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The building sector accounts for about 30% of the global final energy consumption. Most of the

consumed energy originates from fossil fuels. The operation of buildings is known to suffer from

various deficiencies, degrading their energy performance. An untapped potential lies, therefore, in

the optimization of building operation to significantly reduce CO2 emissions and to increase the

cost effectiveness and user comfort. Over the past 40 years, extensive research has been carried out

to investigate and develop methods for building performance optimization based on measured data

from building services, such as heating, ventilation, air conditioning, and lighting systems. The

ongoing digitalization trend in the building sector offers the opportunity to easily access large

amounts of high-quality measurement data and semantic building information as digital descrip-

tions. This facilitates the development and implementation of automated routines for the continu-

ous supervision and optimization of building operation, including reliable fault detection and

diagnosis and model-predictive control. This review article is focused on three major research

topics in the field of energy-efficient buildings, namely, semantic interoperability between hetero-

geneous and complex systems, methods for fault detection and diagnosis, and model-predictive

control. VC 2018 Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5053110
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I. INTRODUCTION

Today, buildings are responsible for about 30% of the

global final energy consumption.1 In the future, the energy

consumption of the building sector is expected to increase

further due to population growth and higher levels of mecha-

nization in buildings.2 Although building services, like heat-

ing, ventilation, and air conditioning (HVAC) systems, are

supposed to improve living comfort, several studies point

out that they violate comfort conditions and waste large

amounts of energy when they are poorly operated.2–4

A high level of mechanization in buildings and an

increasing amount of sensor data from building services also

offers the potential to operate buildings highly efficiently

and thus limit energy wastage, where, at the same time,

indoor comfort is maintained. This is particularly relevant

for large commercial buildings due to their high energy

demand. The exploitation of this potential has been the sub-

ject of intensive research during the past decades.

Related research activities aim at optimizing the building

energy performance by supervising operation, detecting faults,

and optimizing controls of building services. The approaches

investigated range from mathematical modeling of the physical

relationships through statistical descriptions to methods from

data mining and machine learning. Despite significant advan-

ces in these domains, partly due to major international initia-

tives (e.g., Annexes 25, 34, 40, and 47 within the Energy in

Buildings and Communities Programme of the International

Energy Agency), the adoption of advanced methods for build-

ing energy performance optimization in the architecture, engi-

neering, and construction (AEC) industry is lagging behind thea)Electronic mail: gesa.benndorf@ise.fraunhofer.de

1931-9401/2018/5(4)/041501/19 VC Author(s) 2018.5, 041501-1

APPLIED PHYSICS REVIEWS 5, 041501 (2018)

https://doi.org/10.1063/1.5053110
https://doi.org/10.1063/1.5053110
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.5053110
mailto:gesa.benndorf@ise.fraunhofer.de
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5053110&domain=pdf&date_stamp=2018-09-17


demonstrated potential. This is partly due to the heterogeneity

of systems and data along with information deficits, which hin-

der cost-efficient implementation of these methods.

The standardization of information exchange formats

and communication protocols as well as the ongoing digiti-

zation of the building sector make it feasible to automate

time-consuming and fault-prone manual processes. Recent

developments take account of the increasing amount of digi-

tized building information [e.g., from building information

models (BIM)] and use this information via web technolo-

gies for data analysis.5–8 These advances can facilitate the

replicability and scalability of fault detection and diagnosis

(FDD) and model predictive control (MPC), enabling wide-

spread deployment.

In this article, we review literature related to energy

performance optimization in buildings. Figure 1 displays a

schematic overview of the optimization process, as is

described here. The process starts with the retrieval of data

from a building automation system (BAS), providing semantic

information and time series data from sensors and actuators in

the field. Additionally, methods for building performance opti-

mization have access to data from heterogeneous sources like

BIM or the world-wide web. Information modeling and inter-

operability between heterogeneous systems present in build-

ings are reviewed in Sec. II.

Depending on the specific application and the source of

the data, different preprocessing steps are needed. Examples

for simple preprocessing of sensor data are the treatment of

missing data, data aggregation over certain time intervals,

limit checking, or unit conversions. Semantic data might have

to be checked for consistency or transformed into a given data

format in a preprocessing step. Although data preprocessing

represents a crucial part of the whole process, it has minor sci-

entific content and is therefore not reviewed here in detail.

Within the methods for building performance optimiza-

tion, one can distinguish between FDD and MPC. FDD

implies, as a first step, a continuous supervision of the sys-

tem behavior (monitoring). In the simplest case, special plots

are automatically generated, which allow quick (manual)

assessment of building services operation. Advanced meth-

ods for automated FDD, which provide a deeper analysis of

the building data and reveal faults and suboptimal operation,

are treated in Sec. III. Additional information about the cause

of a fault, its impact, and recommendations for its elimina-

tion are given to the facility manager (FM) or corrective

actions can be directly fed back to the system via communi-

cation protocols. Predictive maintenance is one application

for FDD methods, which aims at detecting a deterioration of

the system prior to the manifestation of a fault.

Provided a fault-free system operation, the performance

can be further increased by optimizing the controls.

Therefore, a model of the system, measurement data, and

forecasts are used in an MPC routine (see Sec. IV) to predict

optimal control sequences and feed them back to the system.

While in the whole process, uncertainties are present due to

missing or incorrect data and unknown weather conditions

and user behavior; here, the effect and treatment of uncer-

tainties are only addressed in the context of MPC.

The parts of the whole process which are investigated in

detail in Secs. II–IV are highlighted in Fig. 1.

II. SEMANTIC INTEROPERABILITY IN BUILDING
OPERATION

There is a clear perception that the construction and FM

sector can benefit from the availability of large amounts of data

and of advanced analytical and optimization tools, especially if

different knowledge domains like BIM and BAS are advanta-

geously integrated.9,10 For applications like FDD and MPC

presented in Secs. III and IV, BAS are a crucial source of infor-

mation, not only because they provide measurements in the

form of time series data but also because they contain semantic

information on the sensors and devices, allowing them to be

automatically identified and their data to be processed. The

efficient management of these information sources is a key

enabler for the application of advanced methods. Currently, the

information in BAS is structured and exchanged in a large vari-

ety of ways, for example, via the canonical protocols BACnet

or KNX. Each protocol defines a data model, mainly structured

according to the object-oriented paradigm, which organizes the

information of building services, devices, and methods to rep-

resent and exchange it in a network-visible way.

Ideally, standardized information models, in which the

data have a unified structure and meaning, should represent

the basis to interoperate heterogeneous applications and to

manage information over the entire life cycle of buildings. In

fact, the structure and the semantic representation of infor-

mation in buildings are very heterogeneous and suffer from

several deficits: the information is patchy, is scattered over

several applications and media, and is partly duplicated and

inconsistently managed. Furthermore, in many cases, the

information is difficult to access and only by recourse to

specific interfaces, requiring specialized know-how and the

FIG. 1. Schematic overview of the described process of building perfor-

mance optimization. The parts of the whole process which are addressed in

detail in this article are highlighted.
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translation of information from one model structure to

another one. This situation will probably continue for many

years due to the legacy of systems in place and the long life-

time of buildings. Balaji et al. described the current situation

as being dominated by the reign of “cacophony of data and

information.”11 In most cases, the capture of semantic infor-

mation as well as the mapping process between information

from legacy BAS and standardized information models is

realized manually and requires extensive expertise on the

analyzed building structure and services.

The need for semantic interoperability in buildings has

risen to a widely accepted priority in recent years, also due to

the emergence of connected devices like sensors, power

meters, and lights supporting the Internet of Things (IoT) in

modern buildings. Several initiatives and studies have been

undertaken to develop solutions that aim at overcoming these

issues. They range from the development of standardized and

open communication protocols to the integration of different

information models by more advanced approaches using the

potentials of semantic web technology. In this section, we

review the current state of the art in scientific literature on the

topic of semantic interoperability in buildings. We propose

the classification of research activities into three categories, as

shown in Fig. 2: semantic interoperability within BAS (Sec.

II A), between BAS protocols and BIM (Sec. II B), and

approaches using semantic web technology (Sec. II C).

