Such a solution would
be rated directly by J [~ξ], but not (generally) globally
optimize the functional.

The PITRA (progressively interacting trajectories) model
explores the second option by extending the Viterbi algo-
rithm which arises from transforming a variational model of
automated driving into a Hidden Markov Model (HMM) as
presented in [6]. The goal is to establish a sound planning
algorithm which is very similar to the classical ELM, yet
can consider and exploit expected reactions of other traffic
participants. It is rendered tractable by omitting the option
to tactically “shape” the state of the environment to best
serve a later purpose. Various actions of the ego vehicle are
evaluated with corresponding reactions of the environment,
but no situation state is intentionally provoked.

B. Discretization and Simplification

The first step is to discretize the model into finite and
regularly spaced ego vehicle states X = {x1, ..., x|X|},
where each state contains positions and positional derivatives
w.r.t. time up to order n, and finite and equidistant time
steps τ ∈ {1, ..., |T |}. The trajectory of the ego vehicle
ξ(t) thus becomes a sequence ξτ . It is shown in [3] that
this discretization for an ELM converges to the continuous
ELM for infinitesimally fine discretizations, and thus does
not constitute a true simplification.

The situation probability distribution p(γt|γtb , ξttb , t) is
expressed as a situation density obeying the Markov property

φτ = φ(φτ−1, ξ
τ
τ−

¯
τ , τ) (6)

thus assuming it to be uniquely determined by the previous
situation density and the recent maneuver of the ego vehicle.
The formulation limits the memory of other traffic partici-
pants to

¯
τ past steps of the ego vehicle. It also limits the

memory of other traffic participants concerning their own
past states to the number of state properties contained in a
situation descriptor γ. It should be noted that the dependence
on ξττ−

¯
τ means that traffic participants can take into account

whether, e.g., the ego vehicle changed lanes recently.
Using the definitions of ξτ and φτ , it is possible to redefine

dt

∫
Γt

dλ(γt)
(
p(γt|...) · L′′(..., γt)

)
7→Λ(ξτ , ξτ−1, φτ , τ), (7)

a Lagrangian that does not rate ξτ dependent on derivatives
w.r.t. t and a specific situation γt anymore, but on the
last state transition (of extended, discretized states) and the
current situation density φτ . Eventually these definitions
replace the penalty functional J in (4) by a function J

J [ξ] 7→ J(ξ1, ..., ξ|T |) =
∑|T |
τ=1 Λ(ξτ , ξτ−1, φτ , τ) (8)

which comprises the discrete evolution and evaluation of the
PITRA model as used in the algorithmic solution.

C. Algorithmic Solution

Based on the above diffusion model of the situation, a
heuristic can be formulated for planning the trajectory ξ of
the ego vehicle. Each subtrajectory ξτ1 implies a situation
density φτ , which in turn can be used to evaluate the next,
locally optimal trajectory step ξτ+1, as shown in Alg. 1. For
each time step τ ∈ {2, ..., |T |} and each state x ∈ X , the
optimal preceding state can be chosen. Each state is assigned
a φxτ , denoting the situation density at time τ in state x given
the locally optimal trajectory reaching (x, τ).

Definition 5 (Backtracking functions β,β): The
algorithm determines for each time step τ , and each
state y ∈ X , an optimal predecessor x (method and
optimality will be defined presently), to be stored as
[ x
τ−1 ] = β([ yτ ]). Through this, backtracking can be used to

establish partial (or complete, for m = τ = |T |) trajectories:

β(x, τ,m)=
[
β ◦ · · · ◦ β︸ ︷︷ ︸
m times = βm

([ xτ ]), ..., β([ xτ ]), [ xτ ]
]

(9)

Definition 6 (State-dependent situation density φxτ ):
Each state is associated a situation density φxτ . This density
must not be stored for all τ ∈ {1, ...|T |}, but only for the
current one (it can be overwritten). The index τ thus hints
not at the memory size but is kept for clarity.

The algorithm proceeds forward in time from τ = 1
to τ = |T | − 1. At each step τ , for each state y ∈ X ,
it considers all possible predecessors x, the corresponding
φxτ , and the transitions (x, τ) → (y, τ + 1), such that the
following temporary candidates can be computed:

φxcnd = φ(φxτ−1,
[
β(x, τ,

¯
τ), y

]
, τ) (10)

Jxcnd = Λ(y, x, φxcnd, τ) + Jxτ−1 (11)

Now for each y, an optimal predecessor xopt∈ arg minx J
x
cnd

can be found, along with its corresponding situation density
φ
xopt

cnd , to set β([
y
τ+1 ]) := [ xopt

τ ]. As the computation is
progressive over τ , all β([ xτ ]) used in (10) are defined in
time.

