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Abstract

The availability of significant measures in the early phases of the software development life-
cycle allows for better management of the later phases, and more effective quality assessment
when quality can be more easily affected by preventive or corrective actions. In this paper,
we introduce and compare various high-level design measures for object-based software
systems. The measures are derived based on an experimental goal, identifying fault-prone
software parts, and several experimental hypotheses arising from the development of Ada
systems for Flight Dynamics Software at the NASA Goddard Space Flight Center
(NASA/GSFC). Specifically, we define a set of measures for cohesion and coupling, and
theoretically analyze them by checking their compliance with a previously published set of
mathematical properties that we deem important. We then investigate their relationship to
fault-proneness on three large scale projects, to provide empirical support for their practical
significance and usefulness.

Index Terms—Measurement, object-based design, high-level design, Ada, cohesion,
coupling.

1 Introduction

Software measures can help address the most critical issues in software development and
provide support for planning, predicting, monitoring, controlling, and evaluating the quality
of both software products and processes [BR88, F91]. Most existing software measures
attempt to capture attributes of the software code [F91]; however, software code is just one
of the artifacts produced during software development, and, moreover, it is only available at
a late stage. It is widely recognized that the production of better software requires the
improvement of the early development phases and the artifacts they produce. The production
of better specifications and designs reduces the need for extensive review, modification, and

1  This work was supported in part by NASA grant NSG–5123, UMIACS, and NSF grant 01-5-24845.
Sandro Morasca was also supported by grants from MURST and CNR, respectively.
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rewriting not only of code, but of specifications and designs. As a result, a software
organization can save time, cut production costs, and raise the final product's quality.

Early availability of measures is a key factor in the successful management of software
development, since it allows for

1. the early detection of problems in the artifacts produced in the initial phases of the life-
cycle (specification and design documents) and, therefore, reduction of the cost of
change—late identification and correction of problems are much more costly than early
ones;

2. better software quality monitoring from the early phases of the life-cycle;
3. quantitative comparison of techniques and empirical refinement of the processes to

which they are applied;
4. more accurate planning of resource allocation, based upon the predicted quality of the

system and its constituent parts.

In this paper, we focus on measures for the high-level design of object-based1 software
systems, to study whether information available at this development stage can be used to
support the issues raised in points 1. - 4. above. We worked in the context of high-level
designs for Flight Dynamics software, written in Ada83 [DoD83], in the Software
Engineering Laboratory at NASA Goddard Space Flight Center (GSFC). Our goal was to
define and validate a set of high-level design measures to evaluate the quality of the high-level
design of a software system with respect to its fault-proneness and understand which high-
level design attributes are likely to make software fault-prone. We set a number of
experimental hypotheses that were believed to be true in the environment of our study. In our
study, we define three families of measures to set the hypotheses in measurable terms. These
hypotheses were empirically validated based on three projects conducted at the
NASA/GSFC. As with any empirical study, some of the hypotheses were supported by the
empirical results, while others were not. In this paper, due to space constraints, we only
report those hypotheses and measures that were supported by the empirical results.

Specifically, we introduce and theoretically validate, based on the properties of
[BMB96], a family of measures for cohesion and coupling of high-level object-based
software designs. Our measures focus and are based on one specific facet of cohesion and
coupling, i.e., that related to declaration links among data and subroutines appearing in high-
level design module interfaces. Therefore, our measures are not meant to capture all aspects
of cohesion and coupling. For the sake of comparison and completeness, we also define two
simpler measures based on USES and IS_COMPONENT_OF [GJM92] relationships
between modules. This appears necessary at this stage of knowledge, where we can only rely
on very limited theoretical and empirical grounds to help us identify interesting concepts,
relationships and objects of study. If our measures add complexity to the analysis, they
should also be complementary to simpler design measures already proposed in the literature.
One of the results of this investigation is to provide directions for focusing our research on a
smaller set of strategies and concepts.

1Object-based systems differ from object-oriented systems in that inheritance is not allowed.
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A number of studies have been published on software design measures in recent years.
It has been shown that system architecture has an impact on maintainability and fault-
proneness [HK84, G86, R87, IS88, R90, BRBD90, S90, SB91, Z91, AE92, BTH93,
BBH93, ZEWH95]. These studies have attempted to capture the design attributes affecting
the ease of maintaining and debugging a software system. Most of the design measures are
based on information flow between subroutines or declaration counts. We think that, even
though they provide interesting insights into the program structure, these should not be the
only strategies to be investigated, since many other types of program features and
relationships are a priori worth studying. Moreover, there is a need for comparison among
strategies in order to identify worthwhile research directions and build accurate quality
prediction models.

In addition, the success and widespread diffusion of object-oriented software systems
have drawn a good deal of interest towards the study of the attributes of object-oriented
software systems. A number of studies have been published (see for instance [CK94, BK95,
HM95] and [BDW96, 97] for an extensive survey). These studies generally deal with the
proposal of new measures or the reuse of existing ones in the framework of object-oriented
software code. Our study goes one step in the direction of object-orientation, at the high-level
design stage, in that it addresses object-based systems. Therefore, we take into account
several important characteristics of object-oriented software, with one important exception—
inheritance.

The paper is organized as follows. In Section 2, we concisely outline the overall
structure of our study and explain the process we have carried out and its rationale. Section 3
contains the basic definitions and concepts that are used in the paper. The cohesion and
coupling measures we introduce are presented in Sections 4 and 5, respectively. Based on the
USES and IS_COMPONENT_OF relationships [GJM92], we also define two simpler
measures (Section 6), which are commonly proposed in the literature and against which we
wish to compare our cohesion and coupling measures. These two measures were part of a
larger set but turned out to be the only ones yielding positive results as indicators of fault-
proneness (see [BMB94a] for further details). Empirical validation of the measures is shown
in Section 7. In Section 8, we summarize the lessons we have learned, and outline directions
for future research activities.

2 Outline of the Study

We now describe the measurement activities we carried out, to provide the reader with a
better interpretation framework for our study. The steps we carried out follow the scientific
method and concern the setting of experimental goals and hypotheses, the definition of
appropriate measures, and the theoretical and experimental validation of those measures. The
steps below were basically executed in a sequential fashion. However, some steps were, to
some extent, executed in parallel (e.g., steps 3 and 4); in addition, the need occasionally
arose in a few points of the execution to go back to steps that had been already executed.
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1. Establish measurement goals. Empirical software engineering fosters the
improvement of software products and processes. In this context, measurement should
be seen as a tool for acquiring information that can be useful for specific improvement
purposes. Thus, precise measurement goals should be set, to ensure specific
improvement issues of interest are addressed. It is our opinion that, at this stage, the
definition of universal measures (like in physical sciences) is a long-term goal, which,
however, is only achievable (if at all) after we gain better insights into specific
environments and from specific perspectives in the short term. Therefore, the definition
of a measure should be driven by both the characteristics of the context or family of
contexts in which it is used and one or more clearly stated goals that it helps reach.

The goal of our study was to analyze the high-level design of three software
system in order to understand which high-level design attributes are likely to make
software fault-prone in our application context, NASA/GFSC.

2. Set experimental hypotheses. Experimental hypotheses, derived from the
measurement goals, are necessary to define measures that are somewhat supported by
an underlying theory to be confirmed or disconfirmed. Thus, we avoid a random
search for statistical significance. Experimental hypotheses establish a link between the
attribute of interest (software code fault-proneness, in our case) and some attribute of
the object of study (e.g., size, complexity, cohesion, coupling of software high-level
design).

Each measure we introduce in our study is accompanied by an experimental
hypothesis. However, we do not claim that these hypotheses are universally true in any
environment: a priori, they may not even be true in our environment, since they can be
disconfirmed by the empirical validation. Also, other hypotheses could be set: other
people may come up with different hypotheses in the same environment, since our
hypotheses capture our beliefs. In addition, we do not assume that all of these
experimental hypotheses are equally important towards our experimental goal, i.e., not
all of the attributes we take into account have an equal impact on software fault-
proneness. In this paper, we will only report on those hypotheses that were confirmed
by the empirical validation (Section 7), and therefore we will only introduce those
measures that allowed us to quantify these hypotheses. The reader interested in the
negative results of this study may consult [BMB94a].

3. Characterize formally the attributes to be studied. Experimental hypotheses
are stated in terms of attributes, which are to be quantified by means of measures. The
introduction of appropriate measures is facilitated by the availability of precise
definitions for the attributes of interest. Unfortunately, such attributes (e.g., size,
complexity, cohesion, coupling) are hardly ever defined in a precise and unambiguous
way, if they are defined at all. However, approaches have appeared in the recent
literature to provide these attributes with less fuzzy and ambiguous definitions, using
mathematical properties to characterize them [W88] [BMB96].

In our study, we have used an instantiation of the property-based approach of
[BMB96] for our object-based Ada context, to provide theoretical support for the
definition of our measures of cohesion and coupling based on data declaration
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dependency links. These properties allow us to characterize—to the best of our
understanding and knowledge—the two attributes, and provided us with guidance for
measure definition. These properties were also used to theoretically validate our
measures (see Step 5), i.e., provide supporting evidence that we measure what we
purport to measure.

We want to point out that acceptance of our cohesion and coupling properties is,
to some extent, a subjective matter, as with any other set of properties or rationalization
of informal concepts. Also, our properties are to be interpreted as necessary, but not
sufficient. This is the case even for the most consolidated and well-known ones, such
as the properties for distance. As a consequence, measures might be built that satisfy
our properties but cannot be taken as sensible cohesion or coupling measures.
However, we believe that, by providing desirable properties for the measures of
cohesion and coupling, we have better clarified our ideas about cohesion and coupling.
The reader has much more solid grounds on which he or she can either accept our ideas
about cohesion and coupling, or reject them and replace them with other properties.

4. Identify abstractions of the object of study. Appropriate representations
(abstractions according to [MGBB90]) of the object of study are used in measurement
to capture the information needed to build measures for the software attributes
mentioned in the experimental hypotheses. Some examples of product abstractions are
data flow graphs and control flow graphs. In our study, we use graphs based on
dependency links between data and subroutines in high-level software design.

5. Define measures. A measure is defined for capturing some intuitive concept
[JSK91], (e.g., size, complexity, cohesion, coupling) such as those used in the
experimental hypotheses. In our study, we define measures for cohesion and coupling
based on dependency links among data and subroutines in high-level software design.