A. Semantic interoperability in building automation
systems

BAS12 are playing a growing role in commercial build-

ings, where they aim to ensure good indoor environmental

conditions for the building users while maintaining high

energy efficiency and low operating and maintenance costs.

BAS are distributed systems designed for the computerized

control and management of building services like HVAC sys-

tems and interconnect devices like sensors, actuators, pro-

grammable logic controllers (PLC), personal computers, etc.,

through wired and wireless field buses and networks.13,14 This

infrastructure enables the exchange of information between

devices and the execution of complex control and supervision

tasks. The traditional architecture of BAS is often represented

as a three-layer architecture (see Fig. 2): the field layer
includes sensors, actuators, and controllers interconnected via

field buses like KNX, LON, or wireless networks like ZigBee

or Z-Wave. The automation layer consists of PLCs covering

measurement processing, control, and alarm tasks for the devi-

ces of the field layer and uses protocols of both the field and

the management layer.15,16 The management layer forms the

upper tier of the architecture and is constituted of supervisory

control systems (SCS), human-machine interfaces (HMI) with

configuration and monitoring features, as well as databases for

time series data archival (DBs). Typical protocols of the man-
agement layer are BACnet or OPC.

Information modeling in BAS mainly addresses the rep-

resentation of device properties containing the meta data

associated with specific information (e.g., device identifica-

tion, encoding, control, signal processing, or alarm require-

ments). For example, BACnet models modulate a two-way

valve as an analog output object with values ranging from

0% (closed) to 100% (fully open). This information is useful

for third-party applications like FDD or MPC using the valve

signal to detect faults or to optimize its control. However,

Akin points out that BAS provide large amounts of informa-

tion that are not useful for applications and that appropriate

culling procedures are required.17 Furthermore, BAS do not

FIG. 2. Schematic overview of semantic interoperability in buildings and related article sections.
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provide an explicit semantic description of the system struc-

ture (i.e., dependence between systems, relative topological

position of devices, etc.), detailed technical device informa-

tion or control strategies.18 To support the parametrization of

some modeling approaches or of some FDD methods as well

as to provide context information to the end user in the case a

fault is detected, additional information, such as location, type,

manufacturer, and technical characteristics, are necessary.

For the designation of data points and devices in BAS,

guidelines like ISO 16484 recommend the use of hierarchi-

cally structured naming systems that specify the building

name, the floor, or the provided service as well as meta data

like units and preprocessing principles.16 Applied to BAS of

complex facilities, such naming systems enable the unambig-

uous identification of information by humans and machines

and facilitate the implementation of third-party applications

like FDD.18 BIM can be an important source for this kind of

information. Nevertheless, due to the lack of appropriate

standards in this domain and the fact that, today, only very

few buildings hold a BIM, when analyzing BAS data of

legacy systems, the first task is to identify the meaning of

data points names and the mapping to a unified scheme. A

way to support this process is to identify and to classify BAS

data automatically. Therefore, Hong et al., Gao et al., and

F€utterer et al. proposed approaches based on machine

learning.19–21

Over the past 20 years, BAS have evolved from proprie-

tary solutions to open communication standards and service-

oriented architectures (SOA) based on IP networks enabling

the use of web services.22–25 SOA add an additional layer to

the traditional architecture of BAS that allows web-based

management and integration of modular applications like

weather services, analytics, or demand-side management.

Available standards using web services are, e.g., BACnet/

WS or the platform-independent open standard open building

information exchange (oBIX).16,26,27 These standards enable

the information exchange from machine to machine by

using, e.g., simple object access protocol (SOAP) or repre-

sentational state transfer (REST) interfaces via hypertext

transfer protocol (HTTP).

Semantic interoperability in BAS addresses two main

challenges: to facilitate communication between different

protocols used at the different layers inside BAS and to pro-

vide information on BAS devices for third-party applications.

Within BAS, dedicated routers provide gateway func-

tions to interconnect between layers or networks using dif-

ferent protocols.13 The main concern is to make the devices

addressable between the different networks via specific pro-

cedures that translate the information from one protocol to

another. For example, the ISO 16484 standard contains a

clause describing the mapping modalities from BACnet

objects and properties to corresponding KNX datapoints and

functional blocks.16 Nevertheless, although gateway solu-

tions are widely available on the market, the translation of

information between protocols is not fully standardized and

scientific literature or guidelines on this topic are rare. This

leads in some cases to additional programming efforts that

generate additional costs and to interoperability issues that

degrade the correct functioning of building services.

The evolution of BAS to a service-oriented architecture

has raised the interest of the building automation community

for solutions like oBIX and the OPC unified architecture

(OPC UA). Neugschwandtner et al. investigated the transla-

tion of a KNX network into oBIX to enable an oBIX client

to pull data from a KNX installation and to control KNX

devices.28 While they advocated its use in the gateway

design, they emphasized the high implementation costs due

to the complexity of the oBIX standard and recommended a

benchmark with approaches using BACnet/WS or OPC UA.

Later, Kastner et al. used the BACnet/WS data model to map

information from a KNX network and dispose it via web

services.26 Although they demonstrated the capacity of

BACnet/WS to cope with non-BACnet protocols, their

approach is hampered by high mapping efforts. Fernbach

et al. proposed an approach to model BACnet information in

OPC UA by transforming BACnet objects and their respec-

tive properties into OPC UA complex objects.29 In a similar

way, Granzer et al. presented an information modeling

method that adds a domain-specific information model

implemented in communication protocols like BACnet,

KNX, LONWorks, and ZigBee into OPC UA. Furthermore,

they leveraged the rich set of services, the generic, compre-

hensive, and extensible information model of OPC UA for

the use of web services.30 Cavalieri et al. stated that the

main limitations to the interoperability in buildings are pre-

sent at the information level.31 To overcome this, based on

initial efforts to integrate KNX with the OPC UA informa-

tion model, they proposed an approach to represent KNX

functions and data structures in an OPC UA information

model. In 2015, Schachinger et al. established a concept to

interoperate BAS on the basis of RESTful BACnet/WS.32

The following year, the BIG-EU and the OPC Foundation

released the report “OPC UA Information Model for

BACnet” that defined an OPC UA Information Model to rep-

resent the BACnet architectural models with the objective of

enhancing the integration of BAS networks at the enterprise

level.33

B. Building information modeling

In the construction sector, the BIM method is being

widely discussed as the solution to the problem of informa-

tion management during a building’s entire life-cycle. BIM

enables consistent data storage and management of informa-

tion in a unique model as well as seamless data exchange

between different actors and software tools on the basis of

standardized schemas like the industry foundation classes

(IFC), green building XML (gbXML), or construction opera-

tions building information exchange (COBie).34 Furthermore,

BIM has the potential to model BAS devices and functions in

a standardized way and to improve the semantic interopera-

bility between systems by providing a common information

model. Whereas the construction industry has developed

manifold BIM approaches and tools since the first conceptual

idea in the early 1970s, the concrete implementation of BIM

in the building sector is a recent trend with different maturity

levels across industrial countries.35 The benefits of BIM in

terms of improving productivity and quality in the design and
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construction phases of buildings have been demonstrated in

several pilot projects and are now undeniable. The use of

BIM as a centralized information source for numerous FM

tasks offers clear advantages for commissioning and in the

operation phase of buildings.36,37 After the handover phase,

facility managers can refer to the BIM, which contains all

information on construction, to support operation and mainte-

nance of the facilities including the BAS. This can improve

the current situation that is characterized by a critical loss of

information between the design and commissioning phases,

due to non-standardized methods, and processes for the

exchange of information.38 Consequences are flaws and faults

that appear after BAS have been commissioned or during

their service operation that degrade indoor comfort and

energy performance of buildings. Bercerik-Gerber et al. iden-

tified potential application areas and data requirements for

the use of BIM in FM and emphasized the fact that interoper-

ability issues between BIM and applications like computer-

aided facility management (CAFM), energy management

systems (EMS), and BAS are a prerequisite to leverage

synergy between these applications.39 Furthermore, they pro-

posed a structure for non-geometric data requirements in FM

that a BIM could provide and described different use cases

where BAS could benefit from the information of a BIM, like

localization of equipment and of served areas, sensor infor-

mation for set-point verification, and control strategies.