The algorithm has a TIME and SPACE complexity of

TIME
(
|T ||X|2(

¯
τ+|φ|)

)
∩ SPACE(|X|(T + |φ|)), (12)

where |φ| denotes the size of computing the effect of inter-
action on the situation density, and depends on the model.
If e.g. it uses the full past trajectory of the ego vehicle, then

¯
τ = |T |, in which case the model would be quadratic in |T |.
Still, unlike in the complete formulation, it is not exponential.

D. Optimality Considerations

The gain in efficiency with respect to the global opti-
mization of the complete formulation as in (4) implies that
information is lost somewhere. Equations (10) and (11) state
that any Jx|T | is computed according to (4), which entails
that backtracking β([

x
|T | ]) will provide a trajectory which

is penalized with respect to the very situations φxτ that
it is expected to induce through interaction (and all other
optimization goals). Therefore the penalty rating is correct,
but unlike with the classical Viterbi algorithm for an ELM



input : state space X , time steps T ,
initial situation density φx1 ,
predictor function φ(φτ−1, ξ

τ
τ−

¯
τ , τ),

Lagrangian Λ(ξτ , ξτ−1, φτ , τ),
start point xstart, endpoint type

output: approximately optimal trajectory ~ξ

foreach x ∈ X do

Jx1 ←

{
0 if x = xstart

∞ else
;

end

for τ ← 2 to |T | do
foreach y ∈ X do

foreach x ∈ X do
// Backtrack the trajectory
b← β(x, τ,

¯
τ);

// Update the prediction for x→ y

φcnd ← φ(φxτ−1, [b, y], τ);
// Use it to penalize x→ y

Jcnd ← Λ(y, x, φcnd, τ) + Jxτ−1;
// Minimize over predecessors x
if Jxcnd < Jopt then

xopt ← x;
Jopt ← Jcnd;
φopt ← φcnd;

end
end
// Assign predecessor and corresponding quantities at τ .
β([ yτ ])← [

xopt

τ−1 ];
Jyτ ← Jopt;
φyτ ← φopt;

end
end

switch endpoint type do
case fixed to a given xend

~ξ ← β(xend, τ, τ);
end
case arbitrary

xopt ← arg minx J
x
|T |;

~ξ ← β(xopt, τ, τ);
end
case penalized via a given Pend(x)

xopt ← arg minx J
x
|T | + Pend(x);

~ξ ← β(xopt, τ, τ);
end

end
Alg. 1: Non-optimized PITRA algorithm for trajectory planning. The
algorithm evaluates all available states and transitions, assuming that
Λ(ξτ , ξτ−1, φτ , τ) = ∞ when a given transition or state is not possible
at time τ . In dynamic programming, this is easily optimized. As with the
classical Viterbi algorithm for variational methods, proposed in [3], the
PITRA algorithm features a very high degree of parallelity: The variable
y can be parallelized completely, x can be parallelized except for the final
minimization. Only the number of time steps (around |T | = 10) must be
computed serially. For SPACE efficiency, all past situation densities φxτ
can be discarded. Non-indexed variables exist only within their scope. As
with the Viterbi algorithm for HMMs, only the table β of predecessors
must be kept for backtracking.

(as in [3]), it is not exhaustive, in the sense that the global
minimum is not necessarily among any of the backtracking
options from any endpoint x in [

x
|T | ].

Since the algorithm continuously minimizes, the available
backtracking trajectories can validly be called approxima-
tions to the global minimum (calling them local minima
would be misleading since no notion of locality is used in
the algorithm). The quality of this approximation can only be
conclusively determined with respect to a given prediction
model φ.1 If the prediction model were completely non-
interactive (i.e. the estimated actions of other traffic partic-
ipants can be completely determined a-priori), the model
would reduce to the classical ELM and the algorithm would
yield global optima. The more complex and far-ranging the
effects of interaction, the lower the approximation quality, as
trajectory candidates are excluded by the following rule:

If two possible trajectories aξ, bξ lead to a common point
x1 at the same time t1 (such that aξ(t1) = bξ(t1) =
x1), and if J [aξttb ] < J [bξttb ], then only aξttb will be
considered further, even if bξttb could produce (through
interaction) an environment state bγ that would be more
advantageous in the future (e.g. as shown in Fig. 2).

