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Abstract—In urban incidents and crises, accurate and timely
information can be crucial to manage critical situations. The
exponential growth of crowd sourced data has given means
to access vast amounts of information on a real-time basis.
However, this has complicated the task of analyzing ongoing
events as the effort needed to filter relevant from irrelevant
information has exponentially grown. This paper proposes a
multidimensional analysis method of processing high influx of
crowd sourced incident reports and creating processable pieces
of information by filtering what’s irrelevant and clustering what
belongs together in a highly efficient way. Spatial, temporal,
and semantic dimensions of an incident report constitute a basis
which is taken advantage of in this work to ease the tasks which
are undertaken manually in operation centers and alike.

I. Introduction
During the 2009 Winneden school shooting and 2016

Munich shooting, people fell victim to seemingly random
rampage of two school students. It was not the 7 years
and ca. 175 kilometers between the incidents making a
difference on how these incidents were handled, but in
particular also the communication means and information
at disposal. During the former incident, authorities were
limited to gathered intelligence and hints from citizens,
and conventional telecommunication media (i.e. radio,
television) for information dissemination. In less than a
decade later, during the latter incident, the sources of
information (both for authorities and citizens) were expo-
nentially increased and spread, mainly over the Internet.
The massive flow of – at times contrary – information
on social media, however, turned out to be more puzzling
than beneficial in managing the crisis. The importance of
“information validity and timeliness” in managing crisis
has already been pinpointed among others by Turoff,
Chumer, Walle, et al. and the “key obstacle to effective
crisis response [is considered to be] the communication
needed to access relevant data” [1]. In recent years, it
has been proven that social media can be considered
as legitimate sources of real-time data during the crisis.
The potential of social media in handling crises has been
leveraged in many aspects but at the same time, due to
open nature of such platforms and the fact that postings
are not supervised, the question of information validity is
yet to be addressed. In the age of information overflow

it has become evident that the price of meaningful and
reliable information is much higher than mere access to
data.

With a focus on urban incidents, this work introduces
a multidimensional analysis method to filter, classify,
correlate and eventually cluster crowd sourced reports of
possibly critical incidents under soft real-time constraints.
The goal is twofold: to separate valid from invalid reports
and to merge related reports together. A valid report in
this context is to be understood as a piece of incident
related data, that provides information useful for better
understanding or the mitigation of the incident. Report
merging refers to semantic and spatio-temporal clustering
of reports into logical manageable units which provide a
comprehensive overview of an incident.

This paper is structured as follows: after this introduc-
tion, related work is discussed (section II). In section III
requirements are presented which were derived from field
studies in several urban areas. The concept of the multi-
dimensional analysis method to filter, classify, correlate
and eventually cluster incident reports as well as the
architecture to fulfill the non-functional requirements is
given in section IV. A brief overview about implementa-
tion aspects is given in section V and the implementation
is summarized in section VI. The paper concludes in
section VII.

II. Related work
Incident management generally refers to the “notion of

coordinating the actions necessary to manage disasters
and emergencies” [2]. This, as previously mentioned,
presupposes access to information describing the situation
and related matters. Many actively use social media during
catastrophes and crises and generate high amounts of
information, which can be valuable for incident man-
agement by involved organizations and forces. Analyzing
such crowd sourced information can take place manually,
for example, by organizations such as Digital Humani-
tarian Network DHN (http://digitalhumanitarians.com/)
or Virtual Operations Support Group (http://vosg.us/)
requiring adequate organizational resources and profes-
sional knowledge; or it can succeed automatically. The

http://digitalhumanitarians.com/
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focus of this work lies on automatic information briefing by
clustering related incident reports together using spatio-
temporal and semantic dimensions.

Nagarajan, Gomadam, Sheth, et al. present a system
which analyzes tweets on three dimensions of theme, time,
and space [3]. Similarly, Avvenuti, Cresci, Marchetti, et al.
provide a framework, which uses temporal reasoning (in
terms of burst detection) and semantic analysis to assist
real-time decision-making for earthquake crisis manage-
ment [4]. In either case, however, spatio-temporal analysis
is limited to the time and location of the report and not
the incident to which the report refers. Ghahremanlou,
Sherchan, and Thom solve this shortcoming by introduc-
ing a geotagger based on semantical analysis to extract an
incident’s location from tweets’ contents during crisis [5].
General approaches with a mere focus on spatio-temporal
clustering are given in [6], [7]. Contrary to aforementioned
approaches to spatio-temporal analysis, this work differ-
entiates between the spatio-temporal attributes attached
to an incident report with those of the actual incident: an
experimental method is introduced to estimate incident’s
actual location from reporter’s location.