The definition of sound measures requires that they be theoretically validated, to
show that they actually quantify the attributes they purport to measure. We theoretically
validated our cohesion and coupling measures by showing that they satisfy the
properties for cohesion and coupling measures we established in Step 3. Additional
support for the theoretical validity of our cohesion and coupling measures based on
data declaration dependency links is provided by the fact that our measures do not
satisfy any other set of properties of [BMB96], e.g., properties regarding attributes
such as complexity or size. One of the goals of [BMB96] was to define sets of
properties to identify similarities and differences across software attributes.

At any rate, as explained in Step 3, some caution must be used in interpreting the
results of our theoretical validation, as with any theoretical validation, due to the
inherent degree of subjectivity in the formalization of intuition and the fact that
properties are necessary but not sufficient. Therefore, the satisfaction of our cohesion
and coupling properties cannot be strictly taken as conclusive evidence that the
measures we define are cohesion and coupling measures, but only as supporting
evidence. In addition, we do not claim nor believe that our measures are the "definitive"
measures for cohesion and coupling. They address only one possible aspect of
cohesion and coupling, and, even in our context, they will need further refinements.



6

6. Validate measures empirically. The empirical validation of a measure actually
entails the validation of the experimental hypotheses involving the attribute quantified
by the measure. Empirical validation ascertains the practical usefulness of a measure in
the studied environment, by showing if the attributes it measures (e.g., cohesion)
influences an external quality attribute [F91] of practical interest (e.g., fault-proneness)
and the extent of this influence.

In our empirical validation, based on data collected at the NASA/GSFC, we have
applied a statistical technique to study the influence of cohesion and coupling on fault-
proneness. Validation was facilitated by the fact that we had defined experimental goals
and hypotheses at the beginning of the study. At any rate, the external validity of the
experimental hypotheses and measures remains to be investigated in order to determine
whether they are applicable to different environments and problem domains.

More details about the approach we have followed can be found in [BMB94b].

3 Basic Definitions

In this section, we first introduce the basic concepts and the terminology that we will use in
the paper (Section 3.1). We then define interactions, the data dependency links on which our
cohesion and coupling measures are based (Section 3.2).

3 .1 Modules and High-level Design

Our object of study is the high-level design of a software system. To define it, we will start
from its elementary components: software modules. In the literature, there are two commonly
accepted definitions of modules. The first one sees a module as a subroutine, and has been
used in most of the design measurement publications [M77, CY79, HK84, R87, S90]. The
second definition, which takes an object-oriented perspective, sees a module as a collection
of type, data, and subroutine definitions, i.e., a provider of computational services [BO87,
GJM92]. In this view, a module is the implementation of an Abstract Data Type (ADT), e.g.,
a package in Ada, a class in C++. In this paper, unless otherwise specified, we will use the
term subroutine for the first category, and reserve the term module for the second category.
Modules are composed of two parts: interface and body (which may be empty). The interface
contains the computational resources that the module makes visible for use to other modules.
The body contains the implementation details that are not to be exported.

Modules and subroutines may be related to each other by IS_COMPONENT_OF and
USES relationships [GJM92]. In general, module/subroutine A  is related to
module/subroutine B by an IS_COMPONENT_OF relationship if A is defined within B.
Module/subroutine A is related to module/subroutine B by a USES relationship if A uses
computational services that B makes available.

Modules and subroutines can be seen as the components of higher level aggregations,
as defined below.
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Definition 1: Library Module Hierarchy (LMH).
A library module hierarchy is a hierarchy where nodes are modules and subroutines, arcs
between nodes are IS_COMPONENT_OF relationships, and there is exactly one top level
node, which is a module.

In the remainder of this paper, we will define concepts and measures that can be applied to
both modules and LMHs, which are the most significant syntactic aggregation levels below
the subsystem level. For short, we will use the term software part (sp) to denote either a
module or a LMH.

In the high-level design phase of a software system in our context, only module and
subroutine interfaces and their relationships are defined—detailed design of module bodies
and subroutines is carried out at low-level design time. Therefore, we define the high-level
design of a software system as follows.

Definition 2: High-level Design.
The high-level design of a software system is a collection of module and subroutine
interfaces related to each other by means of USES and IS_COMPONENT_OF relationships.
Precise and formalized information on module or subroutine bodies is not yet available at this
stage.

3 .2 Interactions

In this section, we will specifically focus on the dependencies among data declarations and
subroutines, which can propagate inconsistencies when changes are made to a software
system. In this context, data declarations may be types, variables, or constants. Those
dependencies will be called interactions and will be used to define measures capturing
cohesion and coupling within and between software parts, respectively.

There are four possible kinds of interactions: from data declarations to data
declarations; from data declarations to subroutines; from subroutines to subroutines; from
subroutines to data declarations. However, not all of these dependencies can be detected at
high-level design time. Therefore, we will investigate the interactions from data declarations
to data declarations or from data declarations to subroutines, which we may detect from the
high-level design of a software system.

Definition 3: Data declaration-Data declaration (DD) Interaction.
A data declaration A DD-interacts with another data declaration B if a change in A's
declaration or use may cause the need for a change in B's declaration or use.

The DD-interaction relationship is transitive. If A DD-interacts with B, and B DD-interacts
with C, then a change in A may cause a change in C, i.e., A DD-interacts with C. Data
declarations can DD-interact with each other regardless of their location in the designed
system. Therefore, the DD-interaction relationship can link data declarations belonging to the
same software part or different software parts.
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The DD-interaction relationships can be defined in terms of the basic relationships
between data declarations allowed by the language, which represent direct DD-interactions
(i.e., not obtained by virtue of the transitivity of interaction relationships). Data declaration A
directly DD-interacts with data declaration B if A is used in B's declaration or in a statement
where B is assigned a value. As a consequence, as bodies are not available at high-level
design time in our application context, we will only consider interactions detectable from the
interfaces.

DD-interactions provide a means to represent the dependency relationships between
individual data declarations. Yet, DD-interactions per se are not able to capture the
relationships between individual data declarations and subroutines.

Definition 4: Data declaration-Subroutine (DS) Interaction.
A data declaration DS-interacts with a subroutine if it DD-interacts with at least one of its data
declarations.

Whenever a data declaration DD-interacts with at least one of the data declarations contained
in a subroutine interface, the DS-interaction relationship between the data declaration and the
subroutine can be detected by examining the high-level design. For instance, from the Ada-
like code fragment in Figure 1, it is apparent that both type T1 and object OBJECT11 DS-
interact with procedure SR11, since they both DD-interact with parameter PAR11, which
belongs to procedure SR11's interface data declaration.

package M1  is
…
type T1 is …;
OBJECT11, OBJECT12: T1:= …;
procedure SR11(PAR11: in T1:=OBJECT11, PAR12: in T1);
…
package M2 is

…
OBJECT21: T1;
type T2 is array (1..100) of T1;
OBJECT22: T2;
procedure SR21(PAR21: in out T2);
…

end M2;
…
OBJECT13: M2.T2;
…

end M1;

with M1; use M1;
package M3  is

…
type T3 is array (1..100) of T1;
OBJECT31, OBJECT32: T1;
procedure SR31(PAR31: in T3, PAR32: in M2.T2);
OBJECT33: T3;
…

end M3;

Figure 1. Ada-like code fragment
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For graphical convenience, both sets of interaction relationships will be represented by
directed graphs, the DD-interaction graph, and the DS-interaction graph, respectively. In both
graphs (see Figure 2, which shows DD- and DS-interaction graphs for the code fragment of
Figure 1), data declarations are represented by rounded nodes, subroutines by thick lined
boxes, modules by thin lined boxes, and interactions by arcs.

M1

SR11

 M2

 T1

OBJECT11

OBJECT12

 PAR11

OBJECT21

T2

OBJECT22

 SR21

PAR21

OBJECT13

 PAR12

SR31
 T3

OBJECT31
 PAR31  PAR32

M3

OBJECT33

OBJECT32

M1

SR11

 M2

 T1

OBJECT11

OBJECT12

 PAR11

OBJECT21

T2

OBJECT22

 SR21

PAR21

OBJECT13

 PAR12

SR31
 T3

OBJECT31
 PAR31  PAR32

M3

OBJECT33

OBJECT32

(a) (b)
Figure 2. DD-interaction (a) and DS-interaction (b) graphs for the code fragment in Figure 1

The notion of interaction can be applied to other object-based design methods and formalisms
such as HOOD (one of the main object-based design methods [HOOD93]) with no basic
changes. For instance, HOOD does not allow direct access to data in module interfaces (i.e.,
objects' provided interface). Using HOOD's terminology, data must be encapsulated in the
internal part of each object (i.e., module) and must be accessed through public operations
provided by the object. In that case, by looking at the visible part of a HOOD object
description, we would analyze interactions between type definitions, constants, and
operations, i.e., the same kind of information we have in our Ada context. When working
with other design techniques, one can use all the available information on the interactions
between the elements of a design. If mechanisms for describing such interactions exist, then
one can apply our approach based on more information than is available in our case and in the
HOOD case, and obtain more accurate models.

In this study, interactions are used to define measures for object-based high-level
software design, which we introduce next. It is generally acknowledged that system
architecture should have low coupling and high cohesion [CY79]. This is assumed to
improve the capability of a system to be decomposed in highly independent and easy to
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understand pieces. However, the reader should bear in mind that high cohesion and low
coupling may be conflicting goals, i.e., a trade-off between the two may exist. For instance,
a software system can be made of small modules with a high degree of internal cohesion but
very closely related to each other and, therefore, with a high level of coupling. Conversely, a
software system can be composed of few large modules, representing its subsystems,
loosely related to one another, i.e., with low coupling, but with a low degree of internal
cohesion as well. Moreover, high cohesion and low coupling are not the only factors to be
taken into account when designing a software system. Other issues (e.g., reuse) must be
taken into account as well.

4 Interaction-based Measures for Cohesion

Consistent with the objectives stated above, cohesion is defined here as the degree to which
data declarations and subroutines of a module are conceptually related, based on information
known at the end of high-level design. In order for cohesion measurement to be usable on
real-scale software systems, these conceptual relationships are to be approximated through
syntactical relationships (i.e., interactions), which can be automatically detected through
static analysis. Since we place ourselves at the end of high-level design in an object-based
context, we focus on module-level cohesion and not on subroutine-level cohesion.

