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Abstract— This paper investigates the evolution of social
structures in the game WORLD OF WARCRAFT® . We analyze
192 million recordings of 18 million characters belonging to
1.4 million teams, spanning a period of 4 years. Using a recent
matrix factorization method, we extract lower dimensional data
embeddings. The embeddings provide intuitively interpretable
categorizations and we find a tendency towards guilds com-
prised of casual gamers. To our knowledge, this is the first
study considering such a vast amount of data for analyzing
groups in MMORPGs.

I. INTRODUCTION AND RELATED WORK

Massively Multiplayer Online Role Playing Games
(MMORPGSs) have become a considerable source of revenues
for the computer game industry. This becomes apparat from
considering the chart in Fig. 2 which displays the evolution
of the number of subscribers of the most popular MMORPGs
in western countries. As of this writing, the most profitable
title by far is WORLD OF WARCRAFT® . It has attracted
more than 12,000,000 active players who are willing to pay a
monthly fee of about 15$ to play the game. In fact, the game
is so economically important that there are several thousand
people employed in the gold-farming industry (see Fig. 3).

In this paper, we present results of a comprehensive study
of the evolution of group formation processes in WORLD
OF WARCRAFT® . Given its immense fan-base, the game
offers unique possibilities for the study of human interaction
on a large scale. Since the game immerses its players in
a closed world of considerable complexity, it allows for
investigating realistic behavior patterns and social interaction
in a semi controlled environment. Being able to characterize
the evolution of player behaviors or player interactions will
provide answers to obvious questions regarding possible
reasons for the game’s success. Our particular aims with
the work reported here were to provide an interpretable
categorization of different guilds of players, to analyze
and visualize the development of guilds over time, and to
compare the development of US and EU based guilds. In
general, we expect such studies of in-game behaviors and in-
game social networks to provide valuable insight for future
game design.

In fact, the idea of in-game data mining has recently
gained interest in academia and industry alike. Usually,
the goal is to clone an individual player’s behavior or to
categorize it. Weber et al. [1] model game opponents using
a data mining approach. They learn expert gameplay from
vast amounts of game logs, leading to reasonable predictive
models. Drachen et al. [2] construct models of players for the
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Fig. 1: WORLD OF WARCRAFT® is a Massively Multiplayer
Online Role-Playing Game played by millions of people
worldwide. Each character in this picture is controlled by
a human player. In order to master difficult quests, players
organize themselves in teams, the so called guilds.

game TOMB RAIDER: UNDERWORLD® . From recordings of
1365 players they managed to extract 4 types of players
by applying self-organizing maps. Their goal, too, was to
assist game developers in the automation of play testing. In
earlier work, starting with [3], [4] we used recordings of
playing in QUAKE II® to reproduce (clone) individual human
behavior. Applying machine learning techniques such as
neural networks or mixtures of experts, we could reproduce
reactive, tactical, or strategic behaviors.

More recently, data mining has also been applied to
analyze processes within MMORPGs. Ahmad et al. [5] target
the task of gold-farmer detection in the MMORPG EvV-
ERQUEST II® . Interpreting the task as a binary classification
problem, they trained and tested various classifiers using data
from about 2 million characters. While their approach is
sound, their results indicate that the problem of gold farmer
detection is more difficult than expected. Ducheneaut et
al. [6] investigate the structure of social networks in WORLD
OF WARCRAFT® based on data collected from more than
300,000 characters. Their results show that social networks
in MMORPGs are often sparse and that players experience
a form of “collective solitude”.

Next, we first describe the in-game mechanics of WORLD
OF WARCRAFT® in more detail before we discuss the data
that formed the empirical basis for our study. Then, we will
discuss our findings and present our conclusion. Technical
details regarding our data mining approach to analyze mil-
lions of in-game observations are provided in the Appendix.

170



12000000

Ultima Online (Jan 97) ——
L Lineage (Dec 98) ——
10000000 Ever Quest (Apr 99) ——
. Dark Age of Camelot (oct 01)
% 8000000 Rune Scape (Feb 02) ——
2 Final Fantasy XI (May 02)
@ 6000000 [ EVE Online (May 03)
3 World fl'\'/r\;eagefltl((IEJDCt 823 —
7 orld of Warcraft (Nov —_—
% 4000000 Ever Quest Il (Nov 04) ——
Dofus (Dec 05) ——
2000000 r
0 L z = Y
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
year

Fig. 2: Evolution of the number of active players of the most popular MMORPGs in western countries (according to
http://www.mmogchart .com). WORLD OF WARCRAFT® was released in November 2004 and has since gained more
than 12,000,000 players. This is more than 6 times as many players as any of the 10 next popular games can attract.

