WASTE HEAT UTILISATION OF POWER TO HYDROGEN PLANTS FOR LOCAL AND DISTRICT HEATING

Nikolas Knetsch

Marius Holst

Fraunhofer Institute for Solar Energy Systems ISE

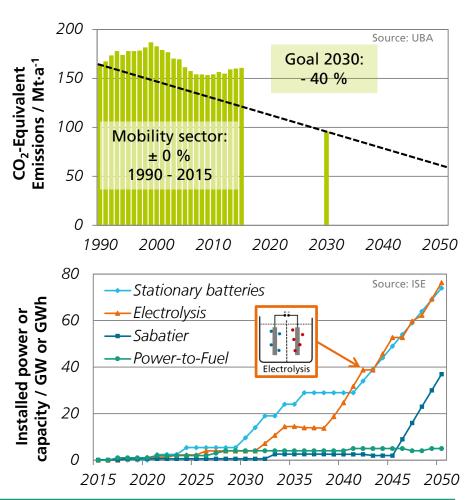
IRES 2018 / E3 Power to X (2) Düsseldorf, 15th March 2018 www.ise.fraunhofer.de

AGENDA

- Project presentation
- Motivation
- Introduction
- Methodology
- Results
- Conclusion and outlook

Project Presentation

Power-to-Gas-Leuchtturm Baden-Württemberg


- 1 MW electrolysis with trailer filling
 - Economical operation ensured by usage of hydropower
 - Commissioning fall 2018
- Run by german-swiss energy supplier EnergieDienst AG
- Supply of customers like hydrogen filling stations, carriers, industrial companies via trailer
- Heat extraction is taken into account for the near future
 - First assessment in this project
- Project homepage: <u>www.ptg-bw.de</u>

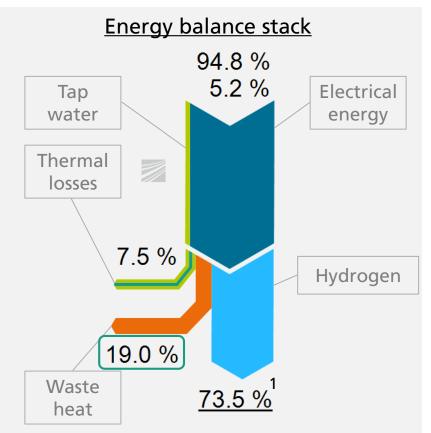
Motivation – Power to Hydrogen An important puzzle piece against climate change

- Large share of renewable energy (> 80 %) targeted by the german government until 2050
- PtH₂ is one of the missing links between the different sectors in the energy system
- + Highly flexible operation
- Max. power and storable energy can be varied independently
- + Large scale storage (caverns)
- Critique: allegedly low efficiency of the whole process compared to direct use of electricity
- \rightarrow Integrated energy system

<u>References</u>

ISE: Henning, Palzer, Was kostet die Energiewende?, **2015** UBA: Umweltbundesamt, Nationale Inventarberichte zum Deutschen Treibhausgasinventar 1990 bis 2015

(Stand 02/2017) and estimation for 2016 (state 03/2017)