We introduce an experimental hypothesis (H-CH), which provides the motivations for
defining cohesion measures in our object-based context with respect to our experimental goal
(Section 4.1). Then, for illustration convenience only, we depart from the order in the step
sequence described in Section 3: we first describe the abstraction used to define interaction-
based cohesion measures (Section 4.2), and then (Section 4.3) we describe the properties for
cohesion measures we proposed in [BMB96] instantiated on this abstraction. An interaction-
based cohesion measure is introduced in Section 4.4. In Section 4.5, we discuss how to use
additional information that may be available at high-level design time. The relation of our
work with previous works on cohesion measurement is discussed in Section 4.6.

4 .1 Experimental Hypothesis

In our application environment, cohesion measurement is motivated by the following
experimental hypothesis.

Hypothesis H-CH:
A high degree of cohesion is desirable because information related to declaration and
subroutine dependencies should not be scattered among irrelevant information. Data
declarations and subroutines which are not related to each other should be encapsulated, to
the extent possible, into different modules. As a result of such a strategy, we expect the
software parts to be less fault-prone.

This hypothesis establishes a link between two software attributes: cohesion and fault-
proneness. Its empirical validation requires that we introduce measures to capture cohesion
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and fault-proneness quantitatively. Fault-proneness will be quantified as the likelihood of a
module to be faulty. Since we believe that this definition of a measure for fault-proneness is
much more immediate and readily acceptable than the definition of a measure for cohesion or
coupling, we now show how we introduced cohesion measures in the context of our study.

4 .2 Abstraction Definition

Consistent with the definition of Abstract Data Type/Object, data declarations and subroutines
should show some kind of interaction between them, if they are conceptually related.
Therefore, we are interested in evaluating the tightness of the interactions between data
declarations and data declarations or data declarations and subroutines declared in a module
interface. We will capture this by means of cohesive interactions and the graph that they give
rise to, the cohesion interaction graph.

Definition 5: Cohesive Interactions.
The set of cohesive interactions in a module m, denoted by CI(m), is the union of the sets of
DS-interactions and DD-interactions involving exclusively data declarations and subroutines
within m, with the exception of those DD-interactions between a data declaration and a
subroutine formal parameter. M(m) will denote the maximal set of cohesive interactions in
module m. It is obtained by linking every data declaration of module m to every other data
declaration and subroutine of m with which it can interact.

Definition 6: Cohesive Interaction Graph.
Given a module m, the Cohesive Interaction Graph is the directed graph whose set of nodes
is composed of the data declarations and the subroutines declared in module m's interface and
whose set of arcs is the set CI(m) of module m's cohesive interactions.

We use the Cohesive Interaction Graph as the abstraction on which we define our cohesion
measures.

We do not consider the DD-interactions linking a data declaration to a subroutine
parameter as relevant to cohesion, since they are already accounted for by DS-interactions
and we are interested in evaluating the degree of cohesion between data declarations and
subroutines seen as a whole. Also, we do not intend that cohesion should change just
because there are two parameters of the same type in a subroutine interface, instead of one of
that type. Furthermore, cohesive interactions occur between data declarations and subroutines
belonging to the same module. Interactions across different modules are not considered
cohesive, since cohesion is the extent to which a module contains data declarations and
subroutines that are conceptually related to each other. Interactions across different modules
contribute to coupling. Therefore, given a software part sp, the sets of cohesive interactions
of its constituent modules (if any) are disjoint. In Figure 3, we show the cohesive interaction
graph for the code fragment of Figure 1.

It is worth reminding the reader that those relationships that cannot be entirely detected
by inspecting the interfaces, i.e., global variables interacting with subroutine bodies, can
actually be quite relevant to cohesion evaluation, because they often represent the connections
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between an object and the subroutines that manipulate it. However, although we expect these
unknown interactions to introduce uncertainty in our models, practical experience suggests
that the models may still be good, early indicators.

M1

SR11

 M2

 T1

OBJECT11

OBJECT12

 PAR11

OBJECT21

T2

OBJECT22

 SR21

PAR21

OBJECT13

 PAR12

SR31
 T3

OBJECT31
 PAR31  PAR32

M3

OBJECT33

OBJECT32

Figure 3. Cohesive interaction graph for the code fragment of Figure 1

Some care must be used in defining CI(m) and M(sp) for languages like Ada that allow
circular type definitions, such as the ones used to define the nodes of a linked list. In this
case, the declarations of two types T1 and T2 are built in such a way that T1 interacts with T2
and T2 interacts with T1. We choose to include in CI(m) and M(sp) only one interaction
between them. This is explained by the fact that a single interaction between two data
declarations may justify their encapsulation in a single module/Abstract Data Type.

As a result, for a module m, we have |M(m)| = (|DataDeclarations| · (|DataDeclarations|-
1)/2) + |DataDeclarations| · |Subroutines|, where DataDeclarations and Subroutines are the
sets of m's data declarations (outside subroutines' interfaces) and subroutines, respectively.
|M(sp)| is the sum of all values obtained for |M(m)| for all modules, since all M(m)'s are
disjoint. For example the maximal number of cohesive interactions for module M2 of Figure
1 is M(M2) = 6.

There are two particular cases in which M(m) and, therefore, CI(m) are empty: (a)
module m contains no data declarations at all (it is either empty or contains only a set of
subroutines), or (b) module m only contains a single data declaration and no subroutines. In
both cases, no cohesive interactions are possible. According to our notion of cohesion, we
are interested in the tightness of relationships of data declarations with other data declarations
or subroutines, which are supposed to be related to the data declarations. In case (a), there
are no data declarations and, therefore, there is a complete absence of cohesion. On the other



13

hand, a single data declaration (case (b)) is highly cohesive in itself, so a module only
containing one data declaration is highly cohesive. In what follows, given a software part sp,

- SSR(sp) will denote the set of subroutines belonging to modules that do not contain
any data declarations (case (a)), and

- SDD(sp) will denote the set of modules of sp that only contain a single data declaration
and no subroutines (case (b)).

4 .3 Properties for Interaction-based Cohesion Measures

We now introduce the following three properties that we believe characterize cohesion
measures in our specific Ada context for interaction-based measures2. These properties are
instantiations, for our specific context, of the properties defined in [BMB96] for cohesion.

Property AdaCohesion.1: Normalization.
Given a software part sp, a measure cohesion_measure(sp) belongs to a specified interval
[0,Max]. cohesion_measure(sp) = 0 if and only if CI(sp) and SDD(sp) are empty, and
cohesion_measure(sp) = Max if and only if CI(sp) = M(sp) and SSR(sp) is empty.3

Normalization can provide support for meaningful comparisons between the cohesions of
different software parts, since they all belong to the same interval. In addition, the larger the
size of a module, the higher the likelihood of a large number of interactions. Normalization
helps us make sure our measures are not statistically associated with the size of the modules
since it takes into account the potential for a larger number of interactions in large modules.

Property AdaCohesion.2: Monotonicity.
Let sp1 be a software part and CI(sp1) its set of cohesive interactions. If sp2 is a modified
version of sp1 with the same sets of data and subroutine declarations and one more cohesive
interaction so that CI(sp2) includes CI(sp1), then cohesion_measure(sp2) 
cohesion_measure(sp1).

Adding cohesive interactions to a software part cannot decrease its cohesion. This is an
intuitive property since, if the module's declarations appear to be more interdependent,
cohesion should not decrease. For instance, the following program fragment

C : constant INTEGER := 100;
type A is array(1..C) of INTEGER;

has one more cohesive interaction than

C : constant INTEGER := 100;
type A is array(1..100) of INTEGER;

2Properties and measures can be defined for module sets more general than software parts. However, for
simplicity, we will provide them only for software parts.
3We assume that each module contains at least one data declaration or one subroutine, i.e., we will not
consider empty modules.
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Property AdaCohesion.3: Cohesive Modules.
Let sp be a software part, and let m1 and m2 be two of its modules. Let sp' be the software
part obtained from sp by merging the declarations belonging to m1 and m2 into a new module
m. If no cohesive interactions exist between the declarations belonging to m1 and m2 when
they are grouped in m, then cohesion_measure(sp)  cohesion_measure(sp') .

This property can also be interpreted as follows: Splitting two sets of declarations which are
not related to each other via cohesive interactions into two separate modules cannot decrease
the cohesion of the software part. Such a property is also intuitively justified since, if two
independent modules can be extracted from a module, then there was no reason for them to
be merged together in the first place.

Properties AdaCohesion.1 - AdaCohesion.3 are meaningful only for measures defined
at the ratio level of measurement [F91]. This does not imply that all measures that satisfy
them are defined at the ratio level of measurement. Also, it is worth reminding the reader that
the fact that the above measures satisfy properties AdaCohesion.1 - AdaCohesion.3 should
be interpreted as a necessary condition for them to be taken as cohesion measures in our
property-based framework, which one can subjectively accept or reject and replace with
another one.

4 .4 Measure Definition

Based on the properties defined above, we introduce a measure to capture interaction-based
cohesion for software parts in our context.

Measure 1: Ratio of Cohesive Interactions (RCI) for a Software Part.

The Ratio of Cohesive Interactions for sp is

RCI(sp)=
|SDD(sp)| + |CI(sp)|

|SDD(sp)| + |M(sp)| + |SSR(sp)|  (*)

As an example, with reference to Figures 1 and 3, RCI(M2) = 2/6 = 0.333.
It can be shown that RCI(sp) satisfies the above properties AdaCohesion.1 - AdaCohesion.3,
but it does not satisfy any of the sets of properties for size, length, complexity, or coupling
defined in [BMB96]. Therefore, since it is consistent with our intuitive and formally defined
understanding of cohesion, it is reasonable to assume that RCI(sp) is a valid cohesion
measure in our application context. It is also important to note that these concepts are still
very subjectively defined in the software engineering community and that, consequently,
there is no real widely accepted reference framework for cohesion that we can use to
demonstrate the construct validity of a cohesion measure.