Fig. 3: In-game advertisement for a gold-farmer website.
In WORLD OF WARCRAFT® | these are not permitted but
constitute an abuse of in-game mechanics, e.g. by placing
player corpses to form a web URL. Gold-farming is one of
the most prominent fraudulent/illegal activities in WORLD
OF WARCRAFT® .

II. WORLD OF WARCRAFT®

WORLD OF WARCRAFT® is a Massively Multiplayer On-
line Role Playing Game (MMORPG). It is an open multi-
player game and takes place in a medieval fantasy world. It
is played by millions of players world wide and is arguably
the most successful and most popular game in video game
history. To participate in the game, players are required to
pay an monthly fee. Currently, around 12 million paying
customers log in to WORLD OF WARCRAFT® every day (see
Figure 1 for a few gameplay impressions). The gameworld
is organized in a few hundred realms, i.e. a separated worlds
each for a few thousand players who can only interact with
characters from the same realm.

While playing, each player controls a single alter-ego char-
acter. The strength of this character increases with playing
time and with successful completion of in-game tasks or
quests. Strength is represented by the character’s experience
level, reaching from level 1 (a newly created character) to
level 80 (the currently highest experience level which grants
the most powerful abilities such as special attack moves
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for close combat or mighty spells for mage classes). The
maximum experience level has just lately been raised to
80. In the initial release of WORLD OF WARCRAFT®, it
was set to 60. With the first expansion package ‘“Burning
Crusade” (Jan. 2007) it was extended to level 70, with second
expansion “Wrath of the Lich King” (Dec. 2008) it was
further extended to level 80.

Due to the open character of the game world, the game
lacks a properly defined goal. However, advancing a charac-
ter’s experience level from level 1 to level 80 is implicitly
understood as the common goal among all players. Gathering
treasures or acquiring better equipment is another commonly
accepted goal in the game.

An important aspect of the game lies in the social inter-
action among players. While players could play the game
on their own, a lot of the entertainment comes from the
multiplayer experience. Certain quests can only be solved
with the help of others. In fact, the most valuable in-game
items can only be accessed by a group of more than ten level
80 characters. Therefore, the forming of teams, so called
guilds, is an integral part of gameplay. Each character can
only join a single guild. A player can of course leave a guild
and join another one at any time. For an enjoyable game
experiences, players usually try to find a guild that matches
their own playing style (note again that not all players try to
achieve the same goals, e.g. acquiring treasures).

III. DATA AND FEATURES

We gathered a vast amount of player/guild logs from
http://www.warcraftrealms.com. The logs show
for a certain number of dates the records of currently
online players from European and United States WORLD
OF WARCRAFT® realms. In addition to the player’s name,
level, class, and guild membership are recorded. In total,
we gathered 192 million recordings of 18 million charac-
ters belonging to 1.4 million guilds. The recordings cover
a period of 4 years, starting in 2005 (when WORLD OF
WARCRAFT® was released) and ending in early 2009. The
data we recorded (roughly) summarizes the social in-game
activities of the players. that is to say, we know when players
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Fig. 4: Basis vectors resulting from the application of CH-NMF to the WORLD OF WARCRAFT® guild database. The x-axis
denotes the level histogram bin, the y-axis denotes the number of observations for this bin. These guilds represent archetypal

guilds and are automatically extracted from 1.4 million guilds.
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Fig. 5: Clusters resulting from the application of k-means clustering to the WORLD OF WARCRAFT® guild database. Cluster
centroids correspond to average guilds. Overall, these centroids are not readily interpretable. In contrast to the CH-NMF
results, k-means produces centroids of very similar characteristics, differences between guilds are not apparent.

left or joined a guild, how many players were with a guild at
what time, and how experience levels were distributed among
the members of a guild.

As mentioned before, the player’s experience level pro-
vides a measure of the skill of a particular player. While a
guild with more higher level players is more likely to be suc-
cessful, a guild of only low level players is basically excluded
from a large amount of the game content. The distribution
of experience levels among guilds, i.e. the number of players
of a certain level that are with a particular guild, therefore
provides a feature that characterizes a guild in terms of game
success.

The distribution can be efficiently approximated by means
of building a histogram over experience levels of guild
members (see Figure 4 and Figure 5 for examples). If we
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build these histograms over all observations of a specific
period of time, they also summarize the temporal evolution
of a guild. A brief example should clarify this: if a guild
is newly formed by level 80 players, it does not contain
any observations of level 10 players and the corresponding
histogram bin would be empty. A guild which was formed
by level 10 players should, over a longer period, also have
observations of level 40, 60, 80 (and intermediate levels)
players, as the guild members usually increase their level
over time.