© Fraunhofer ISE FHG-SK: public

4

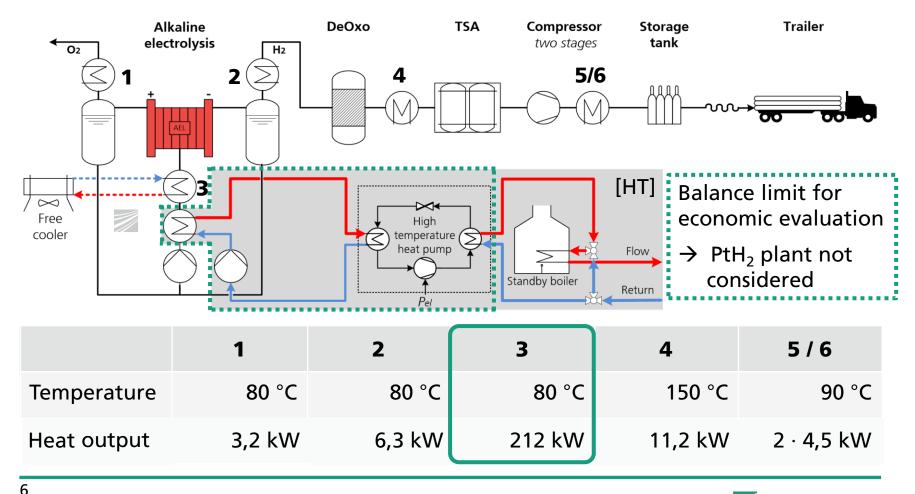
Motivation - Waste Heat Extraction from PtH₂ plants A first footstep to largely increase the efficiency

- About 7 % of the German CO₂ emissions are caused by district heating purposes¹
 - Only 11 % of the end energy used in households is from renewable source²
 - \rightarrow Decarbonization slightly advanced
- 73.5 % of input energy in electrolysis stack is converted to hydrogen
- Up to 19 % of the input energy needs to be cooled in the PtH₂ process
 - → Enormous potential for usage in local and destrict heating grids

¹ no faraday losses considered in this chart

References

1: Umweltbundesamt, Nationale Inventarberichte zum Deutschen Treibhausgasinventar 1990 bis 2015



- (Stand **02/2017**) and estimation for 2016 (state **03/2017**)
- 2: BMU: Klimaschutz in Zahlen, 06/2015

© Fraunhofer ISE FHG-SK: public

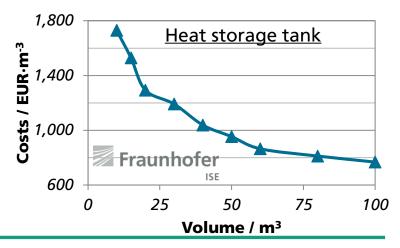
ISE

Introduction Waste heat potential of PtH₂ and ways of utilisation

Methodology

Technical and Economical Input Values and Assumptions

2017


- Input time series
 - EEX Day ahead price
 - Temperature profile
 - Heat demand from standard load profiles (SLP)
- Boundary conditions

Space heating & domestic hot water

$$\eta = \frac{m_{H2} \cdot HHV + (Q_{heat})}{E_{el}}$$

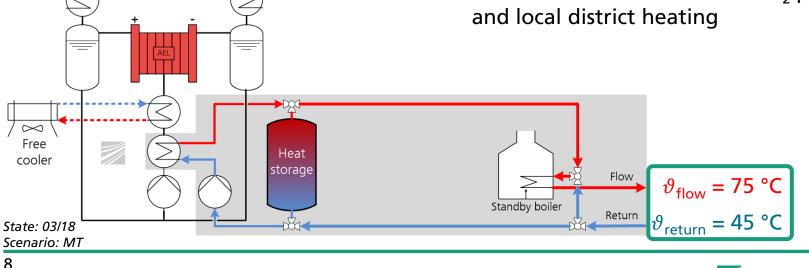
$$LCOHeat = \frac{ANF \cdot \Delta CAPEX + \Delta OPEX}{Q_{injected}}$$

Component	Costs	Unit
Heat exchanger	10.000	EUR
Grid connection	50.000	EUR
Industrial heat pump	250	EUR/kW
Piping	250	EUR/m
Surcharge	30	%
OPEX	1	%/a