As for the level of measurement of RCI(sp), although this is ultimately a subjective
matter that can rarely be formally demonstrated [BEM96], we will interpret RCI(sp) as a ratio
scale measure, based on the following evidence
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1. When SDD(sp) = Ø , i.e., no module in sp contains only a single data declaration, and
SSR(sp) = Ø, i.e., no module in sp contains no data declaration, the value of RCI(sp)

can be computed as RCI(sp)=
|CI(sp)|
|M(sp)|  , and is defined on a ratio scale since this is a

ratio of two counts having the same measurement unit. In practical cases—as the ones
we show in Section 7—this ratio is very close to that computed by formula (*), since
there are few modules that only contain a single data declaration and nothing else, and
the number of subroutines in SSR(sp) is quite small with respect to the maximum
number of potential cohesive interactions. Few modules only contain subroutines, and
|SSR(sp)| only grows linearly with the number of subroutines in such modules.
Instead, |M(sp)| grows quadratically with the number of data declarations and linearly
with the number of subroutines in the whole software part. Therefore, in practical
situations, it can be shown that formula (*) is approximately at a ratio level of
measurement.

2. The usual statistical tests and regression techniques requiring at least interval scale
measurement can be safely applied even if a measure is defined on a scale which is only
approximately interval [BEM96].

RCI(sp) can also be computed as a weighted sum of the RCI(m)'s of the single modules m
belonging to sp. Since cohesive interactions only occur within modules, but not across
modules4, the numerator of Formula (*) is calculated as

|SDD(sp)| + |CI(sp)| = ∑
m∈ sp

  |SDD(m)| + |CI(m)|

so

RCI(sp) = 

∑
m∈ sp

  |SDD(m)| + |CI(m)|

|SDD(sp)| + |M(sp)| + |SSR(sp)| = ∑
m∈ sp

  
|SDD(m)| + |CI(m)|

|SDD(sp)| + |M(sp)| + |SSR(sp)|

By multiplying and dividing each term in the summation by |SDD(m)| + |M(m)| + |SSR(m)|,
we obtain

RCI(sp) = ∑
m∈ sp

  (
|SDD(m)|+|M(m)|+|SSR(m)|

|SDD(sp)| + |M(sp)| + |SSR(sp)| · 
|SDD(m)| + |CI(m)|

|SDD(m)|+|M(m)|+|SSR(m)|) 

= ∑
m∈ sp

  (
|SDD(m)|+|M(m)|+|SSR(m)|

|SDD(sp)| + |M(sp)| + |SSR(sp)|  RCI(m))

The weights represent the potential contribution of each module m belonging to the software
part sp to the cohesion of the whole sp. Therefore, the potential contribution of a module of
SDD(sp) is

4In the following formulae, |SDD(m)| may only take the values 1 (when module m only contains a single data
declaration and nothing else) or 0 (otherwise).
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1
|SDD(sp)| + |M(sp)| + |SSR(sp)|

and that of any other module m of sp that does not contain only subroutines is5

|M(m)|
|SDD(sp)| + |M(sp)| + |SSR(sp)|

Based on the above cohesion measure, we can define a threshold that can be used as a
support for deciding whether a set of data and subroutines should be kept in one single
module or divided into two or more modules. For simplicity, we will show here only the
case in which we have to decide whether the declarations belonging to a module m should be
split into two modules m1 and m2, where both M(m1) and M(m2) are not empty. This should
be the case if the cohesion of the software part consisting of the two modules m1 and m2 is
greater than the cohesion of module m, i.e.,

|CI(m1)|+|CI(m2)|
|M(m1)|+|M(m2)|    >  

|CI(m1)|+|CI(m2)|+|CI12|
|M(m)|

where |CI12| is the number of cohesive interactions between the declarations belonging to
modules m1 and m2 when they are in module m. Based on the above inequality, we can
define a threshold on |CI12|, as follows

(|M(m)|-|M(m1)|-|M(m2)|) (|CI(m1)|+|CI(m2)|)
|M(m1)|+|M(m2)|          >  |CI12|

We want to emphasize, however, that, since cohesion is not the only attribute relevant to
software design—for instance, coupling and reusability are as important as cohesion—, an
increase in cohesion should not be used as the only criterion on which to base such a
decision.

4 .5 The Role of Additional Information

Additional information to what is visible in the interfaces is usually available at the end of
high-level design. For instance, given the interface of a module m and assuming that the use
of some objects is not specified in the subroutine’s interface, the designers have at least a
rough idea of which objects declared in m will be manipulated by a subroutine that appears in
m's interface. It will be left to the person responsible for the measure program to decide
whether it is worth collecting this kind of information, thus making the designer describe
which objects will be accessed by which subroutines. For instance, from the code fragment
in Figure 1, we cannot tell whether OBJECT12 DS-interacts with subroutine SR11. In this
case, designers can answer in three different ways:

5For a module m with subroutines and no data declarations, RCI(m) = 0.
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(1) OBJECT12 DS-interacts with SR11;
(2) OBJECT12 does not DS-interact with SR11;
(3) the information they have is not sufficient.

It is worth saying that answers of kind (2) provide valuable, though negative, information on
the DS-interactions present in a system. For instance, in the code fragment in Figure 1, the
designer may indicate the existence of a DD-interaction between object OBJECT12 and
PAR12 and the lack of interaction between OBJECT21 and PAR21. As a consequence, the
computation of cohesion is affected. If we take into account this additional information, other
alternative cohesion measures can be defined.

Given a software part sp, and a pair <A,B>, where A is a data declaration and B is
either a data declaration or a subroutine, we will say that the interaction between them is
known if it is detectable from the high-level design or is signaled by the designers (i.e., they
provide an answer similar to answer (1) above); we will say that the interaction between them
is unknown if it is not detectable from the high-level design and is not signaled by the
designers (i.e., they provide an answer similar to answer (3) above).

The set of known interactions of a software part sp will be denoted by K(sp), and the
set of unknown interactions by U(sp). In general, |M(sp)|  |K(sp)| + |U(sp)|, since some
interactions may not be detectable from the high-level design and the designers may explicitly
exclude their existence (i.e., they provide an answer similar to answer (2) above).

Measure 2: Neutral Ratio of Cohesive Interactions (NRCI).

Unknown CIs are not taken into account

NRCI(sp)=
|SDD(sp)|+|K(sp)|

|SDD(sp)|+|M(sp)|+|SSR(sp)|-|U(sp)|       

Measure 3: Pessimistic Ratio of Cohesive Interactions (PRCI).

Unknown CIs are considered as if they were known not to be actual interactions.

PRCI(sp) =  
|SDD(sp)|+|K(sp)|

|SDD(sp)|+|M(sp)|+|SSR(sp)|       

(This is equivalent to RCI(sp).)

Measure 4: Optimistic Ratio of Cohesive Interactions (ORCI).

Unknown CIs are considered as if they were known to be actual interactions

ORCI(sp)=
|SDD(sp)|+|K(sp)|+|U(sp)|

|SDD(sp)|+|M(sp)|+|SSR(sp)|  
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The above three measures satisfy properties AdaCohesion.1 - AdaCohesion.3, where CI(sp)
is replaced by K(sp) ∪  U(sp).

If PRCI(sp), NRCI(sp), and ORCI(sp) are all not undefined6, it can be shown that, for
all software parts sp,

0 < PRCI(sp) < NRCI(sp) < ORCI(sp) < 1

ORCI(sp) and PRCI(sp) provide the bounds of the admissible range for cohesion, and
NRCI(sp) takes a value in between. It can also be shown that the smaller the number of
unknown interactions, the smaller the interval [PRCI, ORCI], i.e., the more complete the
information, the narrower the uncertainty interval. It should be noted that, once the low-level
design is completed, accurate and complete information about cohesive interactions should be
available.

In addition, NRCI(sp) is undefined if and only if all interactions are unknown and both
SDD(sp) and SSR(sp) are empty, i.e., no information is available on cohesion. It is
interesting to notice that in this case, and only in this case, PRCI(sp) = 0 and ORCI(sp) = 1,
i.e., PRCI(sp) and ORCI(sp) do not provide stricter bounds than the ones provided by the
interval for cohesion. The fact that NRCI(sp) is undefined can be interpreted as the
possibility that NRCI(sp) can take any value in the interval [0,1].

4 .6 Related Work

As stated in [GJM92], cohesion is an internal property of a module. A module has high
cohesion if its elements are strongly related. The intuitive idea behind this is that elements
should be grouped together into modules for logical reasons in order to achieve common
goals. Thus, it is assumed that modular systems with high cohesion are easier to understand
and that the reuse of their modules is facilitated. However, the notions of modules, elements,
and relations vary according to the context in which cohesion is to be defined.

4 . 6 . 1 Procedural Cohesion
In [CY79], one of the first operational definitions of cohesion was provided. In this context,
modules were subroutines and cohesion was measured on an ordinal scale of measurement:
Functional, Sequential, Communicational, Procedural, Temporal, Logical, Coincidental (in
decreasing order of cohesion). The criteria used to define this scale focus on the relationships
(or the lack thereof) that exist between the functions embedded in a subroutine [F91]:

- Functional cohesion implies that the subroutine performs a single well defined
function.

- Sequential cohesion implies that the subroutine's functions are performed in a
sequential order described by the subroutine’s specifications.

6 PRCI(sp) and ORCI(sp) are undefined when |SDD(sp)|+|M(sp)|+|SSR(sp)| = 0, i.e., the software part is
empty; NRCI(sp) is undefined when |SDD(sp)|+|M(sp)|+|SSR(sp)|-|U(sp)| = 0, i.e., no known interactions
exist and both SDD(sp) and SSR(sp) are empty.
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- Communicational cohesion implies that the subroutine's functions are performed on the
same body of data.

- Procedural cohesion implies that the subroutine's functions are related to the same
general procedure.

- Temporal cohesion implies that the subroutine's functions are related because they must
occur within the same time span.

- Logical cohesion implies that the subroutine's functions are only related logically.
- Coincidental cohesion means that none of the relationships mentioned above exist

between the subroutine's functions.

As Fenton points out in [F91, page 200], because the trend is now towards languages and
methods that support abstract data types (ADT's) encapsulated into modules (e.g., Ada
packages, C++ classes), the notion of cohesion should be extended to a higher level and
adapted to ADT's where elements are subroutines and declarations. This may seem to
contradict the above definition of cohesion (focusing on subroutine cohesion) since ADT's
usually contain several subroutines performing different functions which may not be related
according to the most important relations underlying the ordinal scale of cohesion. This is
discussed below:

- Sequential cohesion: subroutines (i.e., methods according to the object-based/object-
oriented terminology) in an ADT do not have to be executed in a predetermined order
according to the ADT's specifications although Create_object and Destroy_object
methods are, respectively, always the first and last operation on a given object.