Advantages of semantic technologies regarding incident
reports is leveraged by Li and Li in an ontology based
method for “multi-document summarization in disaster
management” to extract most important (i.e. relevant)
sentences out of given documents [8]. Other approaches
in context of incident/crisis management are utilized in
integration of heterogeneous information [9]–[11], response
planing [12], resource management [13], [14], or even in
meta and holistic ontologies that conceptualize the process
of incident management as a whole [15], [16]. The scope
of these approaches is mainly limited to conceptualizing
circumstances of incident/crisis management in terms of
an ontology, potentially to benefit from semantic reasoning
(e.g., in automatic planing). This work employs a special
incident ontology to initially classify incident reports and
eventually correlate them.

III. Requirements
As part of the European Union research project

CityRisks (project.cityrisks.eu), the proposed system at
hand is result of extensive research and discussion with
criminologists, local police forces, urban safety and se-
curity professionals, governmental organizations, and re-
searchers of related fields. The conceived functional and
non-functional requirements are aligned with a rather
generic use case of a crime-related urban incident with
citizens and authorities as actors, where the former reports
about an ongoing incident to the latter and receives
respective alerts, updates, and critical information in
return. The data provided by citizens is expected to
be semi-structured, i.e. containing both structured (e.g.,
timestamp, geo-location) and unstructured (e.g., text,
image) data. Within the system, reports are filtered, clas-
sified, correlated and those referring to the same incident

TABLE I
Excerpt of concepts from the incident ontology

Anti-social
behavior

Public disor-
der

Theft Property
damage

Bullying Affray Pickpocketing Vandalism
Harassment Gangs Burglary Arson
Social disor-
der

Protest Robbery Graffiti

are merged together. The results are accessible both for
authorities and involved organizations, and (partially) for
citizens. Accordingly, the functional requirements are as
follows:

1) Content analysis
2) Semantic processing
3) Spatio-temporal reasoning
4) Automatic coordination
5) Adaptive decision support
Requirement 1 comprises extracting structured data

from textual (e.g., description in natural language) and
visual (e.g., image) content of an incident report. Semantic
processing (2) contextualizes data in terms of incident
management and spatio-temporal reasoning (3) is required
to merge related reports and dispatch targeted alerts.
Requirement 4 postulates that the coordination between
components should be done without human interference.
Finally, it should be possible to correct automatic deci-
sions through feedback (5). Additionally, following non-
functional requirements are formulated:

• (Close to) Real-timeliness
• Scalability
• Availability
• Fault tolerance
• Extendibility
The non-functional requirements are constraints re-

quired in coping with urban incidents where timely re-
sponse to high influx of data is of critical importance.
Scalability has been foreseen as basis for availability,
fault tolerance, and soft real-time analysis and processing.
Extendibility is guaranteed through well-defined interfaces
and protocols.

IV. Concept
The subject of investigation in this work are urban

incident reports. An incident refers to an out-of-ordinary
event affecting the public life and a report is a time-space-
bounded piece of information about an incident.

A. Urban Incidents
The definition of an urban incident given above might

struck as being too broad, thus not suitable for practical
use. The system at hand makes use of an incident ontology
– inspired by crime taxonomies used by law enforcement
– to describe urban incidents. The incident ontology,
however, puts the emphasis on representing concepts that

project.cityrisks.eu
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Fig. 1. Conceptual frame of view (FOV)

might affect citizens’ safety and security and does not
include every concept which might legally be categorized
as a crime. Whereas a crime (as defined by the law) is
of interest for police forces, it does not necessarily pose
a safety/security danger for citizens: Berlin’s Görlitzer
Park is famous as a site of soft-drug dealing (considered
a criminal act by the German law) and at the same time
a spare time spot for families and tourists. Consequently,
the incident ontology is strictly not a taxonomy of what is
verboten by the law. It is also noteworthy, that such an on-
tology is not sensitive to cultural differences. For example,
in countries where prostitution is considered as a criminal
offense, the chances are higher that the neighborhood, in
which prostitution is taking part, exhibits higher (violent)
crime rates (see [17]), though it might not be the case for
countries (e.g., Germany) where prostitution is legalized.
An excerpt of the incident ontology’s concepts is given in
Table I.
B. Incident reports

In the course of this work, it is assumed that urban
incidents are reported by people. Due to the existence
of obstacles like trees or buildings in an urban setup,
a reporter’s field of view (FOV) heavily depends on
position p and direction of observation β. For the following
discussion we assume as first approximation, that the
FOV for all positions and directions is limited only by
an observation reach of maximum dmax. The field of view
can then be imagined as a circular sector centered at the
reporters position with an opening arc of ϕ and a radius
of dmax as of Fig.1.