Results - Concept

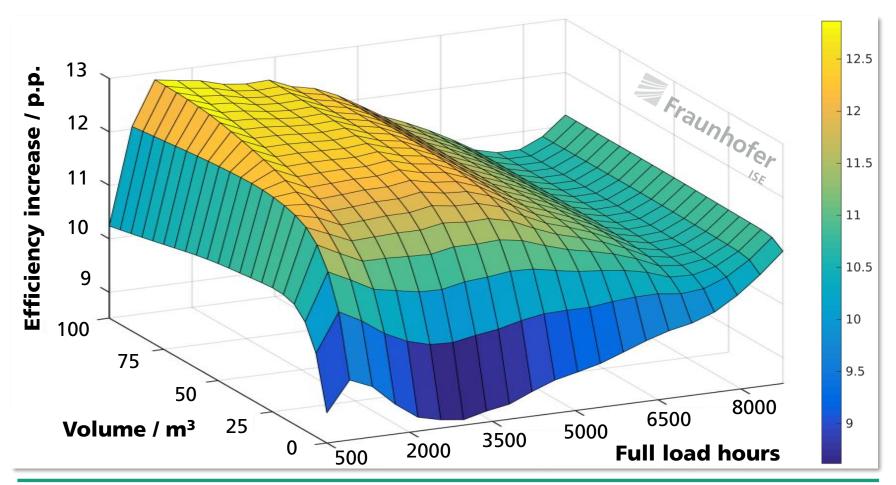
Supply of a New Housing Estate (Medium Temperature)

- Role of PtH₂ plant in the heat grid
 - Medium to large supporter
- Peak heat load grid: 500 kW

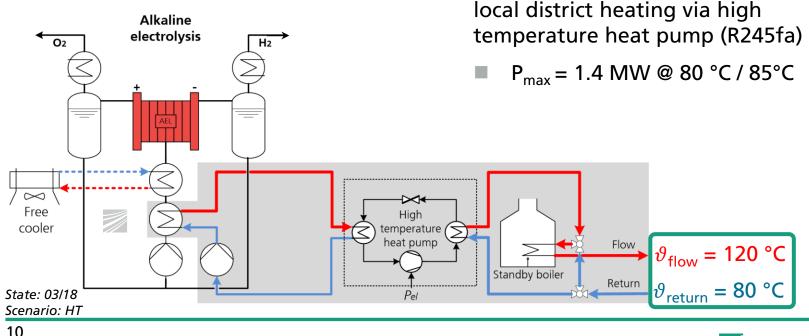

Alkaline

electrolysis

Annual heat demand grid: **1.25 GWh**

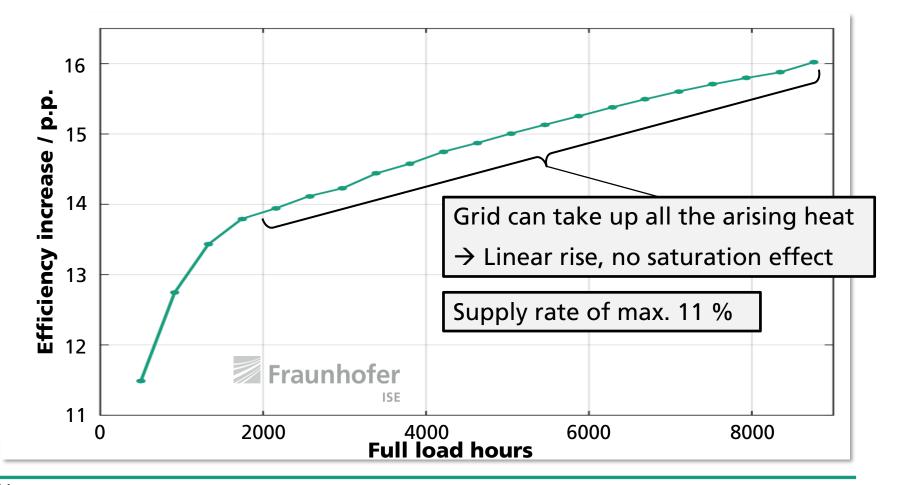

- Heat grid length: 2,500 m
- Varying design:
 - Heat storage volume: 0 100 m³
 - Full load hours stack: 500 8760 h
- Direct connection between PtH₂ plant and local district heating