- Communicational cohesion: subroutines in an ADT usually work, from a general
perspective, on the same body of data: the abstract data type itself. However, they may
initialize/access/update the values of different attributes, all being elements of the
abstract data type. More concretly, an abstract data type may be implemented as a set of
distinct data structures all encapsulated in a single module. Subroutines inside that
module may work on different subsets of those data structures.

- Procedural cohesion: there is no reason for subroutines in an ADT to perform functions
belonging to a general procedure. For example, geomeasureal operations (e.g.,
rotations, translations) may be part of different procedures to manipulate geomeasureal
objects (e.g., drawing tools, graphical simulations, etc.).

- Temporal cohesion: there is no reason for subroutines in an ADT to be executed within
the same time span.

Therefore, the basis for encapsulation into modules makes it less likely that one can find
some of the forms of cohesion in the [CY79] classification. However, subroutines and
declarations in ADT’s should be somewhat related since they should all perform operations
on the abstract data type (e.g., push, pop are operations on the ADT Stack) and this may be
seen as another form of cohesion. Fenton calls this kind of cohesion "abstract cohesion" and
mentions that, unfortunately, there are no obvious measurement procedure and no graph-type
model to capture it. In Section 4.4, our goal was to take a step in that direction, to provide a



20

measure of ADT cohesion which is based on the interaction graph model presented above and
which can be captured through automatable data collection procedures.

A proposal for functional cohesion measures can be found in [BO94]. Given a
procedure, function, or main program, only data tokens (i.e., the occurrence of a definition
or use of a variable or a constant) are taken into account. The data slice for a data token is the
sequence of all those data tokens in the program that can influence the statement in which the
data token appears, or can be influenced by that statement. Being a sequence, a data slice is
ordered: it lists its data tokens in order of appearance in the procedure, function or main
program. If more than one data slice exists, some data tokens may belong to more than one
data slice: these are called glue tokens. A subset of the glue tokens may belong to all data
slices: these are called super-glue tokens. Functional cohesion measures are defined based on
data tokens, glue tokens, and super-glue tokens. Given a procedure, function, or main
program p, the following measures SFC(p) (Strong Functional Cohesion), WFC(p) (Weak
Functional Cohesion), and A(p) (adhesiveness) are introduced

SFC(p) = 
#SuperGlueTokens

#AllTokens

WFC(p) = 
#GlueTokens
#AllTokens

A(p) = 

∑
GT∈ GlueTokens

#SlicesContainingGlueTokenGT

#AllTokens.#DataSlices

It can be shown that these measures satisfy the properties defined in [BMB96] for cohesion.
However, these measures refer to the functional cohesion of procedures, functions, or main
programs based on code-level information. They are therefore out of the scope of our study.

4 . 6 . 2 Object-Based/Object-Oriented Cohesion
[CK94] introduced a well-known suite of object-oriented measures and, as such, some of
them are also adaptable and applicable to abstract data types. More specifically, a measure for
the lack of cohesion  (LCOM) was defined. For a class in an OO design, this is the number
of member functions pairs without shared instance variables minus the number of member
functions with shared instance variables. However, the measure is set to 0 whenever the
above subtraction is negative. In [BBM96], we have shown that LCOM is not a significant
predictor of fault-prone classes. This could be easily explained since the distribution of
LCOM showed a lack of variability in the studied sample since most classes had a null
LCOM. This stems in part from the definition of LCOM where the measure is set to 0 when
the number of class pairs sharing variable instances is larger than that of the ones not sharing
any instances. Several other measures have been proposed in the literature for object-oriented
cohesion (e.g., see [CK94, BK95, HM95]). Due to space constraints, no thorough
comparison can be made here. The interested reader is referred to [BDW97], where an
extensive survey and classification have been proposed. From a general perspective, these
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measures differ according to their underlying experimental hypotheses and properties. At a
higher level, several criteria capture the main differences: the types of
connections/dependencies that increase coupling, the domain of the measure (e.g.,
subroutine, class, set of classes), whether direct or indirect connections are taken into
account, how inheritance is handled. In our case, based on our experimental hypotheses, the
notion of interaction has been defined to capture the types of dependencies of interest, we
define measures for modules and set of modules, we investigate both direct and indirect
interactions, and we do not consider inheritance since we work in the context of object-based
systems.

5 Interaction-based Measures for Coupling

In our context, coupling is the extent to which a software part is related to other software
parts. Coupling can be divided into two parts: (1) import coupling, i.e., the extent to which a
software parts depends on the rest of the sotware system, and (2) export coupling, i.e., the
extent to which the rest of the software system depends on the software part. Here, we will
focus only on import coupling, since our hypotheses for export coupling were not confirmed
by our experimental validation. More information on that topic can be found in [BMB94a].

In this section, we first give an experimental hypothesis on import coupling, which
provides the rationale for our study (Section 5.1). Then, we introduce the abstraction we use
for defining our coupling measure (5.2). The instantiation of the coupling properties defined
in [BMB96] for our application case is Section 5.3. An interaction-based measure is defined
in Section 5.4. Section 5.5 discusses the issue of genericity in the context of coupling.
Related previous works will be presented in Section 5.6.

5 .1 Experimental Hypothesis

The following experimental hypothesis provides the motivations for the measure we define.

Hypothesis H-IC:
The more dependent a software part on external data declarations, the more external
information needs to be known in order to make the software part consistent with the rest of
the system. In other words, the larger the amount of external data declarations, the more
incomplete the local description of the software part interface, the more spread the
information necessary to integrate a software part in a system. Thus, the software part
becomes more fault-prone.

Like with Hypothesis H-CH, this hypothesis establishes a link between two software
attributes: coupling and fault-proneness. This hypothesis is one of the experimental
hypotheses believed to be true in our context that our empirical study has confirmed.
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5 .2 Abstraction Definition

Import coupling of a software part will be expressed in terms of the actual DD-interactions
involving imported external data declarations and the internal data declarations of the software
part. Therefore, the abstraction we use is the DD-interaction graph, of which we will
consider only the interactions across software parts.

5 .3 Properties for Interaction-based Coupling Measures

We now provide properties that we believe should be satisfied by interaction-based import
coupling measures. These properties are instantiations, for our specific Ada context, of the
properties defined in [BMB96] for coupling.

Property AdaCoupling.1: Non negativity
Given a software part sp , the measure import_coupling_measure(sp)  0 .
import_coupling_measure(sp) = 0 if sp does not have import interactions with other software
parts.

Property AdaCoupling.2: Monotonicity
Let m1 be a module and II(m1), its set of import interactions. If m2 is a modified version of
m1 with the same sets of data and subroutine declarations and one more import interaction so
t h a t  II(m2 ) i n c l u d e s  II(m1 ) , then i m p o r t _ c o u p l i n g _ m e a s u r e ( m 2 ) 
import_coupling_measure(m1).

Adding import interactions to a module cannot decrease its import coupling.

Property AdaCoupling.3: Merging of Modules
The sum of the import couplings of two modules is no less than the coupling of the module
which is composed of the data declarations of the two modules.

This stems from the fact that two modules may contain interactions between each other's
declarations, which are no longer import interactions for the module resulting from merging
the original modules.

It should be noted that, as opposed to cohesion, measures for coupling are not
normalized. This comes from hypotheses H-CH and H-IC, where we state that cohesion is a
degree of interdependence within a software part, whereas coupling is an amount of
dependencies between a software part and the rest of the system. As with cohesion,
properties AdaCoupling.1 - AdaCoupling.3 are meaningful for ratio scale measures.

5 .4 Measure Definition

We will now introduce interaction-based coupling measures. The issue will be first addressed
by ignoring generic modules for the sake of simplification. Generic modules and their impact
on the defined measures will be treated in Section 5.5.
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Measure 5: Import Coupling

Given a software part sp, Import Coupling of sp (denoted by IC(sp)) is the number of DD-

interactions between data declarations external to sp and the data declarations within sp.

It can be shown that IC(sp) satisfies the above properties AdaCoupling.1 - AdaCoupling.3,
but it does not satisfy any of the sets of properties for size, length, complexity, or cohesion
we formally defined in [BMB96]. Therefore, since it is consistent with our intuitive and
formally defined understanding of coupling, it is reasonable to assume that IC(sp) is a valid
coupling measure in our application context. As for its measurement scale, IC(sp) is a count
of interactions an may therefore be used as an absolute scale measure, and, as a consequence,
as a ratio scale measure.

Each box in Figure 4 represents a module interface. Module interfaces m2 and m3 are
located in their parent's interface m1. m2 is assumed to be declared before m3 and therefore
visible to m3. Tij and OBJECTij data declarations represent respectively types and objects in

module mi. FP3 represents a subroutine formal parameter. The IC values for the modules in
Figure 4 are computed as follows: IC(m1) = 0, IC(m2) = 4, IC(m3) = 5, IC(m4) = 2.

As visible in Figure 4, coupling between independent modules is considered in the
same way as coupling between modules and submodules. The justification for this is that,
when a module B is a submodule of a module A (B IS_COMPONENT_OF A), then it
implicitly sees part of A and explicitly uses some of the declarations of A, in the same way as
an external module C would import (e.g., with clause in Ada) and use declarations from A.

m1

 T11 

OBJECT21

 T21 

 T12 

m2

OBJECT31

 T31 

m3

FP3 SR3

m4

OBJECT41

OBJECT42

Figure 4. Calculation of IC with non-generic modules only

Based on the definitions of IC(sp), we derive two related measures, DIC(sp) (Direct Import
Coupling), TIC(sp) (Transitive Import Coupling). DIC(sp) only takes into account direct
interactions, whereas TIC(sp) only takes into account transitive interactions. By their
definitions, IC(sp) = DIC(sp) + TIC(sp). This allows us to separately evaluate the impact of
direct and transitive interactions on fault-proneness, as we show in the empirical validation.
In practice, the number of transitive interactions turns out to be much greater than that of
direct interactions, so IC(sp)  TIC(sp).
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5 .5 The Treatment of Generic Modules

There are two possible ways of taking into account generics when calculating coupling.
Either each instance can be seen as a different module or a generic can be seen as any other
module whose scope/global data declarations is/are the union of the scope/global data
declarations of its instances. The second solution does not consider instances as independent
modules and appears to be more suitable to our specific perspective, since faults are to be
found in generics and, only as a consequence, in instances.