However, less research has been dedicated to this topic than

that to the use of BIM in the design and construction phase.

After this brief introduction to BIM, we review different

articles that aim at enabling the description of BAS network

structures, building services, and control strategies in BIM

with the objective of streamlining the information exchange

between design, commissioning, and processes of the opera-

tion phase. Karavan et al. and Malinowsky et al. investigated

the integration of BAS network structures into construction

projects using BIM. The first group of researchers proposed

a method that links a LonWork Network Service (LNS)

model representing the structure of a LON automation net-

work with a BIM based on IFC.40 The objective is to interop-

erate between LON and IFC and to gain added value from

data of the LON protocol in building management applica-

tions. By using the same technologies of LON and IFC,

Malinowsky et al. demonstrated three possibilities to map

process data of LonMark standard functional profiles and

standard network variable types onto an IFC model.41,42 The

next field of interest for the integration of BAS and BIM is

the use of semantic information to enhance the scalability

and the adaptability of third-party applications. In this mat-

ter, Provan et al. developed a generic meta model using BIM

information to automatically generate FDD rules for specific

building services and to define their respective thresholds.43

In a similar way, Dong et al. tested a hybrid FDD method

using information from a BIM-based infrastructure integrat-

ing an IFC model with a data acquisition system based on

BACnet.18 In an attempt to close the feedback loop between

operation and design phases and to provide an assessment of

the energy performance of buildings, Oti et al. developed a

similar approach using a .NET-framework that incorporates

BAS data into a BIM environment.10

Besides the digital modeling of BAS networks and

building services in BIM, the description of control strategies

for building services in BIM enables long-term information

storage, management, and access in the operation phase. The

current IFC version provides modeling capabilities for sen-

sors, actuators, and controllers as well as the possibility to

describe control mechanisms in IFC.44 The latter was inves-

tigated in Benndorf et al.45 for three simple control strategies

of HVAC systems. Furthermore, to enable the information

exchange with BAS over semantic web technologies, the

authors converted the extended IFC file by use of the emerg-

ing ifcOWL ontology.46,47

C. Semantic web technologies

The mutation of BAS over the last 20 years to web-based

solutions sharing information with heterogeneous applications

has created the urgent need for the elaboration of common

vocabularies and taxonomies that provide semantic interoper-

ability. In this context, semantic web technologies can signifi-

cantly facilitate information exchange, as they can cope with

heterogeneous data, support interoperability across diverse

knowledge domains, integrate distributed data, and apply

inference to extract new knowledge from this data.48 To over-

come the fragmentation of information in BAS, several

research teams have investigated the use of ontological mod-

els that allow expressing the syntax and the semantics of

objects as well as their relationships in a formal and declara-

tive way. Ontologies conforming to the rules of the World

Wide Web Consortium are described through the resource

description framework schema (RDFS) that provides a vocab-

ulary using the RDF data model. Knowledge on objects and

relationships is expressed as semantic triples of the form sub-
ject predicate object. Based on RDFS, the web ontology lan-

guage (OWL) allows the formulation of complex ontologies.

In an initiative to create a recommendable OWL representa-

tion from the EXPRESS schema of IFC and thus to simplify

the access to IFC information via semantic web technologies,

Terkaj et al. and Pauwels et al. developed the ifcOWL ontol-

ogy as well as an EXPRESS-to-OWL converter.47,49

The Project Haystack developed a relevant meta data

schema for BAS with the objective of facilitating the deploy-

ment of IoT technologies in buildings by standardizing

semantic data models through the definition of tagging mod-

els, data formats, and data structures for building services

like HVAC systems on the one hand and data exchange

mechanisms through web services using REST APIs on the

other.50 A further modeling approach is the smart appliance

REFerence ontology (SAREF), which provides a common

architecture and semantic interoperability to sensors and

devices using different assets (like, e.g., EnOcean, KNX, or

Z-Wave).51 Notable approaches using ontologies to capture,

structure, and provide knowledge to applications linked with

BAS have been realized by Dibowski et al. and Ploennigs

et al. with the development of appropriate ontology models

for the design of devices in BAS.52,53 Lee et al.,54

Tomasevic et al.,55 Ploennigs et al.,56 and Delgoshaei et al.5

developed further approaches based on ontologies linked

with BAS, EMS, and FDD applications. Bhattacharya et al.
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compared the ability of the Haystack schema with the IFC

and the SAREF ontology to describe data points exhaus-

tively in BAS, to capture relationships between data points,

to express meta data uncertainty, and to include emerging

concepts like new sensor technologies.51,57 They demon-

strated that none of the investigated schemas is appropriate

to fulfill these requirements. Based on these conclusions,

they developed a concept combining expert knowledge and

machine learning to identify non-standardized sensor names

and to translate them into a common namespace based on

the taxonomy of the Project Haystack.50,58 They showed that

their synthesis technique needs only a few examples to iden-

tify the most commonly occurring sensors required for a

fault detection application and that it is robust against ambig-

uous and noisy tags. Balaji et al. emphasized the fact that the

scalability of third-party applications is hindered by a lack of

a common data representation, as a mapping of the heteroge-

neous data to a common format is required for each build-

ing.11 To overcome this, they designed a schema called

Brick describing the data points contained in BAS together

with their meta data and relationships. The data format and

query language of Brick adheres to the RDF data model and

the authors applied the concept of tags from the Project

Haystack59 in the Brick ontology to describe building meta

data by means of hierarchies, relationships, and properties.

Additionally, they showed how Brick can describe a set of

entities and relationships in buildings that are useful to a

range of eight third-party applications including FDD and

MPC. Nevertheless, although they identified the conversion

of legacy meta data to Brick as a future challenge requiring

automated mapping techniques, they give no indication on

the communication protocols encountered in buildings and

how they realized the mapping from the existing different

meta data sets to Brick. Furthermore, they acknowledge that

the manual and cost-intensive capture of scattered and non-

digitized information on the equipment types and relation-

ships remains a technical and organizational barrier for the

application of the schema.

D. Conclusion

The presented review gives an overview of recent devel-

opments to overcome the current interoperability issues in

BAS by creating links between the various knowledge

domains. Despite several standardization efforts for the use

of BIM in FM, the adoption of this method in the industry is

still in its infancy.10,60 Data models are missing or are insuf-

ficient and there is a lack of interoperability between soft-

ware tools like BIM, BAS, and CAFM software. There is a

need for additional research, development, and standardiza-

tion in this domain to facilitate the adoption of solutions

based on digital models for the design, the commissioning,

and the operation of BAS. Furthermore, since the majority of

the legacy BAS in place do not provide all the emerging and

useful features like open protocols, web services capabilities

and BIM, the AEC and FM sectors have to cope with this

heterogeneity if they want to harness the efficiency and

carbon dioxide emission reduction potentials in existing

buildings by using energy efficiency applications like FDD

and MPC. To this, they have to promote new standards and

approaches that take this situation into account and enable

practicable and efficient interoperability between legacy sys-

tems and innovative solutions. In this context, the American

Society of Heating, Refrigerating and Air-Conditioning

Engineers (ASHRAE) committee in charge of the BACnet

standard announced recently its intention to investigate the

integration of Haystack tagging and Brick data modeling

concepts into a new semantic standard for building data.61

The results of this standardization efforts might contribute to

tackle the interoperability issues in the AEC and FM sectors.

III. FAULT DETECTION AND DIAGNOSIS

This section provides an overview of current research

concerning FDD in building operation and indicates future

directions in the field. It has been widely recognized that the

building sector lags behind other industries where automated

FDD is critical, such as aerospace, nuclear power plants, and

chemical and manufacturing processes.62 Since early works

in the 1990s,63–67 there has been increasing interest in auto-

mating FDD in building applications.68,69 Although a consid-

erable amount of research has been conducted by now,

the implementation of automated FDD in practice is still rel-

atively sparse.70

Comprehensive reviews cover recent advances of FDD

in industrial processes71–73 and in building systems.4,70,74,75

In the following, these articles are carefully condensed and

complemented by a stronger focus on machine learning

methods, the quantitative performance evaluation of these

methods, and their applicability to fault diagnosis.