02

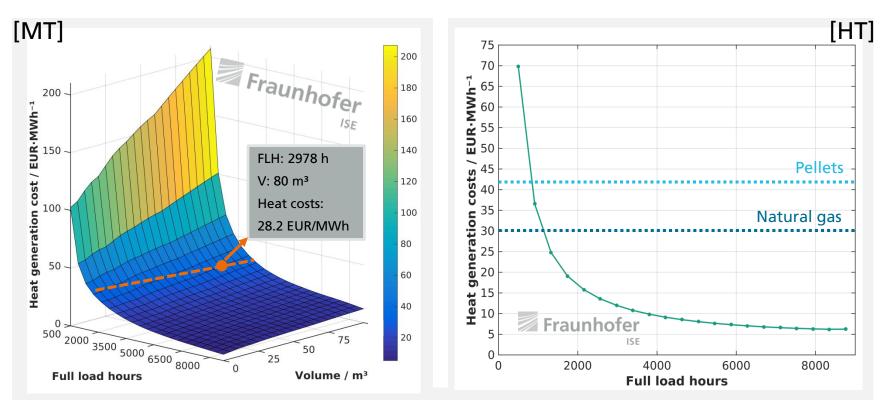

Results – Technical Supply of a New Housing Estate (Medium Temperature)

Results - Concept Supply of an Existing Heat Grid (High Temperature)

- Role of PtH₂ plant in the heat grid
 - Small to medium supporter
- Peak heat load grid: 50 MW
- Annual heat demand grid: **125 GWh**


PtH₂ plant with **10 MW stack power**

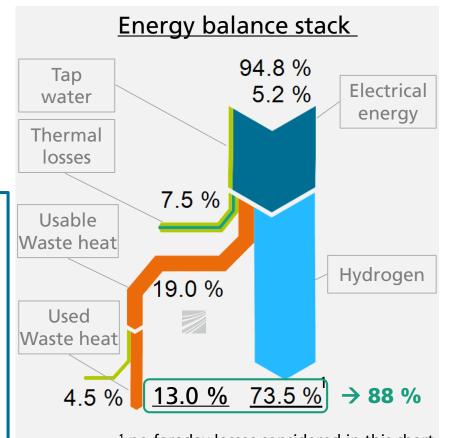
Varying FLH, **no heat storage** tank


Connection between PtH₂ plant and

Heat grid length: 25 km

Results – Technical Supply of an Existing Heat Grid (High Temperature)

Results – Economic Comparison of Heat Generation Cost



- High number of full load hours is beneficial for heat generation costs
- \rightarrow Best trade-off between heat production costs and efficiency increase important

Conclusion What can we learn?

- Efficiency increase between 8.5 and 16 p.p. easily possible
- Up to 68 % of the generated waste heat was used for heating purposes
- Low LCOHeat of 5 30 EUR/MWh can be achieved
- Conclusion
 - Enormous potential to save primary energy and increase the efficiency of PTH₂ systems
 - Results are strongly depending on the scenario
 - \rightarrow No universal statement possible
 - \rightarrow New calculation for each scenario

13

Outlook What else can be thought?

- Large scale heat storage for seasonal heat storage > 100 m³
 - Useful in case of electricity usage from photovoltaics
 - Not considered in this project
- Usage of the generated oxygen (O₂) for optimized combustion processes
 - Gas-fired or pellet boiler with OxyFuel combusti on $\rightarrow NO_x$ reduce
- Validation of the system simulation in this project scheduled for spring 2019
 - Heat extraction parts can't be validated at the moment, due to lack of measurement data

Fig 1: Hydrogen feed-in plant at Fraunhofer ISE

Thank you for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Nikolas Knetsch, Marius Holst

www.ise.fraunhofer.de www.h2-ertragsgutachten.de www.pem-electrolysis.de

nikolas.knetsch@ise.fraunhofer.de

MINISTERIUM FÜR WIRTSCHAFT, ARBEIT UND WOHNUNGSBAU