The import coupling of a generic module is the cardinality of the union of the sets of
DD-interactions between the data declarations in the software system and those of each of its
instances. Consistent with the definition of DD-interaction, generic formal parameters DD-
interact with their particular generic actual parameters (i.e. type, object) when the generic
module is instantiated, since a change in the former may imply a change in the latter.

This is what the example in Figure 5 illustrates. Gen_m is the interface of a generic
module, with a generic formal parameter GenFP and a generic type GenT. The export
coupling of module Gen_m is given by the sum of three parts

- two interactions from Gen_m to m1, due to the two instantiations, Gen_m(1) and
Gen_m(2), of Gen_m in m1,

- the interaction from the instantiation Gen_m(1),
- the two interactions from the instantiation Gen_m(2).

The values of IC for the modules in Figure 5 are as follows: IC(m1) = 2, IC(m2) = 3,
IC(m3) = 4, IC(Gen_m) = 0.

m1

 T11 

OBJECT21 T21 

m2

OBJECT31 T31 

m3

FP3 SR3

Gen_m

GenFP

GenT

FP21 SR2
OBJECT32

GenT

Gen_m(1)

GenT

Gen_m(2)

Figure 5. Generics when calculating import coupling

5 .6 Related Work

As stated in [GJM92], coupling characterizes a module's relationship to other modules and
measures their interdependence. Again, it is assumed that low coupling will help analyze,
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understand, modify, test, and reuse modules separately. Meyer [M88] defines the "weak
coupling" principle as: if any two modules communicate at all, they should exchange as little
information as possible. As with cohesion, the notions of modules, elements, and relations
vary according to the context in which coupling is to be defined.

5 . 6 . 1 Procedural Coupling
Similarly to cohesion, an ordinal measurement scale was defined for coupling [CY79] based
on whether or not certain relationships occur between subroutines:

- Content coupling
- Common coupling
- Control coupling
- Stamp coupling
- Data coupling

For example, Content coupling occurs when a subroutine refers directly to the inside of
another subroutine (e.g., branches into) whereas Common coupling occurs whenever two
subroutines refer to the same global data [F91]. In the context of abstract data types, Content
and Common couplings between ADT's are not relevant since they go against the
fundamental definitions of what ADT's are. In addition, based exclusively on high-level
design information, it may not always be possible to determine the type of coupling between
two subroutines without uncertainties, since it might not be straightforward to determine how
parameters exchanged between subroutines will be used, e.g., for controlling behavior
(Control coupling) or for data exchange (Data coupling). The accuracy of this classification
may depend on the high-level design language used. For instance, the knowledge of
procedure headers in Ada might not be sufficient by itself to determine how a parameter is
used in a procedure. Consistent with the stated objectives of this study, we have provided
definitions for ADT coupling in Section 5.4 based on high-level design information
formalized through interactions as defined in Section 3.2.

5 . 6 . 2 Object-Based/Object-Oriented Coupling
In [CK94], a measure called Coupling Between Object classes (CBO) has been proposed for
classes in object-oriented systems. A class is coupled to another one when it uses its member
functions and/or instance variables. CBO provides the number of classes to which a given
class is coupled.

In our case, we have chosen to look at the coupling of modules based exclusively on
information available at the end of high-level design in our Ada context. We have chosen to
look at interaction-level coupling, i.e., at the frequency of interactions between a software
part and the others. We think that two interdependent software parts may show very different
intensities of interaction and that that should be taken into account.

On the other hand, CBO looks very similar to the ISP measure we will introduce in the
next section, except that ISP is defined in our object-based Ada context instead of OO
classes.
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Many other measures for coupling in object-oriented systems have been provided in the
literature (for instance, see [LH93, CK94, HM95, LLWW95, BDM97]—a survey is
available in [BDW96]). Comments can be made similar to the above discussion on cohesion.
Measures differ according to several criteria and the most important ones are: the types of
connection/dependency contributing to coupling, the locus of impact (i.e., import vs. export
coupling), the domain of the measure, its level of granularity (i.e., how connections are
counted), and, as for cohesion, how indirect connections and inheritance are handled. In our
case, certain choices (described above) have been made, based on our experimental
hypotheses, regarding these criteria.

6 Measures Based on USES and IS_COMPONENT_OF
Relationships

These measures are similar to existing measures in the literature [AE92, F91] and were
defined in order to provide a basis of comparison for the measures introduced in the previous
sections. Among the ones we investigated [BMB94a], two measures appeared to be
statistically significant as indicators of fault-proneness and are therefore introduced below,
Imported Software Parts, based on the USES relation among software parts, and Average
Depth of the nodes of the hierarchy defined by the IS_COMPONENT_OF relations within
software parts.

H-ISP is the experimental hypothesis that we believed to be true on the influence of the
imported software parts on fault proneness.

Hypothesis H-ISP.
The larger the number of imported software parts, the larger the context to be understood, the
more likely the occurrence of a fault.

Based on this hypothesis, we defined the following measure.

Measure 6: Imported Software Parts.

ISP(sp) will denote the number of software parts imported and used by a software part sp.

The relationship we believed to exist between depth of the IS_COMPONENT_OF hierarchy
and fault-proneness is expressed by the experimental hypothesis H-A.

Hypothesis H-A.
The larger the depth of a hierarchy, the larger the context information that is available to the
lower nodes, the more likely the occurrence of error regarding the hierarchy, the more likely
the detection of a fault in it. In other words, if a module B is included as a submodule of a
module A (and not as an independent module, e.g., a library unit in Ada as opposed to a
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secondary unit), we assume that B is not fully understandable out of its context of definition.
Otherwise, it would have been defined independently of A.

This experimental hypothesis allowed us to define the following measure.

Measure 7: Average Depth.

Avg_Depth(sp) will denote the average depth of the nodes composing a software part sp.

7 Empirical Validation

Here, we describe the last step of the approach we have followed in our study, i.e., the
empirical validation of the measures we defined. More specifically, we precisely describe the
goals of our empirical validation in Section 7.1. In Section 7.2, we show how we have
carried out our empirical validation. Sections 7.3 - 7.6 describe the experimental results we
have obtained: Section 7.3 shows the descriptive statistics, Section 7.4 the correlation
analysis, and Sections 7.5 and 7.6 discuss the univariate and multivariate analysis results,
respectively.

7 .1 Goals of the Empirical Validation

In our study, the empirical validation has two main goals.

Goal 1
We want to find out which of the measures defined above have a significant (in the two
senses of statistically significant and substantial) impact on the fault-proneness of software
parts. As said in Section 4.1, fault-proneness is defined in this context as the probability of a
fault to be detected in a software part by testing it. We think that such a definition is intuitive
and can be handled at low cost in an experimental setting. It also allows us to use a robust
and standard modeling technique specifically suitable to classification, i.e., logistic
regression [HL89]. However, other definitions and modeling techniques could be used (e.g.,
number of faults and least-square regression, respectively).

In this context, we are going to

a. identify which of our high-level design measures are significantly related to software
fault-proneness;

b. determine which of our hypotheses are empirically supported;
c. compare the interaction-based strategy to simpler strategies for defining high-level

design measures;
d. assess the stability of the observed trends across projects.

Section 7.3 - 7.5 show the experimental results related to points a. - d. in Goal 1.
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Goal 2
We need to investigate dependencies between measures, in order to determine which ones are
complementary and can be used in combination for fault-proneness prediction, and which
ones capture similar phenomena and are redundant. In other words, we need to determine
whether the defined measures are redundant or complementary explanatory variables of fault-
proneness. If they are complementary, then they are all potentially useful in order to build a
prediction model for fault-proneness. If most of them are redundant, then a few of those
measures are sufficient to help predict fault-proneness, assuming they are significant
predictors. We do not expect, though, that our measures explain all of the variation in the
data set. We are very well aware that other factors have an impact on fault-proneness, e.g.,
human factors, code attributes. On the other hand, we want to determine whether they can be
a useful part of a prediction model.

Section 7.6 investigates the goodness of fit obtained when building multivariate classification
models for detecting fault-prone LMHs based on the design measures that appeared
statistically significant during univariate analysis. The model results are assessed and the
model structure is investigated.

7 .2 Empirical Validation Strategy

In order to validate software measurement hypotheses empirically, one can adopt two main
strategies: (1) small-scale controlled experiments, (2) real-scale industrial case studies. In this
research project, we chose the second alternative since we thought the phenomena we are
studying would be even more visible and significant on software systems of realistic size and
complexity. Also, we thought that (2) should be a more relevant and convincing validation
for the software industry practitioners.

However, the problem in such studies is that it becomes difficult to study the
phenomena of interest in isolation, without having to deal with other sources of variation. In
our case, we thought that, if these measures were to be interesting, they should explain a
significant percentage of the variation individually or in combination, despite other sources of
variation. However, we expect some instability across projects.

Environment
The first system studied is an attitude ground support software for satellites (GOADA)
developed at the NASA Goddard Space Flight Center. The second one (GOESIM) is a
dynamic simulator for a geostationary environmental satellite. These systems are composed
of 525 and 676 Ada units, 90 Klocs and 170 Klocs, respectively, and have a fairly small
reuse rate (around 5% of the source code lines have been reused from other systems,
verbatim or slightly modified). The third system we studied (TONS) is an onboard
navigation system for satellite, which has been developed in the same environment and is
about 180 Ada units and 50 Klocs large, with an extremely small rate of reuse (2% of the
source code lines have been reused from other systems, verbatim or slightly modified). We
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selected projects with lower rates of reuse in order to make our analysis of design factors
more straightforward by removing what we think is a major source of noise in this context.

During development, change report forms are generated based on testing error reports.
These forms contain data on the type, cause, and source of errors. In addition, they provide
the modules that are affected by the change. Each module affected is considered to contain a
fault (following the standard IEEE terminology). Considering that this data collection process
has been running and institutionalized for more than 20 years, we expect the data collection to
be reliable and complete. No evidence of the contrary was found.

Tool
A tool has been developed to analyze the interface parts of Ada source code, in order to
capture the design attributes of these systems. This tool is based on LEX&YACC [LY92]
and extracts generic high-level design information about the visibility and interactions of the
system declarations. This information is consequently used to compute the measures
presented in Sections 4.4, 5.4, and 6, and others that might be defined.