In principle, assuming a world in which the total rating
of a maneuver practically always turns out opposite of its
initial rating, the result can be arbitrarily bad, since maneuver
options are never reconsidered once they are excluded. This
is highly unlikely for real-world traffic situations; still, cases
such as Fig. 2 can occur where some high-quality solutions
are missed. The motivation and general assumption is that
on average, the number of considered alternatives and the
penalty-minimization mechanisms assure a basic quality of
the result. However, as will be stated in Sec. V, an accurate
determination of optimality requires a definitive prediction
mechanism and substantial real-world traffic data.

E. Comparison with Classical ELMs

The PITRA model is aimed at preserving key advantages
that commonly motivate the use of variational models for
automated driving. Among these are the expressive and
intuitive modeling through Langrangians (as discussed in [1],
[2]), the possibility to obtain an efficient solution after a
constant number of computations (cf. [3], [6]) and the high
degree of parallelism, which invites implementations on GPU
or FPGA. Another relevant feature of ELMs, as presented
in [3], is that in the case of global optimization, a second,
fail-safe emergency trajectory (e.g. to the side of the road)
can be computed with almost no additional computational
effort. This option is retained in PITRA, where the same
principle can be applied, leading to a fail-safe trajectory
that also considers interaction. The computational effort is
greater due to the need to update predictions several times
during planning, instead of just once in the beginning of each

1At this point, it should be noted that this consideration relates the PITRA
algorithm result to the global optimum of the complete model in (4), not to
the ideal trajectory in the real-world sense. There is no available benchmark
concerning what ideal trajectories should look like.



planning cycle; the complexity with respect to |X| and |T |
however can ideally be preserved, or increases just moder-
ately (depending on the complexity of the prediction models).
Fuzzy predictions, as used in [2], [6], [19], remain natural
in the PITRA model. A challenge lies in parametrizing the
interaction models statistically, to realistically estimate the
reaction of other traffic participants to the maneuvers of the
ego vehicle. Simple a-priori probabilities, as used in classical
ELMs, are obtained much more easily.

IV. PRACTICAL APPLICATION

To show capabilities and limitations of the PITRA model,
practical applications are provided in Figs. 3 and 4. In the
latter case, a given realistic initial situation is evaluated
in PITRA, and several corresponding candidate solutions
are shown and discussed in detail. The application uses
a prediction method presented in [19] (originally intended
for a-priori environment prediction, not for live interaction
updating) with parameters set manually to plausible values.
This method establishes a Bayesian network among all traffic
participants (including the ego vehicle), such that a vehicle
a’s actions depend on the state of a vehicle b, if b is directly
in front of a or on one of the two neighboring lanes (if
applicable) or b has the right of way at an intersection or
roundabout. This reduces the number of possible interactions
to be considered. The result is a positional distribution den-
sity for all traffic participants (except the ego vehicle, whose
actions are planned, not estimated). For clarity, the fuzzy
densities are not depicted in Fig. 4; instead, only the expected
positions are marked by car symbols. Instances where traffic
participants change the state of others by interacting through
the Bayesian net are indicated by arrows.

The example shows three candidate solutions (a–d) which
are retained until backtracking at the end of the algorithm,
since each of them attains a final state that is not better
attained by any other evaluated trajectory. Option (e) is
discarded early and not pursued further. Which solution, (a),
(b) or (c–d), is eventually optimal depends significantly on
the penalization of the endpoint (Pend(x) in Alg. 1): If no
penalty for lack of progress is specified at all, solution (b) is
optimal, because it is perfectly optimal in safety, comfort and
fuel efficiency. If the penalty for lack of progress is increased
slightly, at some point solution (a) becomes optimal, because
it trades off the slight residual risk of a collision, and the
discomfort of turning and braking, for significant progress.
Only for extreme (and certainly unrealistic) penalties for a
lack of progress, solution (c–d) can be obtained, in which
case the high collision risk would be balanced by the
progress towards the goal. For each case, each trajectory is
evaluated and picked based on the expected reactions of the
environment, and based on the weights specified just like
in the classical ELM. Tradeoffs that are not accepted in the
ELM functional are not accepted in the PITRA model either.