A. Methods

The whole task of FDD can be separated into two steps,

a detection step and a diagnosis step: In the detection step, a

fault is identified (for a certain time interval). In the diagno-

sis step, the detected fault is characterized in more detail by

specifying the involved sensors, components, or subsystems

and possibly naming a specific reason for the fault. In the

following, the two parts of FDD are described separately, as

they can be treated as independent problems.

1. Fault detection

The methods which can be applied to detect faults in

building systems are diverse. Accordingly, various classifica-

tion schemes for these methods have been suggested.4,71,76

While Isermann76 adopts a perspective from signal processing

and provides quite detailed classification, Venkatasubramanian

et al.71 and Katipamula and Brambley4 take a more general

view and subsume methods for fault detection and for fault

diagnosis.

Here, a simple classification scheme is introduced,

where each method is characterized by a group (A or B) and

a type (i, ii, or iii). On the one hand, methods are character-

ized by the nature of the model on which they are based, i.e.,

methods which are based on prediction models (type i) are

distinguished from those which are based on classification

models (type ii) and those which are based on outlier

041501-6 Benndorf, Wystrcil, and R�ehault Appl. Phys. Rev. 5, 041501 (2018)



detection methods (type iii).77 On the other hand, methods

are characterized by the nature of information they require

for setup, i.e., methods which are based on expert knowledge

(group A) are distinguished from those which are based on

measurement data (group B). The resulting categories are

represented in Table I.

Methods of type i are based on a prediction model,

which is designed to represent the nominal (fault-free) opera-

tion and typically provides a continuous value as an output.

The difference between the predicted output value and the

actual measurement gives a residual which is used to deter-

mine a fault condition. Mapping the residual to a binary deci-

sion (i.e., faulty or fault-free) can be done via different

measures, like moving average, T2 or Q statistics, and is the

subject of numerous studies.78–83 There is no clearly defined

method to determine the threshold condition, but a viable

solution has to be found for every specific case. As an asset,

the size of the residual provides a probability estimate for a

fault.

Methods of type ii are based on a classification model

which directly provides a binary result, corresponding to a

fault-free or faulty condition. With these methods, there is

no need to define threshold conditions as for methods of type

i. However, of course, there is also no direct information

about the probability of a fault. A method which is based on

a classification model can often be extended to accommodate

several fault types and thus provide diagnoses readily.84,85 A

drawback is that prior knowledge about faults has to be

provided.

Methods of type iii are based on outlier detection mod-

els. These models generate binary results corresponding to

fault-free or faulty. In contrast to classification models, they

can be set up without prior knowledge about faults, just tak-

ing fault-free operation into account. In this respect, outlier

detection models fall between prediction models (type i) and

classification models (type ii).

Methods from group A are solely based on expert

knowledge. This means that detailed information about the

considered system has to be available and processed in terms

of a model which is then used for fault detection. It is clear

from the nature of these methods that they are difficult and

time-consuming to set up, very specific to a certain applica-

tion, and hardly adaptable to changing boundary conditions.

However, for well-defined problems, such as applications in

air-handling units84 or compression systems,85 methods

based on expert knowledge have been successfully tested

and implemented. A major benefit of this type of methods is

that they can be well understood, as they are based on physi-

cal relationships and logical control mechanisms.

Methods from group B are based on measurement data

from the considered system. This means that the respective

model is trained on historical process data from the system

and thus predicts the occurrence of a fault according to the

patterns learned from the training data. These methods can

be set up with little knowledge about the system under con-

sideration, provided that large amounts of measurement data

are available. For this reason, measurement-based methods

are highly attractive and frequently employed, not only in

the field of building performance optimization.77

Nevertheless, there are well-known drawbacks for this type

of methods, namely, the need for labeled training data (i.e.,

data, which is known to correspond either to correct opera-

tion or to faulty operation) which actually also requires

expert knowledge beforehand. Furthermore, the resulting

models are typically so-called black-box models where

the internal structure does not necessarily correspond to the

behavior of the real system and therefore can hardly be

understood. An exception in this respect is decision tree

models, as they provide a set of rules which can be checked

for plausibility. Finally, another well-known issue of meth-

ods from group B is the limited applicability of these models

beyond the conditions for which they were set up (i.e.,

trained).

Naturally, there are methods which cannot be classified

unambiguously into one of the six described categories. For

example, so-called gray-box models86,87 are based on infor-

mation both from expert knowledge (group A) and from mea-

surement data (group B). Furthermore, some methods from

machine learning, like decision trees or neural networks, can

be used either for prediction (type i) or for classification (type

ii). Nevertheless, the classification scheme introduced here

covers most of the cases found in the literature and highlights

the most distinctive characteristics of the different methods.

In the following, examples of applications, advantages,

and disadvantages are described for each of the mentioned

categories.

Expert knowledge can be used to set up a mathematical

model representing the real physical relationships of the con-

sidered system. Such a method falls into category A.i. The

models which have been developed for FDD range from

detailed simulation models to simplified physical models of

building systems.88–91 Before being used for FDD, these mod-

els require initial calibration which is often hindered in the cur-

rent applications by a lack of high-quality measurement data.

A great advantage of simulation models is, however, that faults

can be artificially implemented. Fault simulations thus serve as

training data for other routines82,92,93 (from group B) and allow

fault impacts to be studied.94–96 Additionally, the models can

easily be reused for other applications like MPC, as the model

structure corresponds to the physical system.

Expert knowledge can also be used to formulate rules.

Such IF-THEN rules typically define physical limits for single

TABLE I. Classification scheme for fault detection methods.

Fault detection based on A: Expert knowledge B: (Labeled) measurement data

i: Prediction Physical models E.g. regression models, neural networks (NN), and qualitative models

ii: Classification IF-THEN rules E.g. decision trees, support vector machines (SVM), Bayes classifiers, and logistic regression

iii: Outlier detection IF-THEN rules E.g. density-based clustering methods and principal component analysis (PCA)
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signals (limit checking) or correspond to known faults of a

given system. A comparison of the predefined set of rules with

measurement data allows faults to be detected. Depending on

the formulation of the rule set, this method belongs to category

A.ii or A.iii. A set of rules can be intuitively applied, which

makes this method very attractive for many industrial applica-

tions. In building performance optimization, rule sets have

been defined and employed for air-handling units (AHU)84 and

vapor compression systems.64,85,97 In a broader sense, the pre-

processing of measurement data for use with any model or

application is often done via simple rules. Moreover, a prop-

erly implemented rule-based system can directly provide a

diagnosis. Despite the deficiencies inherent to all expert sys-

tems, rule-based system are frequently used to complement

other methods in FDD routines.63,98,99

Common methods which provide predictions based on

measurement data are, for example, regression models and

neural networks. These methods belong to category B.i.

Applications for fault detection in buildings have employed

regression models,100 neural networks,82,99,101,102 autore-

gressive models,78,102–104 or qualitative models.92,105 The

required training data must contain only data of one class,

corresponding to fault-free operation. Although this makes it

relatively easy to provide training data for these methods, it

means that methods of category B.i are prone to detect many

false positive events. Because the training data set contains

only fault-free data, all data differing from the previously

seen type is interpreted as faulty. This makes appropriate

training of these methods very difficult and ideally demands

training data from all fault-free conditions. Moreover,

methods based on prediction models need additional infor-

mation about the measurement data, namely, those which

should be treated as inputs and those which should be

treated as outputs of the model. Strictly speaking, this is

also expert knowledge.

Common methods for classification, belonging to cate-

gory B.ii, are, for example, decision trees (and their ensem-

ble counterparts), support vector machines (SVM), or

Bayesian classifiers.80,91,106 In contrast to methods from cat-

egory B.i, the training data for these methods has to contain

both fault-free and faulty data. This makes the application of

such methods difficult, because a fault has to occur in the

system before it can be identified by the method. This also

implies that no novel faults can be detected. However, if the

required training data is available, this type of method per-

forms very well107 and can be extended to several fault

types, which then allows for diagnosis.