IV. RESULTS

Extracting meaningful information from a massive amount
of data is clearly a non trivial task. Especially, if it is
not entirely clear what to look out for. In these situations
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data mining resembles the proverbial search for a needle in
a haystack. The results we present in the following were
mostly obtained from applying Convex-Hull Non Negative
Matrix Factorization (CH-NMF). This technique has recently
been introduced as an efficient approach towards finding
meaningful lower dimensional data embeddings by means
of constrained matrix factorization. For the rather involved
technical details, we refer the reader to the Appendix.

We applied CH-NMF to 1.4 million guild histograms
that contain data covering a period of 4 years. We aim at
the following goals: (a) an interpretable categorization, (b)
analysis and visualization of the development of guilds over
time, (¢) a comparative study between US and EU WORLD
OF WARCRAFT® guilds.

(a) Obtaining an interpretable categorization of guilds is
certainly not a straight forward task. We applied CH-NMF
to the guild histograms using 8 basis vectors. Note that we
also tried different numbers of basis vectors. For a larger
number visualization is getting more and more difficult, for
a smaller number we could not capture the data variability at
the desired resolution. We found that 8 basis vectors provide
a convenient tradeoff between granularity and visualizability.

The 8 basis vectors can be seen in Figure 4. Following
the definitions of CH-NMEF, each basis vector resides on the
convex hull of all guild histograms and thereby represents
an archetypal guild. This makes the basis vectors easy to
interpret as there is usually only one salient characteristic.
In our case, the archetypal guilds are clearly distinguishable
from each other. One can also recognize that a wide variety
of guilds can be sufficiently formed by a convex combination
of the archetypal guilds. Especially the raise of the level cap
(from level 60 to 70 and level 70 to 80) that was introduced
with the Ist and 2nd content update can be easily seen.

The interpretability of CH-NMF bases becomes even more
obvious when compared to conventional clustering methods.
Figure 5 shows 8 cluster centroids resulting from k-means
clustering. K-means clusters s.t. common data regions are
represented by their average. While this is often a reason-
able way of analyzing data, it does not necessarily lead
to interpretable results. In this case, the cluster centroids
represent the data by (mostly) the same characteristic curve
just differently scaled.

(b) Figure 7 and Figure 8 shows a projection of all guilds
into the space spanned by the CH-NMF basis vectors (see
also Figure 4) for the EU and US realms respectively. The
projection is performed for different time spans (90 days,
180 days, 1 year, 2 years, 3 years, 4 years). It is important
to note that the plots show an 8 dimensional space visualized
in a 2D plane. While there are of course certain problematic
aspects of this kind of visualization, it still preserves the main
characteristics of the guild space.

The first thing to notice is that the total number of guilds
increases considerably over time. Also, with more and more
guilds to observe, a huge part of the guild space is densely
covered. Interestingly, most guilds fall into the category of
seldom active guilds (this could also indicate very small
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guilds) or are close to it. There is only a small number of
guilds (still many thousands though) that completely fall into
another category. One explanation could be the increase in
the total number of guilds (this includes already disbanded
guilds) over time which is shown in Figure 6. It can be seen
the growth rate is (roughly) exponential. This indicates that
the new formation of guilds is rather normal, as they are also
abandoned often. For future work, it might be interesting to
have a closer look at the life cycle of a guild.

(¢) We compare US and EU realms and guilds by inspect-
ing the distribution in guild space (Figure 7 and Figure 8)
and also cumulative sum over the coefficients for each basis
vectors. The cumulative sum over the coefficients serves as
an indicator how much each basis vector contributes to the
overall convex reconstruction of CH-NMF (how important is
each basis vector for the complete guild space?). Figure 9
shows how the coefficient contributions change over time
for EU and US realms respectively. Note that we computed
the archetypal guilds (CH-NMF basis vectors) from the
complete list of EU guilds. Interestingly, we could find
similar archetypal guilds among the US guilds, however,
we simply had to decide for one side for computing the
embeddings.

Considering both indicators, we could not find any signif-
icant difference in the average development of guilds from
either the EU or the US.