V. CONCLUSION AND OUTLOOK

This paper has presented an efficiently computable model
for equipping variational trajectory planning methods (Euler–
Lagrange models, ELMs) with the ability to anticipate and
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Fig. 3: Model assumptions in PITRA. The ego vehicle e follows a truck
A . A car B wants to enter the road via a left turn. Diagram (a) shows the

initial state of the situation, diagrams (b–e) show possible developments. As
the PITRA model, following the Viterbi algorithm, assumes states at each
time τ to uniquely define a past trajectory β(x, τ, τ), no two trajectories
are preserved during planning that lead to the same state at the same time;
which trajectories are excluded depends only on their past values of Λ.
Therefore, for (b–e) showing the same time τ , (b) and (c) can be retained,
but (c–e) are mutually exclusive. The decision that (c) is retained while (d)
and (e) are excluded does not consider whether B should better enter the
road or not. However, case (c) can take into consideration that the maneuver
leading e to this place likely keeps B from entering the road.

consider the reaction of other traffic participants, named
PITRA (progressively interacting trajectories). It retains key
advantages of ELMs, namely their expressiveness, the option
for obtaining a definitive trajectory solution after a fixed
number of computational steps, which is crucial in safety-
critical real-time systems, the high degree of parallelism
which enables efficient hardware implementation, and the



benefit of providing fail-safe emergency trajectories at almost
no added computational effort. The model formulation does
not presuppose a specific interaction prediction model; a
general expected form for such models is provided.

To develop the concept, a complete but intractable model
was presented; based on this model, simplifications in model
assumptions and a solution heuristic was presented, whose
computation time scales quadratically with the ego vehicle
state space (as opposed to exponentially, in a non-optimized
model). Furthermore, the majority of computations can be
performed in parallel, leaving a theoretical limit of |X| · |T | ·
|φ| sequential steps, where |X| is the size of the ego vehicle
state space, |T | is the number of model time steps, and |φ|
is the computational effort of interaction prediction.

The efficiency is achieved by separating the environment
state from the ego vehicle state, and exclusively optimizing
the ego vehicle state through dynamic programming. This
means that the ego vehicle can consider consequences of its
actions (such as other vehicles overtaking if it drives too
slowly) and exploit them (such as other vehicles yielding to
it), but it will not manipulate the environment intentionally
to improve its later options, even if this was possible.

The algorithm assures that all evaluated trajectory ratings
are valid, in the sense that the trajectory would (given the
soundness of the prediction models) induce the very situation
with respect to which it was rated. The trajectory of the ego
vehicle is evaluated this way in each possible state at each
predicted time step, and only the progressively optimal |X|
candidate trajectories and situations are stored. The ELM
is extended to consider all effects of interaction upon the
ego vehicle, based on the expressiveness of the applied
prediction model. The PITRA model thus limits not the types
of interaction, but the search space of ego vehicle trajectories.

The performance of the algorithm was demonstrated on
a realistic simulation scenario using a simple prediction
model, and on several simple examples. It was shown that
the necessary simplifications still allow for a wide range of
maneuver options that classically cannot be considered at all.

Outlook

The PITRA model allows to consider interaction in tra-
jectory planning, but whether or not sufficiently expressive
interaction models can be parametrized statistically, and
whether the effort is worth the improved quality of results,
remains an open question. To answer it, comprehensive
statistical data sets about traffic behavior must be collected,
that allow for a realistic simulation of interaction, and for a
stochastically valid parameter estimation.

This model is just an algorithmic framework, whose
performance depends significantly on the prediction model
that it is combined with. Several such models have been
referenced, but their choice was not the focus of this paper.
Testing applicable models with PITRA and evaluating their
joint performance in realistic scenarios is a critical next step.

An efficient extension to cooperating vehicles has yet to
be defined; whether such a formulation can and should use
the ELM framework, remains to be determined.
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(a) A potential solution trajectory and corresponding expected environment states. The ego vehicle waits for the gap between
B and C before backing out of the parking space, causing C to yield. In turn, C braking affects D , who also slows

down.

(b) The idle trajectory is optimal in safety and comfort, but is penalized due to a lack of progress. Depending on the weight
of this factor, and the penalties necessary to achieve solution (a), either (a) or (b) can be an optimum.

(c) Leaving the space immediately
causes a high collision risk with B .

(d) Option (c) is explored further
(with t=3 not depicted) as there is
no better way to reach this progress
at t=4. However, only for very high
progress weights, this will be the
overall optimal trajectory from which
to backtrack.

(e) This option of returning to the
parking space after (c, t=2) is not
explored, because it leads to the same
state as (b, t=4), but (b) achieves it
at better safety and comfort. Whether
this induced a more desirable traffic
situation is not considered.

Fig. 4: Practical application to the example in Fig. 1. All times t > 0 show the predicted interactions. Positional uncertainties are not shown, car symbols
are placed at the expected position. Arrows indicate direct interactions causing state changes (e.g. braking). Bold black lines trace positions over time.