Methods for outlier detection can be based on clustering

methods or principal component analysis (PCA). These

methods are typically trained on fault-free data and identify

those data points as outliers (i.e., faulty) which differ signifi-

cantly from the remaining ones. These methods are assigned

to category B.iii. Similar to category B.i, these methods are

not only able to detect novel faults but also tend to generate

a relatively high number of false positives. Like those from

category B.ii, these methods provide binary outputs and treat

all measurements equally as inputs. Applications of methods

from this category to fault detection in buildings include

PCA,96,108 clustering methods,93 or statistical evaluation.109

Zhao et al.110 compare a PCA-based method to a method

based on support vector data description (SVDD), which is

similar to a density-based clustering approach.

2. Fault diagnosis

The second step of the whole FDD process, the diagnosis

step, comprises diverse approaches and cannot easily be sub-

sumed in a few categories. However, a general principle is

that in order to perform fault diagnosis, some kind of infor-

mation has to be provided about possible faults in the system.

Similar to groups A and B above, this information can either

be available in the form of (1) explicit expert knowledge or

(2) measurement data, which is known to belong to certain

faulty operation (implicit expert knowledge).

Explicit expert knowledge can be provided as expert

rules, where each rule is related to a certain fault.84 Violation

of a specific rule thus directly gives a corresponding diagno-

sis. A similar procedure can be applied using fuzzy rule sets,

where the respective fuzzy rules are retrieved from simulated

faulty operational data.111 Other approaches employ prede-

fined sign patterns.63,64,98,112 These patterns associate the

directions of deviations of measurements from the expected

values, i.e., the signs of the residuals, to certain fault types.

Residuals can hereby be generated, for example, via perfor-

mance indexes from first principles,83 statistical methods,63

regression models,64,112 or neural networks.98,99

Given implicit expert knowledge about faults, i.e., mea-

surement data that is labeled as faulty, one can train a fault

model for each fault, using the provided faulty training data.

Fundamentally, such fault models can be based on prediction

or outlier detection (compare categories B.i and B.iii). Then,

in the case of a detected fault, residuals have to be analyzed

for each fault model in order to give a diagnosis. Najafi et al.
conducted a study employing a Bayesian network approach

and underlying fault models.113 If a classification model (cat-

egory B.ii) is generated using the available data corresponding

to several fault types, the output of the model directly yields a

specific fault type. This approach was reported for decision

trees.80 Often, a combination of two methods is used. For

example, Du et al. used a neural network for fault detection

and a clustering method for diagnosis.101 Yan et al. compared

different combinations of an autoregressive model for residual

generation and SVM and neural networks for fault diagno-

sis.103 Multiple simultaneous faults were addressed with an

extension of SVM to multiple classes.114

Because fault diagnosis strongly relies on expert knowl-

edge, it is hard to automate and scale this task. A knowledge

base or a database, with training data representing normal

and faulty operation for typical system configurations and

individual components, would be necessary to train and eval-

uate methods for fault diagnosis. Many studies use fault data

from simulations to train and test FDD methods. There are,

however, only a few examples where models trained with

simulation data were successfully integrated into real-world

applications.111 This is probably due to the difficulty of

calibrating simulation models with normal and faulty opera-

tional data and transferring the models designed for one

system to another system.80 Sterling et al. suggested a way
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out of this dilemma by using qualitative simulation models,

which provide a greater degree of scalability.115

Some approaches assign fault responsibilities to individ-

ual sensors.93,101 This means that an indicator for each sensor

used for FDD is calculated, which estimates the probability

that this sensor is responsible for a detected fault. From these

probabilities, the affected subsystem or even possible fault

types can be inferred. Although this does not provide any

detailed diagnosis, such methods can be employed without

prior knowledge about faults.

B. Performance evaluation

As described in Sec. III A, extensive literature has been

published on different methods for FDD applied to building

operation. Nevertheless, it is hard to tell from the reviewed

articles which type of method is favorable. This is partly due

to the vast diversity of different subsystems in the field.

There is also a lack of comparative studies which evaluate

the performance of different methods using the same sample

data set. Exceptions are an early publication by House

et al.,107 where several methods are employed, and a study by

Peitsman and Bakker,102 where autoregressive models and

neural network models are compared. The American Society

of Heating, Refrigerating and Air-Conditioning Engineers

(ASHRAE) launched a research project with the aim of

developing tools for the evaluation of FDD methods for chill-

ers.116 Within this project, experimental data for normal and

faulty behavior of a chiller was produced95 and subsequently

used for testing different FDD methods.83,103,110,112,117,118

Some articles report a comparison of different methods based

on the experimental chiller data.103,110,118 However, no initia-

tive has been taken to create an (open-access) data pool for

several HVAC components or whole building systems, simi-

lar to the UCI database for machine learning,119 to train, test,

and validate FDD methods in order to make them compatible

and foster performance optimizations.

Another point which makes it difficult to assess the perfor-

mance of many FDD methods described above is the scarcity

of articles reporting on performance evaluation measures. To

evaluate the applicability of a classification method, the frac-

tion of correctly classified data (or misclassified data) must be

analyzed. Typically, this information is given in terms of a

contingency table or derived quantities, such as sensitivity,

specificity or accuracy.120 The complete contingency table is

given in some articles.98,112,114,117,118,121 House et al. provide

hit rates, corresponding to the sensitivities of the described

methods.107 Cui and Wang report on detection rate (i.e., sensi-

tivity) and false alarm rate (i.e., specificity) of their proposed

method.83 Yan et al. calculate false alarm rates and accu-

racy103 and Du et al. provide information on false alarm rates

and missing alarm rates.82

Despite some exceptions (e.g., Liu et al.103,121) when

methods from machine learning are employed, information

about the size and nature of training, test, and validation data

sets is often missing. Furthermore, most of the reviewed

studies use simulation data or data from well-controlled

laboratory experiments for testing their FDD methods. Only

relatively few articles report applications to real-world

data.69,83,86,104,111,121 This impedes evaluation of the practi-

cability of the proposed methods.

C. Conclusion

The overview of past and current research in the field of

FDD for building applications reveals some shortcomings

and indicates related directions for future research. As

already stated by Venkatasubramanian et al., there are a

number of key requirements for an FDD method to work

properly and to facilitate its implementation in real-world

applications.71 Among these requirements are classification

performance, robustness, adaptability, explanation facility,

and novelty detection. Although a variety of methods exists,

it seems that no approach based on a single method can meet

all the requirements. Furthermore, as mentioned above, each

method has its inherent drawbacks. It is therefore advisable

to invest in the development of hybrid approaches, based on

multiple methods which complement one another.70,72

A relatively new topic in the field is the development of

adaptive methods, which adjust to changing conditions and

learn from user feedback.118,217 The user, e.g., the facility

manager, can hereby validate and improve an existing FDD

method during the course of its application by identifying

misclassified data. Such methods can alleviate the well-

known difficulties with parametrization of black-box mod-

els,102 labeling of training data, and high false positive rates.

Closely related to FDD is the detection of degradation

or, more generally, predictive maintenance. Here, the chal-

lenge is to detect a fault before it becomes manifest. In the

end, the applied methods are similar, but the difference to

FDD is in the broader range where operation is defined to be

suboptimal, rather than faulty.

Finally, routines for FDD can be part of a holistic frame-

work (refer to Fig. 1), where detected faults are analyzed

and, depending on their diagnoses and impacts, corrective

actions are suggested to the technical staff or automatically

triggered. To this end, semantic information about the ana-

lyzed system can be exploited (see Sec. II).

IV. MODEL PREDICTIVE CONTROL

Section III described methods to achieve a fault-free

building operation. Based on a fault-free operation, optimiza-

tion of the building controls can be addressed. Today, sys-

tems for building operation and control typically use

conventional controllers such as on/off and PID controllers.