Analytical Model
The response variable we use to validate the design measures is binary, i.e., Was a fault
detected in a LMH or not? In order to analyze the impact of software measures on the fault-
proneness of software parts (i.e., probability of a fault to be detected in a software part), we
used logistic regression, a classification technique [HL89] used in many experimental
sciences, based on maximum likelihood estimation, and presented below. In particular, we
first used univariate logistic regression, to evaluate the impact of each of the measures in
isolation on fault-proneness. In this case, a careful outlier analysis must be performed in
order to make sure that the observed trend is not the result of few observations [DG84]7.
Then, we performed multivariate logistic regression, to evaluate the relative impact of those
measures that had been assessed sufficiently significant in the univariate analysis. For
instance, according to [HL89], p < 0.25, where p is the probability for the regression
coefficient to be different from 0 by chance, is a reasonable heuristic to select candidate
covariates for multivariate analysis. This modeling process is further described in [HL89].

A multivariate logistic regression model is based on the following relationship equation
(the univariate logistic regression model is a special case of this, where only one variable
appears):

π(X1, X2, …,Xn) = 
e(C0 +C1• X1 + ... + Cn• Xn)

 1+e(C0 +C1• X1 + ... + Cn• Xn)
      (**)

where

• π is the probability that no fault was found in a software part during the validation

phase

7In addition, in order to confirm the obtained results, we used non-parametric tests for rank distributions such
as the Mann-Whitney U test [C88]. Results appeared to be consistent across techniques.
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• the Xi's are the design measures included as explanatory variables in the model (called

covariates of the logistic regression equation).

The curve between π and any single Xi—i.e., assuming that all other Xj's are constant—

takes a flexible S shape which ranges between two extreme cases:

(1) when a variable is not significant, then the curve approximates a horizontal line, i.e., π
does not depend on Xi

(2) when a variable entirely differentiates fault-prone software parts, then the curve
approximates a vertical line.

The coefficients Ci's will be estimated through the maximization of a likelihood function,

built in the usual fashion, i.e., as the product of the probabilities of the single observations,
which are functions of the covariates (whose values are known in the observations) and the
coefficients (which are the unknowns). For mathematical convenience, l = ln[L], the
loglikelihood, is usually the function to be maximized. This procedure assumes that all
observations are statistically independent. In our context, an observation is the detection/non
detection of a fault in a LMH. Each detection/non detection of a fault is assumed to be an
event independent from the other fault detections/non detections. This is in part justified by
the fact that faults correspond to different change report forms and, therefore, error detection
events.

The global measure of goodness of fit we will use for such a model is assessed via
R2—not to be confused with the least-square regression R2—they are built upon very
different formulae, even though they both range between 0 and 1 and are similar from an
intuitive perspective. The higher R2, the higher the effect of the model's explanatory
variables, the more accurate the model. However, as opposed to the R2 of least-square
regression, high R2s are rare for logistic regression. (The interested reader may refer to
[HL89] for a detailed discussion of this issue.) R2 is defined by the following ratio:

R2 = 
LLS - LL

LLS

where

- LL is the loglikelihood obtained by Maximum Likelihood Estimation of the model
described in formula (**)

- LLS is the loglikelihood obtained by Maximum Likelihood Estimation of a model
without any variables, i.e., with only C0. By carrying out all the calculations, it can be
shown that LLS is given by

LLS = m0 ln (
m0

m0 + m1
) + m1 ln (

m1
m0 + m1

)

where m0 (resp., m1) represents the number of observations for which there are no
faults (resp., there is a fault). Looking at the above formula, LLS/(m0 + m1) may be
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interpreted as the uncertainty associated with the distribution of the binary dependent
variable (no fault detected in a LMH, one fault detected in a LMH), according to
Information Theory concepts. It is the uncertainty left when the variable-less model is
used. Likewise, LL/(m0 + m1) may be interpreted as the uncertainty left when the
model with the covariates is used. As a consequence, (LLS - LL)/(m0 + m1) may be
interpreted as the part of uncertainty that is explained by the model. Therefore, the ratio
(LLS - LL)/LLS may be interpreted as the proportion of uncertainty explained by the
model.

Tables 1 - 6 contain the results we obtained through, respectively, univariate and multivariate
logistic regression on the three systems. For each measure, we provide the following
statistics:

- C (appearing in Tables 3 and 4), the estimated regression coefficient. The larger the
absolute value of the coefficient, the stronger the impact of the covariate on the
probability p.

- ∆ψ (appearing in Table 3 only, i.e., in univariate analysis), which is based on the

notion of odds ratio [HL89], and provides an evaluation of the impact of the measure
on the dependent variable. More specifically, the odds ratio ψ(Xi) represents the ratio

between the probability of not having a fault and the probability of having a fault when
the value of the measure is Xi. As an example, if, for a given value Xi, ψ(Xi) is 2, then

it is twice as likely that the software part does not contain faults than that it does contain
faults. For each variable Xi, the value of ∆ψi for logistic regression is computed by

means of the following formula

∆ψ = 
ψ(X+1)

ψ(X)

Therefore, ∆ψi represents the reduction/increase in the odds ratio when the value Xi of

the measure increases by 1 unit and has the useful property to be independent of Xi in
the context of logistic regression. This provides a more intuitive insight than regression
coefficients into the impact of explanatory variables. (Since the whole range of RCI is
[0,1], we used 0.01 as the quantum for RCI increase with respect to which ∆ψRCI is

computed.)
- p (appearing in both tables), the statistical significance of C, which provides an insight

into the accuracy of the coefficient estimates. The level of significance of the logistic
regression coefficients tells the reader about the probability that the coefficient is
different from zero by chance. Historically, a significance threshold (α) of α = 0.05

(i.e., 5% probability) has often been used in univariate analysis to determine whether a
variable is a significant predictor. However, the choice of a particular level of
significance is ultimately a subjective decision and other levels such as 0.01 or 0.1 are
commonly used. The larger the level of significance, the larger the standard deviation
of the estimated coefficients, the less believable the calculated impact of the coefficient.
The significance test is based on a likelihood ratio test [HL89] commonly used in the
framework of logistic regression.
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7 .3 Descriptive Statistics

Table 1 presents the descriptive statistics for the three projects we analyze. The minimum,
maximum, median, mean, and standard deviation are provided in each table cell for each
project. These descriptive statistics will be useful later on when we explain the differences
observed in the analysis between the projects. Also, in future replications of this study,
comparisons will be made easier if the sample statistics can be compared.

Measure Project minimum maximum median mean std dev

GOADA 0 15 1 1.41 1.65

ISP GOESIM 0 6 1 1.19 1.13

TONS 0 18 1 1.69 2.2

GOADA 1 2.87 1.75 1.5 0.41

Avg_Depth GOESIM 1 2.86 1.8 1.5 0.43

TONS 1 1.96 1.67 1.52 0.38

GOADA 0 1 0.003 0.11 0.17

RCI GOESIM 0 1 0.083 0.16 0.20

TONS 0 1 0.034 0.16 0.24

GOADA 0 172 15.5 30.4 32.7

TIC GOESIM 0 126 46.0 37.2 32.5

TONS 0 125 3 8.04 16.8

GOADA 0 67 3 5.02 9.06

DIC GOESIM 0 32 3 4.63 6.08

TONS 0 36 3 5.34 7.22

Table 1. Descriptive statistics

From Table 1, a few strong variations between TONS and the other two projects are visible.
The standard deviation, mean and median of TIC are smaller for TONS. This may be due to
the significant difference in size between the systems and results in fewer transitive
interactions in TONS. With respect to ISP, differences can be observed between projects'
means and standard deviations where TONS shows the largest mean of imported software
parts and GOESIM the smallest one.

These differences may have numerous causes. GOADA and GOESIM are older
projects and among the earlier Ada developments in the studied environment whereas TONS
is a much more recent project. Higher module imports may be due to an increase in
complexity over time of the systems developed in the studied environment or to the difference
in application domain. Similarly, GOADA shows a much smaller median with respect to
cohesion. Considering that GOADA was the first Ada project using object-oriented design in
that environment, this circumstance may be explained by a lack of experience with that new
technology and its underlying concepts.
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7 .4 Correlation Analysis

Table 2 presents the computed Pearson’s correlation coefficients (R) between the design
measures computed for each of the three projects.

Measure Project ISP Avg_Depth RCI TIC DIC

GOADA 1 -0.05 -0.1 0 . 4 0 . 5 3

ISP GOESIM 1 0.08 -0.12 0 . 3 0 . 5 2

TONS 1 0.2 -0.1 0 . 8 0 . 4 8

GOADA 1 - 0 . 4 0.05 0.18

Avg_Depth GOESIM 1 - 0 . 4 -0.08 0.06

TONS 1 -0.23 0.3 0.38

GOADA 1 0.02 0.12

RCI GOESIM 1 -0.24 0.02

TONS 1 -0.1 -0.2

GOADA 1 0.4

TIC GOESIM 1 0.17

TONS 1 0 . 7 1

GOADA 1

DIC GOESIM 1

TONS 1

Table 2. Linear correlation coefficients

Most of the correlations in Table 2 are weak (the significant ones, at the 0.01 level, are in
boldface). ISP appears to be significantly correlated to DIC across the three projects.
However, the relationship is relatively weak. The correlation between TIC and ISP for
TONS is mainly due to an outlier. On the other hand, the correlation between DIC and TIC is
actually stronger (R = 0.87) when removing that outlier. A careful analysis of Table 2 allows
us to conclude that, in most cases, the five measures presented capture different dimensions
in our environment. In other words, they are likely not to be redundant from a predictive
point of view. The existing significant correlations will have, however, to be considered in
the following analysis.