Since a report only contains the position of the reporter,
pr, and not the actual incident pi, it is required to develop
a method to infer or at least estimate an incident’s actual
location from its corresponding report. This is required in
future calculations to find out if two reports originating
from the vicinity of each other refer to the same incident
or not. If the observer’s orientation, β, is not known, the
incident is estimated to be within a radius dmax of the
reporter as depicted in Fig.2a, so if the position of the
reporter is considered to be the reference point of a polar
coordinate system, the following holds:

(ri, θi) ∈ {(r, θ) : r ≤ dmax}

p
d
m
ax

(a) w/o observer’s orienta-
tion

p

d m
a
x

ϕ

(b) w/ observer’s orienta-
tion

Fig. 2. Possible incident location inferred from an incident report
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Fig. 3. Actions upon receiving an incident report

(ri, θi) being the corresponding polar coordinate of the
incident with (Cartesian) coordinates (xi, yi).

Analogous, if the orientation of the observer, β, is known
the incident is assumed to be within the circular sector
centered around the reporter with an arc of ϕ degrees,
where ϕ is an arbitrary angle defining the observer’s field
of view (FOV) as shown in Fig.2b, so that the following
holds:

(ri, θi) ∈ {(r, θ) : r ≤ dmax ∧ β − 1

2
ϕ ≤ θ ≤ β +

1

2
ϕ}

It should be noted that since an incident does not
happen in a single point pi = (xi, yi) and to account
for uncertainties, the region centered around pi with a
diameter of di (effective incident plane) is accepted as
location of the incident instead of the single point pi. In
this sense, the shaded areas of Fig.2 denote the region in
which FOV of a reporter might overlap with the effective
incident plane.

C. Workflow
Fig.3 depicts a simplified version of the workflow initi-

ated upon receiving an incident report. First, its textual
content is translated and the visual content is tagged
(normalization), the report is then classified using a special
incident ontology. If it does not match any concepts from
the incident ontology, it is forwarded for manual review
(e.g., by an operator). Otherwise, it is forwarded for



filtering. Using a collection of ontologies (multi-ontology
approach), the report is analyzed for concepts which
might not be of relevance in context of urban incidents.
The result of filtering is used as a weighing function to
determine priority of otherwise coequal incident reports.
New reports are correlated with existing ones and related
ones are merged together (clustering). Eventually the
enhanced incident information are published.

In this approach incident reports are analyzed on three
dimensions: 1) semantic, 2) temporal, and 3) spatial.
Incoming incident reports are considered as events which
are processed and enhanced within an ecosystem of
complex event processing (CEP). The idea behind CEP
is to manage a stream of events by analyzing event
patterns[18] using predefined rules to enrich data in a
near real-time manner. In the context of this work, CEP
was extended from temporal event processing to spatio-
temporal event processing using a toolkit developed at
Fraunhofer FOKUS in the context of EU project IMSK
and refined continuously. The building blocks of the
ecosystem are called Knowledge Processing Components
(KPC)[19] and can be considered as nodes within a
distributed system communicating only by asynchronous
message passing[20] through a communication layer (re-
quirements 4 and 5). For each activity (in Fig.3) a one-
request/multiple-response paradigm is foreseen, where a
single request is processed by multiple entities resulting in
multiple responses with different (correctness) probability
values. Under the assumption that results with lower prob-
abilities require less processing time, one-request/multiple-
response allows preliminary processing with results of
lower quality until data of better quality is available.
Take the normalization task where an arbitrary text is
to be translated (request), for example, into English.
An automatic translation (response 1) with lower quality
would accelerate the whole report processing procedure
until an operator, for example, would provide a more
accurate translation (response 2). As soon as a more
qualified response is present the procedure begins from
the top.

The distributed architecture of the framework enables
seamless horizontal scaling that also caters for availability
and fault tolerance. A thorough discussion on KPCs
conceptualized and realized in this work is given in sequel.

D. Incident report reasoning
Semantic reasoning: Semantic reasoning refers to clas-

sifying and correlating incident reports based on their
content (i.e. body). To digest textual content, methods
of information retrieval [21] and semantic technologies are
used and for visual content, artificial intelligent classifiers
(see [22]) are leveraged to assign terms to a picture/video.
This corresponds to requirements 1 and 2.