During the past three decades, Model Predictive Control

(MPC) has been established in industry as a powerful method

for dealing with multivariable constrained control prob-

lems.122,123 Recently, the development of MPC has also been

intensively investigated for the building sector124 and has

shown to have the potential to outperform conventional con-

trol. The basis for MPC is a simulation model that predicts

the evolution of the real controlled system. Using this model

together with a reference trajectory r and forecasted distur-

bances d*, an optimization problem can be solved for a cer-

tain prediction horizon. The resulting control sequences u are

then used in the real controlled system. The optimization is

performed iteratively for a system-dependent control horizon.
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By taking measurements and/or estimates of the initial system

states x in each iteration into account, the control circuit is

closed and uncertainties with regard to the simulation model

and the disturbances can be compensated. In literature, the

following benefits of MPC have been demonstrated:125–129

• Multiple objectives: An improvement of building control

with regard to several pre-defined objectives is possible.

In particular, it is possible to take multiple objectives into

account.
• Constraints: Easy integration of constraints, both for con-

trol and state variables, is possible.
• Multiple Input Multiple Output (MIMO) systems: Interacting

subsystems with possibly conflicting objectives can be taken

into account simultaneously.
• Inertial systems: Improved operation of systems with thermal

or electrical storages can be achieved due to the integration

of predictions of the system behavior and the disturbances.
• Command variables: Easy integration of additional signals

that affect the control objectives (e.g., time-varying energy

prices) is possible.

Nevertheless, drawbacks for the implementation of

MPC in real buildings exist:

• Modelling: Effort has to be invested in the creation of suit-

able simulation models for quantifying the objectives of

the controlled system.
• Expertise: Qualified control engineering personnel is

required for setting up the MPC.
• Data: The calibration of the model requires a large amount

of measurement data from the real system. Furthermore,

weather and occupancy forecasts have to be provided.
• Hardware: The implementation in buildings requires addi-

tional computation capacities, sensors, controls, etc.
• Usability: The functions and control sequences of an MPC

are not as transparent and clear as for conventional con-

trols. Facility managers have to be trained with regard to

operation and maintenance of MPC.
• Costs: Due to the above mentioned points, the investment

for setting up an MPC is higher than for conventional

controllers.

Recent developments with regard to the availability of

high-performance computing and high-quality building oper-

ational data have provided favorable conditions for the suc-

cessful implementation of MPC in building control systems.

A. Methods

In this section, we discuss specific topics concerning

MPC (see Fig. 3): (1) approaches for creating the dynamic

system model, (2) methods for solving the optimal control

problem, (3) methods for the feedback loop of the controlled

system to the controller, and (4) methods for taking the

uncertainties of the disturbance predictions, the model, and

the state estimation into account.

1. Controller model

The heart of the MPC framework is constituted by a con-

troller model that predicts the dynamic behavior of the

controlled system. In the development of MPC, the creation

and calibration of a suitable model represents the most cost-

consuming task, which is estimated to be around 70% of the

total project costs.124 One distinguishes three different model-

ing approaches: white-, black- and gray-box models.130

a. White-box models. White-box models rely on physical

equations such as mass and energy balances from the domain

of thermal and hygrothermal engineering. Many simulation

environments for building and HVAC systems exist such as

EnergyPlus,131 TRNSYS,132 IDA ICE,133 or Modelica,134

which provide physical component models, e.g., for heat

pumps and boilers. Nevertheless, expert knowledge is neces-

sary for the parametrization of the models as specific

building properties require many customized parameters.

Documents from the planning phase may provide parameter

values, whereas these ones are often uncertain or not avail-

able at all. In order to facilitate a stringent model creation

process, recent research has focused on the development of

methods for automatic model parametrization based on

semantic information provided by a BIM.135

The advantage of white-box models is that they gener-

ally provide high accuracy for a wide range of operating

conditions due to the underlying physical equations. However,

the white-box modeling approach often leads to a large number

of state and algebraic variables as well as strong non-linearities

of the model equations that compromise the usability in an

MPC due to high computational load. Therefore, the time

needed for solving the optimization problem in the MPC

imposes limits on the allowable sampling time and the dimen-

sion of the optimal control problem. White-box modeling

approaches have been used for offline control optimization

studies136–139 but were not intended for implementation in a

real building for online optimization.

b. Black-box models. Black-box models are data-driven

models in which mathematical equations for the underlying

physical systems are identified solely based on available time

series data. For the model identification, methods from the

domain of statistics and machine learning are applied. Many

different model types have been investigated for implementa-

tion in MPC: artificial neural networks (ANN),140,141 state

space models via subspace identification,142,143 linear autore-

gressive models in the form of ARX (autoregressive models

with exogenous inputs)144 or ARMAX (autoregressive

FIG. 3. Schematic overview of MPC with major topics and related article

sections.
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moving average with exogenous inputs),145 non-linear autore-

gressive models NARX,146 and fuzzy black-box models

based on local linear models (LLM).147

Black-box models can provide a high accuracy and com-

putational speed but suffer from lack of generalization capabil-

ity,125 i.e., the models may provide only uncertain predictions

of system behavior for states and boundary conditions that the

training data did not include. Therefore, the amount and the

quality of the data are crucial for an effective model identifica-

tion process. Furthermore, thorough pre-processing of the

available data is one of the most important tasks regarding

black-box modeling (see Sec. III). Two different sources for

training data can be used: measurement data from real build-

ings147 or synthetic data from white-box simulation tools.143

c. Gray-box models. Gray-box models aim to take advan-

tage of white and black-box modeling approaches by combining

their underlying principles and providing high computational

speed that is suitable for implementation in MPC. In particular,

thermal resistance-capacity (RC) networks have been investi-

gated for the modeling of buildings and rooms.148–152 The con-

cept of gray-box models is to use expert knowledge to create a

model structure which depends on a certain number of initially

free uncertain parameters, which are identified in a subsequent

parameter estimation procedure. This approach reduces the

search space for model calibration and minimizes the amount of

required measurement data. Furthermore, the given model struc-

ture is intended to enhance the validity of the models with

regard to system states and boundary conditions that are not

included in the training data set.

d. Impact of model complexity. A crucial question for the

implementation of MPC in buildings is the necessary com-

plexity of the simulation model. The physical processes in

buildings are observed to be mostly non-linear.128 The

impact of using linear models, which are computationally

advantageous, instead of non-linear models in MPC was

investigated in Verhelst et al.153 for a modulating air-to-

water heat pump system. A comparison of two MPC

approaches based on a linear and a non-linear model for the

coefficient of performance (COP) of the heat pump revealed

that the linear MPC led to 7% to 16% higher total energy

costs. However, the reduced controller performance was mit-

igated by adjusting the cost function to penalize power

peaks, leading to almost identical energy costs. Another

approach to mitigate the effect of using linear MPC was

investigated by approximating the model’s non-linearities

online during controller operation resulting in a linear time-

dependent model of the building.154 Kruppa et al. analyzed

multilinear approximations of non-linear state space models

that preserve the convexity properties of linear models and

provide higher computational efficiency compared to the

non-linear models.155,156 The impact of the model complex-

ity with regard to the number of state variables was investi-

gated in Ref. 157. For the investigated building, they showed

that the total number of states in the controller model could

be reduced from 250 to 30 while the MPC performance

stayed the same.

2. Optimization

The following equations define a general optimal control

problem, where E is the final state of the system at time tf
and the integral term includes the trajectory L as a function

of the system states x and inputs u:

min
xð�Þ;uð�Þ

EðxðtfÞ; tfÞ þ
ðtf

t0

LðxðtÞ; uðtÞ; tÞ dt; (1)

s:t: _xðtÞ ¼ f ðx; u; tÞ; 8t 2 t0; tf½ �; (2)

xðt0Þ ¼ x0; (3)

gðxðtfÞ; tfÞ ¼ 0; (4)

hðxðtÞ; uðtÞ; tÞ � 0; 8t 2 t0; tf½ �: (5)

The dynamic system model in Eq. (2) and its initial states

in Eq. (3) are constraints of the optimal control problem which

have to be fulfilled in every time step. Equations (4) and (5)

define terminal and path constraints. The model structure

greatly affects the performance of optimization algorithms.