V. CONCLUSION

This paper provides a first large-scale study to understand
group formation processes in MMORPGs. To best of our
knowledge, this is the first time that a vast amount of data on
human behavior was used for analyzing or categorizing social
behavior in MMORPGs. We were interested in identifying
different types of guilds of players, in analyzing the evolution
of guilds over time, and in comparing the development
of US and EU based guilds. Applying Convex-hull NMF,
we found the following archetypal guilds “active from 10
to 807, “active till 2nd update, then disbanded”, “formed
early then disbanded”, “seldom active”, “increasing till 1st
update, then disband”, “active between 1st and 2nd update”,
“formed before 2nd update, then very active”, “increasing
activity, then disbanded”. Interestingly, we found a strong
tendency towards more casual types of guilds. The vast
majority of guilds in our study closely resemble archetypes
representing guilds of non-professions ambitions. Our study
of the temporal evolution of guilds revealed that from the
release of the game onwards most players joined guilds
that did never evolve towards professional competition. This
was found for American and European guilds alike, and
we were not able to discover cultural differences. For the
design of future games, our conclusion at this point is that
for commercial success it is of major importance to cater to
the needs of the casual gamer.

APPENDIX

This appendix details our approach to analyzing massive
amounts of in-game data. The method of convex-hull non-
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Fig. 6: Evolution of the total number of guilds over time in WORLD OF WARCRAFT® . Interestingly, for both, the US and
the EU realms, the temporal development is surprisingly similar and follows a power law distribution.

negative matrix factorization was specifically developed to be
able to mine data sets consisting of millions of observations
in a timely manner. We shall motivate it and discuss its
benefits for our purpose.

A. Definitions and Notation

In the following, vectors are denoted by bold lower case
letters (v) and their entries are denoted using subscripted
lower case italics (vg). O is the vector of all zeros and 1 is
the vector of all ones. We write v > 0 if v, > 0 for all k.
The inner product of two vectors w and v is written as u” v.

Consequently, 17v is a shorthand for 3 & Vk-

Matrices are written using bold upper case letters (M).
If the columns of a matrix are known, we also write M =
[mimy ... m,] where m; € R™ is the jth column vector
of M.

We may identify a discrete set of vectors {v1,...,v,}
with the matrix V' = [v;...v,] whose columns are given
by the elements of the set. Moreover, we use ||M|| to denote
the Frobenius norm of M.

Aset S C R™ is convex, if every point on the line segment
between any two points in S is also in S. A vector v € R™
is a convex combination of vectors vy, vs,...,v; € R™, if
v =) . A\v; where A\; > 0 and >, \; = 1. Using matrix
notation, we write convex combinations as v = V A where
V = [v1,va,...,v;] and A € R! such that 17X = 1 and
A > 0. An extreme point of a convex set S is any point
v € S that is not a convex combination of other points in S.
The convex hull C of a set S C R™ is the set of all convex
combinations of points in S. A polytope is the convex hull
of finitely many points, i.e. it is the set C(S) for |S| < oo.
The extreme points of a polytope are called vertices. We use
V(S) to denote the set of all vertices of a polytope. Note that
every point inside a polytope can be expressed as a convex
combination of the points in V.
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B. Clustering and NMF

Matrix factorization is a fundamental step in many ap-
proaches to data mining, machine learning, and statistical
pattern analysis. Recent work in machine learning has fo-
cused on matrix factorizations which obey particular con-
straints that are inherent to certain data and therefore should
be accounted for in any analysis. In particular, non-negative
matrix factorization (NMF) focuses on the analysis of data
matrices whose elements are non-negative, a common oc-
currence in representations, for example, text or images
data. Given a non-negative input matrix V', NMF aims at
determining two non-negative matrix factors W and H s.t.

V~WH.

Convex non-negative matrix factorization (C-NMF) ap-
proaches additionally restrict the columns of W to be convex
combinations of the data points gathered in V, in order
to enforce W to represent meaningful “cluster centroids”.
Thereby it contrasts agglomerative (single-linkage), mean-
based (k-means), or mode seeking (mean-shift) clustering
methods which rather search for representations by similarity.
Meaningful centroids prove to be beneficial in applications
such as text or genome mining, as well as image or social
network analysis. Application of C-NMF on vast data is
often not feasible and requires approximate methods such
as Convex-Hull NMF.