First step of semantic analysis is term extraction as
of bag-of-words model. In this sense, an incident report
is represented by a collection of terms. Natural language
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Fig. 4. Two reports of same incident

processing in context of information retrieval is leveraged
here to extract terms from textual content of a report.
Analogous, the visual content is processed through con-
volutional networks and matching concepts are assigned.
Extracted terms from textual content of a reports and
assigned concepts of its visual content together form the
basis of semantic analysis. The result is referred in sequel
as normalized report.

The special incident ontology used in this works maps
a number of authentic incident reports (basis reports)
to each incident concept within the ontology. The basis
reports build an inverted index which can be used to
classify incoming reports: each new normalized report
is compared to basis reports of the incident ontology
on the basis of a modified tf-idf measurement. If the
similarity measure between a new report and a basis
report passes a given threshold and is at highest, the
corresponding incident type is assigned to that report,
otherwise the report is marked for manual review. The
same approach can be used to measure similarity between
two reports to see if they refer to the same incident.
Analogous, multiple blacklist ontologies are utilized to
filter out reports which are not relevant to urban safety.
These ontologies represent concepts that can safely be
considered as immaterial to our goal.

Spatio-temporal reasoning: An incident report can be
subject to spatial and temporal matching with regard
to other incident reports (requirement 3). The case for
temporal matching is trivial: if the beginning of an
incident’s validity window exceeds the end time of another
(or vice versa), these reports do not refer to the same
incident, thus they do not match. Otherwise, it could be
said that they temporally match. Allen’s interval algebra
[23] can be used for this.

Spatial matching, however, pose a genuine challenge.
Correlating two reports r1 and r2 is at most precise
when both contain observers’ orientation. In this case,
if the circular sectors around p1 and p2 with a radius
of dmax + di/2 and a predefined angle of ϕ overlap, it
can be said that both reports refer to the same incident.
This is depicted in Fig.4. Now, consider neither or only
one of observers’ orientation is given. Even if assumed
FOV of both reports fully overlap, it cannot reliably be
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determined if both reports refer to the same incident or
not. In such case the probability of reports referring to
the same incident can be estimated using the following
heuristic: in most circumstances it is fairly improbable
that two reports originating from the vicinity of each
other in an urban setup refer to different incidents as
the probability of two different incidents in immediate
vicinity is practically minuscule. Keeping in mind, that
the position of an observer, e.g., measured with its smart
phone, is not exactly known but normally distributed,
error propagation methods have to be taken into account
to estimate the probability of two reports r1, r2 for which
∥p1−p2∥ < 2dmax+di holds, to refer to the same incident.
The details are subject of current investigations and will
be published separately.

On the other hand if the circles around the observers
with a radius of dmax + di/2 (taking effective incident
plane into account) do not overlap, it can certainly be
asserted, that the reports refer to different incidents. The
same argument applies if one or both of the reports
contain observer’s orientation (circular sector FOV is then
considered instead of a circular FOV).

V. System Architecture
The concepts of previous section and the activities

depicted in Fig.3 are fulfilled through a number of worker
KPCs (requirements 1 – 3). Additionally, a coordinator
KPC is designated to regulate the workflow and task
assignment among other KPCs (requirements 4, 5). With
regard to their tasks, KPCs can logically be divided in
the following five groups:

Content normalization: Normalization refers to the task
of extracting structured data from unstructured data and
to adapt them to a common format. This applies on
both textual and visual content. The designated KPC for
this task, the Translator, translates textual content to
the main language of the incident ontology and leverages
approaches of information retrieval for linguistic analysis
(e.g., tokenization, stemming, lemmatization, etc.). Visual
content is classified using artificial intelligence. This KPC

takes an incident report and enhances it with a list of
terms extracted from its body.

Classification: A normalized report must be first sub-
sumed within the incident ontology before it can seman-
tically be related to other incident reports. A special
incident ontology has been designed and developed for
classification. The Classifier KPC assigns concepts from
the incident ontology to normalized incident reports. The
result of classification is used for semantic reasoning and
can also be used, for example, as input of a priority weight
function: a report about an ongoing armed bank robbery
must have a higher priority than a car theft.

Filtering: Filtering, similar to classification, refers to
the task of positioning incident reports within concepts
deemed as irrelevant for urban incident management. This
KPC takes a normalized report and decides according to a
set of predefined rules, whether the report is to be included
in the processing pipeline or not. For example, reports
containing visual content not safe for work are regarded
as disposable.

Correlation and clustering: Relating new incident re-
ports with existing logical incidents is referred to as
correlation and clustering. As previously mentioned, this
is done by correlating reports on their temporal, spatial,
and semantic dimensions. This task is carried out by
the Correlator KPC, which also can take an arbitrary
location and correlate it with ongoing incidents (required
for targeted alerting).