First, non-linearities in the model may lead to non-convex

optimization problems, which impede the convergence to

global optima.158 Second, a high model complexity may

increase the time needed for the numerical integration and

directly affects the selection of an optimization solver.

a. Optimization solvers. The white-box models prepared

with building simulation programs are often highly non-

linear and non-differentiable with respect to the optimization

variables. Therefore, simulation-based optimization

approaches like particle swarm optimization (PSO), genetic

algorithms, Nelder-Mead-simplex, or generalized pattern

search (GPS) are employed.137,138,159–161 The advantage of

these approaches is that they allow the use of any simulation

model for optimization. The simulation program serves as an

(external) cost function evaluator and is iteratively invoked

by the optimization solver. There are almost no restrictions

on the differentiability of the model or compatibility with

optimization solvers. However, the convergence speed of

these optimization solvers is low due to the multitude of

numerical integrations that are needed.

As an alternative, solvers that have direct access to the

model equations and can employ symbolic model manipula-

tions have been investigated. Equation-based languages such

as Modelica162 harness the potential of restructuring the opti-

mal control problem, e.g., by discretization schemes like

direct collocation. It has been shown that this approach can

increase the convergence speed by factors of 2200163 and

300164 compared to simulation-based optimization with PSO

and GPS. The performance improvement is mainly achieved

by avoiding the need for numerical integration by an external

simulation solver. The whole optimal control problem is

transformed to a non-linear program (NLP) that can be

solved by NLP solvers like IPOPT,165 utilizing first and

second order derivatives of all equations in the NLP.

In other publications, linear models, e.g., linear state

space models or linearizations of non-linear models, were

used for the MPC. To solve the optimal control problem,
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commercial software such as CPLEX166 or algorithms such as

sequential quadratic programming (SQP)167 were employed.

Moreover, in many publications, also discrete optimization

variables had to be taken into account, leading to mixed-

integer linear programs (MILP).168–170

b. MPC architecture. There are different possibilities for

integrating MPC into the BAS. One option is to use MPC in

a cascaded control by providing optimal set-point trajecto-

ries, which are identified by a high-level MPC, to a low-level

controller in the form of a conventional PID controller.171

This can be applied to systems where it is not feasible to

directly control active components in the HVAC system, for

example, a mixing valve, by the MPC. By this method, the

sampling time of the MPC can be increased.

Another option to tackle the high computational burden

of an MPC is to use a hierarchical MPC. Here, the optimiza-

tion problem is divided into two different tasks. In a high-

level MPC, optimization is performed with regard to the

slow dynamics of the system and provides its output to a

low-level MPC taking fast dynamics into account. This is

realized, for example, by identifying building thermal loads

with respect to ambient temperature and thermal storage

systems at the high level, while the actual heat distribution

to the building’s thermal zones is the focus on the low

level.172–175

With decentralized and distributed MPC, two further

approaches to divide the global optimization problem into

individual (similar) subsystems have been investigated.

Individual optimization problems are solved in a decentral-

ized MPC for local parallel subsystems. For example,

Pedersen et al.176 compared a decentralized MPC for differ-

ent zones in a multi-apartment building with a centralized

MPC that took all zones into account at once. They have

shown that the decentralized approach leads to only insignifi-

cant performance reductions as long as the interaction

between the zones is weak. In distributed MPC, these inter-

actions are also taken into account. Here, each local MPC of

a subsystem exchanges information with its neighboring con-

trollers.177–179 Both of these approaches offer the advantage

of a significantly reduced computational burden for the solu-

tion of the local optimization problems compared to the cen-

tralized problem. Furthermore, the functionality of the MPC

may still be secured if one of the decentralized or distributed

controllers fails.

c. Offline MPC. Methods have been investigated that dis-

pense completely with the need for dynamic optimizations

during building operation. The concept is to learn optimized

control logic from offline optimization studies. This decouples

the computational burden from any time restrictions of the

real operation. For the offline optimizations, typically detailed

white-box models have been used. Furthermore, the same

models have been used for both the controller and the emula-

tor model of the controlled process. The obtained time series

from the simulations for the system states and variables were

then analyzed aiming at the extraction and deduction of near-

optimal control rules and guidelines. Moreover, the imple-

mentation of these rules in real building automation systems

is intended to be realized with low effort. Machine learning

algorithms for clustering, classification, and regression were

utilized to derive optimized decision rules.180–182 Coffey

et al.183 identified lookup-tables that provide controller set-

points with respect to boundary conditions like weather and

occupancy. In the concept of explicit MPC, multi-parametric

studies are precomputed offline for all initial states and bound-

ary conditions of the building.184 For offline optimizations, it

is crucial to cover the whole state space with all possible

boundary conditions and state transitions to achieve high con-

troller performance. Investigations have shown that derived

near-optimal controls were able to maintain significant por-

tions of the originally identified performance improvements

by the offline optimization studies.180–183

3. State estimation

In conventional controllers (e.g., PID-controllers) feed-

back of the controlled variables is necessary and typically

provided by direct measurements. This may be for example

a room temperature, in the case of a room temperature con-

trol. In MPC, which uses a dynamic system model for the

control, the initialization of the models requires a possibly

large vector of state variables. In reality, not all system

states that are necessary for the model can be measured

directly. Furthermore, the measured states are affected by

measurement noise and uncertainties. Therefore, state esti-

mation techniques are required that provide estimations of

model states based on a limited number of measured states.

The initial states greatly affect the feasibility of the optimi-

zations performed as well as the identified optimal control

trajectories.185

The most commonly used method for the state estima-

tion is a Kalman filter.166,186 The original Kalman filter is

limited to linear systems. For non-linear systems, extensions

like the extended Kalman filter and the unscented Kalman

filter exist. All Kalman filters work in two steps: in the pre-

diction step, the states are estimated and as soon as a new

measurement of the real system is provided, a correction step

is performed, taking the deviation of the prediction from the

measurement into account to update the model.

Another concept is the use of an optimization-based esti-

mation.187,188 Here, a dynamic simulation model, possibly

the controller model, and measurements of the states of the

investigated system for a past period are used. Based on

these measurements, optimization techniques are utilized to

obtain the system states at the actual time step. The approach

is deterministic, since the dynamic model is considered to be

accurate. In an extended version called moving horizon esti-

mation (MHE), not-modeled disturbances are integrated into

the objective function and the system model to take the mis-

match between the real system and the model into account.

The concepts involving dynamic optimization with a system

model are only feasible for systems with slow dynamics, due

to the required simulation time.

4. Uncertainties

Uncertainties affect the performance of MPC. These

uncertainties are associated with the dynamic system model,
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the estimation of the initial states and the predictions of dis-

turbances. The dynamic system model suffers from inaccu-

racy in the prediction of the real system behavior due to

simplifications that have to be made in the modeling process.

In most of the reviewed publications, the model parameters

are calibrated once in the development phase before the

MPC is implemented in the BAS. In some publica-

tions,186,189–191 online updates of the model parameters are

employed in order to take changes in the building such as

seasonal variations, altered occupancy behavior or upgraded

equipment into account. Maasoumy et al.186 compared nomi-

nal MPC and so-called robust MPC (RMPC) in which the

building model parameters are adapted online. They have

shown that the RMPC outperforms nominal MPC beyond a

certain level of model uncertainty. Furthermore, there is a

certain level of model uncertainty when the performance of

RMPC is even worse than the conventional rule-based

control.

The impact of the uncertainty of state estimations on the

performance of MPC in buildings has not been widely stud-

ied. Antonov et al.192 investigated the robustness of MPC for

a hybrid ground coupled heat pump system. The applied

method identifies a reliable estimation of the maximum

allowed degree of state estimation uncertainty beyond which

the system performance decreases.

The predictions of disturbances are associated with

uncertainties with regard to weather, occupancy, and other

boundary conditions such as time-varying energy prices or

thermal load predictions that the controller model may use.