C. Convex-Hull NMF

Convex-Hull NMF aims at a factorization that incorporates
data points that reside on the data convex hull. The resulting
representation has two interesting properties: first, the basis
vectors are real data points and correspond to extremes
rather than to averages. Second, any data point can be
expressed as a convex combination of these basis elements.
As convex combinations are nothing else but percentaged
fractions of extremes (consider, for instance, a 70% chance of
sunshine and a 30% chance of rain), they often offer intuitive
interpretability [7].
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Fig. 7: Embeddings of European WORLD OF WARCRAFT® guilds and their development over time. Not only does the
number of active and newly formed guilds increases dramatically, it can also be seen that more and more diverse guilds
evolve. Especially in Figure 7c and Figure 7d, a clear separation between the very active and more casual guilds can be
seen. Interestingly, the gap between these more professional and more casual guilds later fills continuously as can be seen
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Fig. 8: Embeddings of US WORLD OF WARCRAFT® guilds and their development over time. Compared to the EU guilds
the differences are negligible.
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Fig. 9: Distribution of coefficient vectors over the 8 basis vectors (see Figure 4) for the EU and US Realms. Each bar
represents how many guilds fall into the specified category or, more precisely, how much the corresponding basis vector is
contributing to the overall reconstruction. Apparently, the overall distribution changes considerably over time.
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We consider a factorization of the form
V =VGH,

where V. € R™*" G € R™* H e RF¥*™, If we restrict
the columns of G and H to convexity, we obtain a factor-
ization where each data point can be expressed as a convex
combination of convex combinations of specific data points.

Our task is thus to solve the following constrained
quadratic problem

minimize J = ||V - VGH||’ (1)
subject to 17g, =1, g, = 0
1"h;=1,h; = 0
for G and H. To facilitate our discussion, we set
X=VG

so that X € R™*F. Accordingly, due to the above properties
of the coefficient matrix G, the column vectors in X are
convex combinations of columns in V. Hence, the convex
hull C(V') of V' must contain X . We could therefore achieve
a perfect factorization of the data matrix by choosing the
columns of G such that they would single out the vertices
of C(V), i.e. such that they contain exactly one entry equal
to 1 for each data point that is a vertex of the convex hull
while all other entries were set to zero. Therefore, our goal
becomes to solve Eq. (1) by finding &k appropriate vertices
of the convex hull. In other words, we aim at solving

minimize J = ||V — XH” ||’ ®))
subject to x; € V(V), i =1,... k.

Solving problem (2) is not necessarily straight forward.
Rather, it is known that the worst case complexity for
computing the set of vertices V(V') of the convex hull of
n data points in m dimensions is ©(n% ).

We therefore consider an approximate solution that sub-
samples the convex hull. Our approach exploits the fact
that any data point on the convex hull of a linear lower
dimensional projection of the data also resides on the convex
hull in the original data dimension. Since V' contains finitely
many points and therefore forms a polytope in R™, we
can resort to the main theorem of polytope theory which
states that every image of a polytope P under an affine map
m:x — Max +t is a polytope. In particular, every vertex
of an affine image of P, i.e., every vertex of the convex hull
of the image of P, corresponds to a vertex of P. For a proof
of this important result, we refer the reader to [8].

Computing the vertices of the convex hulls of several
2D affine projections of the data therefore offers a way
of subsampling V(V'). Moreover, it is an efficient way of
doing so since computing the extreme points of a set of 2D
points can be done in O(nlogn) time [9]. This allows us
to approximate the convex hull of X as the union of points
found on convex hulls of different 2D projections of the data.
We project the data onto the w 2D subspaces spanned
by pairwise combinations of the first h eigenvectors of the
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covariance matrix of V' where h is chosen such that the
first h eigenvectors account for 95% of the data variation.
The mean and covariance matrix of V' can be computed
iteratively and the resulting matrices of size m x m and can
be efficiently stored. Estimates of the resulting number of
sampled points can be obtained from a result in [10] which
states that the expected size of the convex hull of n Gaussian
data points in the plane is 2(y/log n). For Gaussian data, we
thus expect to sample p = j+/logn points; for data that can
be approximated using a mixture of ¢ Gaussian, we expect
to sample p = jgq+/log(n/q) data points. In both cases, the
candidate set grows much slower than n.

Give a candidate set S C V(V) containing p vertices of
the data convex hull, we now select those k < p vertices that
yield the best reconstruction of the remaining points in S.
Since S is a m X p matrix, this, too, can be formulated as a
constrained NMF optimization problem

minimize Jg = ||S — ST 3)
subject to 174, =1,4,>0

where I € RP*k and J € R¥*P. Since p < n, common
quadratic programming routines solve (3) efficiently.

Once a suitable I € RP** has been determined, the matrix
X in Eq. (2) can be written as X = ST which guarantees
that the problem in Eq. (2) is solely concerned with k data
points on the convex hull of V. We found that I usually
results in unary representations. If this is not the case, we
simply map ST to their nearest neighboring data point in S.

Given X, the computation of the coefficients H may be
done by minimizing J; = ||v; — Xh;|?,1Th; = 1,h; = 0
using common solvers.
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