Task coordination: A special KPC is dedicated to
coordinating tasks among other KPCs. For each activity,
the Incident Manager takes results of a KPC and decides
what do next. The decisions are made using predefined
rules. The Incident Manager is also the first KPC to
receive an incoming incident report.

To fulfill non-functional requirements, a distributed
architecture as depicted in Fig.5 is proposed. Incident
reports are provided by citizens using smartphones and
can be complemented with pictures or videos. The com-
munication among components succeeds solely over a
message broker asynchronously. Multiple instances of the
same KPC can transparently exist at the same time to
provide availability and fault tolerance. The components
are loosely coupled[24] and a global state is not shared
among components. The lack of interdependence among
KPCs enables parallel computing.

It is evident that the Incident manager plays a central
role in coordinating tasks among KPCs. Depending on the
current state of an incident report, Incident Manager de-
cides the next operation for that report. Task requests are,
however, not targeted for a specific component, rather are
published under a specific topic so that any KPC capable
of processing the request can do so without being actively
triggered. This provides seamless extendibility and enables
the single-request/multiple-response paradigm previously
mentioned.
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The data models for reports and logical incidents as
a collection of related reports are depicted in Fig.6. The
unit of information is a report which contains a free text
describing the incident, spatio-temporal information (i.e.
location, timestamp), and can have media (e.g., a picture)
attached. The main source of reports are smartphones,
where the GPS sensor is used to capture reporter’s location
p, the compass sensor to determine his orientation β, and
the camera to record images/videos. It should be noted,
that the orientation β is considered as reliable only if an
image or a video is recorded and attached as it is only
under such condition, that a reporter’s orientation might
be pointing to the incident itself. An incident is composed
of at least one report and can be merged with other related
incidents to form a new incident.

VI. Implementation
The conceptualized system alongside a number of ad-

ditional modules have been implemented and are to be
in service in pilot projects across Europe in fall 2017 in
London, Rome, and Sofia. The pilot phase for each city
is one month during which participants can submit new
incident reports and review existing ones using an Andoird
application (Fig.7). Processed reports are published on
the message bus and are accessible to operation centers
through an interface developed by one of project partners
enabling report review, modification and update.

Multiple frameworks and tools has been utilized in im-
plementation: for the communication layer among KPCs,
MQTT has been chosen as a lightweight message bus.
For semantic reasoning and IR-related tasks, Apache Jena
and Apache Lucene are integrated. JBoss Drools is used
for temporal reasoning and rule based decision-making.
MongoDB (document based DB) is used for long term and
redis (Key-value DB) for short term (caching) persistence.
Two external services are also used: Yandex for text
translations and Clarifai Image and Video Recognition
API for visual content tagging.

Filter, Classifier, Correlator, and Incident Manager are
implemented as Vert.x verticles written in Java. Translator

and it’s subcomponents (Yandex and Clarifi clients) are
written in Node.js. HTTP gateways for mobile devices are
implemented using restify, a web service framework, also
in Node.JS and are behind an NGINX reverse proxy. The
standard serialization format both for the gateways and
message exchange over the bus is JSON. All components
are containerized using Docker and are orchestrated using
Docker Compose.

VII. Conclusion
The necessity of timely access to information pose a

constant challenge in mitigating urban incidents and crisis.
This paper proposes a multidimensional method to clas-
sify, filter, correlate, and cluster user generated incident
report to tackle the information overflow inherent to urban
emergency events. An experimental novel approach has
been conceptualized to estimate an incident’s actual loca-
tion from the location of its reporter for spatial reasoning.
Concepts and methods from information retrieval and
artificial intelligence have been utilized for classification
and semantic reasoning of incident reports. It has been
shown how temporal, semantic, and spatial reasoning can
provide a basis for incident report digestion and briefing.
The distributed microservice-based architecture foresees
potential bottlenecks of a monolithic system and counters
them with seamless horizontal scaling and redundancy,
and addresses fault-tolerance and availability. Within the
framework, the one-request/multiple-response paradigm,
where multiple components process the same request
and provide multiple responses, enables preliminary data
processing with responses of lower quality until responses
of higher quality are provided so that soft real-time
constraints are enforced and retrospective data correction
is achievable.

The planned pilot projects across European cities pro-
vide a basis for a thorough evaluation of the system in
terms of accuracy and precision. In a further step the
system resilience is to be tested under high loads to check
how well realtime constraints are satisfied.
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