Frameworks called stochastic MPC (SMPC) take these uncer-

tainties into account by considering probability distributions

of the disturbances for weather166,193 and occupancy.194–197

The results showed that SMPC outperformed deterministic

MPC with regard to thermal comfort violations. In terms of

energy usage, the SMPC may lead to more conservative but

more reliable results. The amount and quality of available

input data for weather, occupancy and other boundary condi-

tions greatly influences the performance of SMPC.

B. Performance evaluation

Model predictive control has been investigated for many

different HVAC systems and buildings. Most publications

focused on commercial buildings, while residential buildings

played only a minor role. The objectives of the control opti-

mization were chosen very different but mainly focused on

energy consumption reductions, improved indoor comfort,

and cost savings. The system type and configuration mainly

affected the performance improvements that MPC could

achieve. In the following, examples for the application of

MPC in specific HVAC systems for the optimal control of

thermal and hydraulic actuators are presented. For the con-

crete numbers for the specific performance quantification, it

is referred to the original publications.

Investigations have focused on different strategies for

the achievement of energy consumption reductions in build-

ings. Many publications aim at the optimal management of

thermal and electrical storages in buildings like, for example,

active thermal buffer storages,198 slow response radiant

slabs,137,170,174 or passive building thermal mass.199,200

Other publications focus on the improvement of the energy

efficiency of individual components for the energy transfor-

mation such as AHU145,146 or heat pumps.153 The increase in

the building energy efficiency by the integration of renew-

able energy sources was investigated for example for hybrid

free cooling systems,161,201 solar absorption chillers,202 or

photovoltaic thermal hybrid solar collectors.143 In buildings,

HVAC systems may be constituted of different redundant

heat generation systems which provide different efficiencies

dependent on boundary conditions. By mean of MPC, De

Coninck et al.187 identified optimal schedules for the opera-

tion of the systems when their energy efficiencies is the high-

est. Furthermore, MPC can harness information about

occupancy in order to reduce the energy demand in non-

occupied times.194

Improved indoor thermal comfort is a second major

objective of MPC in buildings, while the formulation of the

optimal control problem varies between approaches. On the

one hand, a term for the quantification of comfort violations

is integrated in the objective function together with energy

consumption associated with weighting factors. Then, the

variation of the weighting factors enables the identification

of Pareto fronts.159 On the other hand, soft or hard con-

straints in the optimal control problem formulation associ-

ated with certain room temperature bounds allow accounting

for the thermal comfort.203

Cost savings via MPC are investigated by taking prices

for the consumed fuels or electricity into account. Many

recent publications consider not only individual buildings

and their HVAC systems but also their interaction with the

energy grid. This was done by using some boundary signals

from the grid like for example time of use tariffs (TOU) or

stock market prices. Then, demand side management was

used by active and passive storages in the building to shift

load from high-price to low-price periods.142,144,204,205

Most of the studies with regard to MPC in buildings

used simulations for emulating the controlled systems and to

quantify the impact of the optimal control. Only a few publi-

cations presented real implementations and demonstrations

of MPC in existing buildings:

• De Coninck et al.187 demonstrated a MPC for an office

building in Brussels, Belgium with two floors and 480 m2

floor area. The MPC achieved energy consumption reduc-

tions of more than 30% by shifting operation time from

boilers to heat pumps.
• West et al.189 realized a MPC for two office buildings in

Melbourne, Australia, and Newcastle, England for a

period of 51 days. The focus was on the operation of air

handling units. Energy savings of 19% and 32% were

documented.
• Vana et al.172 implemented and tested a MPC in a large

office building with 5 floors and 1500 m2 floor area in

Hasselt, Belgium. The heating is provided by thermo-

active building systems (TABS). Energy savings of about

17% could be achieved.
• Ma et al.206 tested a MPC for an air handling unit in an

office building in Milwaukee, Wisconsin. Significant
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reductions of energy costs were reported by shifting the

building energy demand to off-peak hours with reduced

electricity prices.
• Ma et al.207 demonstrated the MPC for an cooling system

in a university building in Merced, California. The COP of

the cooling systems could be increased by 19%.
• Siroky et al.171 tested an MPC for an university building

in Prague, Czech Republic for the control optimization of

an heating system with radiant ceilings. The MPC

achieved energy savings between 15% and 28%.
• Killian et al.208 implemented an MPC for an university build-

ing with a total floor area of 13.000 m2 in Salzburg, Austria.

They focused on the operation optimization of TABS. Doing

this, reduced variances of room temperatures and energy sav-

ings between 31% and 36% could be achieved.

C. Conclusion

This section gave an overview of model predictive control

for the optimization of building operation. Crucial methods,

such as modeling and optimization techniques as well as the

handling of state estimation and uncertainties, were presented

taking recent research into account. Advantages and draw-

backs for the realization of MPC in buildings were discussed.

In the past 10 years, MPC in buildings has gained a lot of

attention in the scientific community. A vast number of publi-

cations shows significant improvements with regard to costs,

energy consumption, indoor environment, and carbon dioxide

emissions in buildings, which were achieved through MPC.

Nevertheless, MPC is not yet established as a standard

method for operation and control in buildings. The trade-off

between effort, expertise, hardware and achieved profits

does not reach a satisfactory balance yet. For a successful

deployment in the market, tools, and frameworks that facili-

tate the setup of MPC is required.

First, the modeling effort has to be reduced. Methods for

the creation of dynamic system models should make use of

the upcoming trend of digitization in the building sector and

utilize information from BIM or similar data sources, which

are generated during the planning phase of buildings. The

usage of this information can support the automated model

development and thus lead to productivity gains. Furthermore,

other applications, such as FDD, can advantageously use this

common information basis.

Second, methods that facilitate the coupling of the mod-

els with appropriate optimization solvers for the specific

optimal control problems need to be developed. Therefore,

the expertise of control engineers with regard to efficient

algorithms for the solution of optimal control problems

needs to be combined with that of building engineers who

understand the physical processes in building energy systems

and formulate concepts for the operation optimization.

Finally, MPC provides the capability to manage the

whole energy operation of buildings efficiently. Furthermore,

it is a suitable method for tackling the challenges of the future

energy system, such as the integration of fluctuating renew-

able energies and the sector coupling issues, e.g., between

electric mobility and building energy demand.

V. CONCLUSION AND OUTLOOK

In this article, we provided an overview of the different

steps required for building performance optimization and

reviewed selected parts of the whole process which are sci-

entifically most relevant. (see Fig. 1). This study reveals that

the high amount of research activities in the field led to sig-

nificant advances in the digitalization of buildings and in the

supervision and control of their operation. Current observa-

tions indicate that solutions including automated information

capture and model generation for existing buildings, predic-

tive control, and web-based IoT platforms capable of imple-

menting these analytics are emerging. These developments

can lead to productivity increase in the AEC and FM sectors.

Furthermore, these advancements have the potential to mini-

mize the environmental impact of buildings and thus to

contribute to the reduction of global greenhouse gas emis-

sions. Nevertheless, issues and open research questions are

remaining.

First, top-level data analysis and meta data handling for

large systems are hampered by the complexity and the

amount of heterogeneous data generated during the whole

life cycle of buildings. The integration of additional commu-

nication, control and supervision capabilities in decentralized

components and thus direct analysis within these compo-

nents and data exchange between sensors, actors and control-

lers might alleviate this issue.209,210 Emerging technologies

like IoT or 5G (5th generation of mobile networks) might

facilitate this integration and also induce further changes in

the typical structure of BAS through the adoption of new

data protocols (MQTT, ZeroMQ, etc.), semantic formats

(JSON-LD, etc.), and communication networks.211–214

Furthermore, highly automated routines which possibly

rely on confidential data naturally rise questions of data secu-

rity and responsibilities. Some promising developments are

hindered or lack real-world applications due to resentments

or missing legal coverage of this topic in the AEC and FM

sectors. A quite novel approach to tackle related issues are

so-called smart contracts, which are based on the blockchain

technology. While some people speak very enthusiastically

about these new developments and expect cooperation and

trust to be implemented via blockchain technology,215 others

claim that these technologies cannot resolve the typical lack

of organization and collaboration in the building and con-

struction sector.216
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