7 .5 Univariate Analysis

In this section, we present the results obtained when analyzing the individual impact of the
defined design measures on fault-proneness. Table 3 presents these results by providing the
computed regression coefficient (C), the variation in odds ratio when increasing the
measure's value of a unit (∆ψ), and the actual statistical significance of C (p). The number of

LMH's of the systems for GOADA, GOESIM, and TONS are 131, 85, 83, respectively.
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Results

Measure Project C ∆ψ p

GOADA -0.8 45% 0.000

ISP GOESIM -0.717 49% 0.002

TONS -0.96 38% 0.000

GOADA -2.27 11% 0.000

Avg_Depth GOESIM -2.4 9% 0.000

TONS -3.9 2% 0.000

GOADA 0.63 19% 0.000

RCI GOESIM 0.215 12% 0.047

TONS 0.34 14% 0.001

GOADA -0.016 98% 0.001

TIC GOESIM -0.017 98% 0.002

TONS -0.03 96% 0.08

GOADA -0.23 79% 0.000

DIC GOESIM -0.19 83% 0.001

TONS -0.05 95% 0.11

Table 3. Univariate analysis

The best univariate logistic regression R2s (our measure of goodness of fit) are obtained with
the measure Avg_Depth:

• GOADA: R2 = 0.115
• GOESIM: R2 = 0.14
• TONS: R2 = 0.16

Detailed Discussion
Across the three systems under study, regression coefficients show the expected signs and
seem to support our hypotheses. For example, RCI shows a positive sign and therefore
suggests that the probability of having no fault detected increases with RCI. However, TIC
and DIC do not appear to be very significant in TONS (p = 0.11 and 0.08, respectively),
whereas they are very significant in the other two systems. The analysis of the distribution of
TIC in all three systems, respectively, shows that its standard deviation, mean, and median
are much smaller in TONS (see Table 1). As a consequence, any trend related to TIC may not
be visible in the TONS dataset. Since TONS is a significantly smaller system than the other
two, we can hypothesize the following possible explanation: the distribution of indirect
import interactions is strongly dependent on the size of the system and indirect import
interaction measures are likely to be mediocre predictors for small systems. However, well-
founded interpretations of this experimental result require more thorough and extensive
studies, based on a larger set of software systems. Other interpretations might turn out to be
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as plausible. With respect to DIC, no explanation has been found for its mediocre level of
significance in TONS. In all other cases, the univariate analysis results show that the five
defined measures are significantly related (at a α  = 0.05 level of significance) to fault-

proneness.

Comparing Models
Variations across models (i.e., univariate regression equations) should be expected, due to
differences in project characteristics and measure distributions, i.e., size, application domain.
In order to evaluate the stability of the models, the reader should look at the ∆ψ columns in

Table 3. Model stability may be defined as the degree of variation of the ∆ψ's across

projects. Based on that definition, it is worth noticing that, despite the fact that these projects
belong to different application domains (within the context of satellite support systems) and
have been developed at different times, most of the models are surprisingly stable across
projects, i.e., trends are similar and percentages are in similar ranges.

As a conclusion, Goal 1 of our empirical validation is fulfilled by the above analysis
since some high-level design measures are significantly related to fault-proneness (see C and
p values in Table 3) (subgoal a). In addition, by analyzing the trends indicated by the
coefficients, we see that the hypotheses underlying the measures identified above as
significant are empirically supported (subgoal b). In addition, interaction-based measures do
not appear to be strongly associated with simpler high-level design measures (Table 2) and,
therefore, seem to be complementary (subgoal c). Last, the observed trends appear stable
across projects (∆ψ's in Table 3) (subgoal d).

7 .6 Multivariate Models

In this section, we present the results obtained by performing a stepwise multivariate logistic
regression. Table 4 provides the estimated regression coefficients (C) and their significance
(p) based on a likelihood ratio test [HL89], which is obtained by comparing the maximum
likelihood estimate of a parameter to its estimated standard deviation. Regression coefficients
are not shown when their level of significance is above 0.25 (substituted by a *).

It is important to note that we do not expect high-level design measures to account for
all of the variation of fault-proneness, since other factors are likely to be important too, e.g.,
human factors. However, the goal of multivariate analysis here is to determine whether the
measures appearing significant in the univariate analysis are complementary and useful for
prediction, i.e., useful to build a classifier. In order to do so, we have to show that these
measures are, when used together in a multivariate model, significantly related to fault-
proneness. In other words, when measures remain significant covariates when included in
the multivariate model, this means that they are complementary in explaining fault-proneness.
When the multivariate models show a better fit than univariate models, then the measures are
deemed to be potentially useful  for building a multivariate model predicting fault-proneness.

Analyzing the behavior of our measures in a multivariate context allows us to refine
their validation by determining the extent to which they can be useful predictors. A detailed
discussion of multivariate analysis and the issues mentioned above can be found in [DG84].
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Project C p

GOADA -0.9 0.04

ISP GOESIM * *

TONS -1.18 0.000

GOADA -1.8 0.003

Avg_Depth GOESIM -3.12 0.000

TONS -5.62 0.000

GOADA 0.4 0.006

RCI GOESIM 0.3 0.07

TONS 0.2 0.16

GOADA -0.023 0.000

TIC GOESIM -0.02 0.005

TONS * *

GOADA 0.23 0.04

DIC GOESIM -0.13 0.04

TONS -0.11 0.002

Table 4. Coefficients of multivariate models

Results
The very low levels of significance (p-values) in Table 4 suggest that, most of the time, these
measures may be used in combination as indicators of fault-prone LMH's. Indeed, when
used in a multivariate model, many of these measures are still significant and produce models
that are more accurate than univariate models (Table 2).

The multivariate R2s are 0.21 for GOADA, 0.24 for GOESIM, and 0.43 for TONS.
These values are, respectively 183%, 171%, and 269% of the best univariate R2, i.e., the
results improved significantly with the multivariate model. (Recall that logistic regression R2

values are usually low as compared to least-square regression R2s.)
Interaction-based measures are more complex than ISP and Avg_Depth but they are

worth collecting, since they provide information which is complementary to that provided by
ISP and Avg_Depth. We would miss substantial information if we used only ISP and
Avg_Depth, even though ISP and Avg_Depth individually perform better than our
interaction-based measures. Interaction-level measures allow the building of multivariate
models, with better goodness of fit than univariate models. We also want to remark that no
other declaration measures we also investigated (e.g., the number of data declarations as a
size measure for LMH) turned out to be statistically significant. In addition, the average LMH
depth was consistently selected as a very good indicator. ISP, a measure similar to the notion
of fan-in, shows to be significant across projects (except in the multivariate GOESIM model
for reasons explained below). From a more general perspective, measures based on imports,
regardless of the associated concepts, appear to explain part of the fault-proneness of
software parts.
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Comparing Models
Some variability in the estimated regression coefficients can be observed across projects in
Table 4. In multivariate models, coefficients have a tendency to adjust, statistically, for other
covariates [HL89, DG84]. Sometimes, covariates are weak predictors of the response (or
dependent) variable when taken individually, and become more significant when integrated in
a multivariate model. In Table 3, DIC showed, for TONS, a mediocre level of significance,
whereas it appears to be a significant covariate in Table 4. Moreover, its trend is reversed
(positive) for GOADA. When looking more carefully at the associations between measures, it
can be determined that this may be the results of a significant association between DIC and
ISP (see Table 1) in GOADA. These associations are a typical source of coefficient
instability, e.g., the coefficient of ISP in GOADA varies from -0.9 to -0.39 when DIC is
removed from the equation.

TIC does not appear significant in TONS and this may stem from its distribution in
TONS (Table 1) which shows a much smaller mean and standard deviation in the TONS
dataset. If most of TONS's observations lie in the lower range of the TIC scale, its impact on
fault-proneness may not be visible since we expect LMH's with larger TIC values to be fault-
prone. Another possible cause is the linear association between TIC and DIC in TONS (see
Table 2). Also, RCI does not appear very significant in TONS. In that case, despite the fact
that no differences in distribution or strong linear association can be observed (Tables 1 and
2), a strong non-linear association exists between RCI and DIC. When using the natural
logarithm to transform the scales of DIC and RCI (i.e., linearize the relationship between
DIC and RCI), a correlation of R = 0.87 can be observed. This may very well explain the
mediocre level of significance of RCI in TONS.

ISP shows a smaller mean and standard deviation in GOESIM and does not appear
significant as a covariate in that case. RCI shows a level of significance in GOESIM which is
worse than in GOADA but better than in TONS. In that case, again, this may be explained by
a weak but significant non-linear relationship between DIC and RCI (after linearization, R =
0.46 or R = 0.59 when removing an outlier).

It is important to note that a different set of systems showing different distributions
might show very different trends. This points out a need for large scale investigation across
various development environments and application domains. In addition, an investigation
over a large number of systems would allow us to better determine the ranges of values in
which the various measures are significant predictors of fault-proneness.

As a conclusion, Goal 2 of our empirical validation is fulfilled since we have shown that
these measures are complementary and useful explanatory variables of fault-proneness, i.e.,
multivariate models show a better goodness of fit than the univariate models.

Goodness of Fit
In order to better assess the goodness of fit of the above multivariate models, we look now at
other measures of fit which provide a perspective complementary to R2. Let us assume we
wish to use the constructed logistic regression models to classify LMH's in two categories,
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i.e., it is/is not likely to detect a fault in the LMH. In order to do so, we define a probability
threshold of 0.5 to decide, based on the computed probability to detect a fault in each LMH,
whether a LMH actually contains a fault. In that case, one may decide, for instance, to
inspect or test more carefully the LMH.

Based on such classification models, we obtain the classification results presented in
Table 5 across the three projects. GOADA, GOESIM, and TONS contain, respectively, 131,
85, and 83 LMH's. In addition, 270, 141, and 115 faults have been reported, respectively.
Table 5's rows represent the actual categories of LMH's (i.e., faulty or non-faulty) whereas
the columns represent the classification performed based on the logistic regression models.

Predicted

GOADA GOESIM GOESIM

No Fault Fault No Fault Fault No Fault Fault

Actual No Fault 22 41 12 33 30 20

Fault 8 (11) 60 (259) 2(11) 38(130) 4(7) 29(108)

Table 5. Classification results for the multivariate analysis

Table 6 compares the LMH's which actually contain a fault with the ones that have been
predicted to contain a fault. Based on these results, Table 6 presents two classification
evaluation criteria: completeness, correctness. The former gives the percentage of faulty
LMH's which have been classified as faulty. The latter gives the percentage of times a LMH
has been classified correctly as faulty. For example, in GOADA, 60 faulty LMH's have been
classified as faulty whereas 8 of them have been classified as non-faulty. On the other hand,
41 non-faulty LMH's have been classified as faulty. In that case, Completeness = 60/68 =
88%, whereas Correctness = 60/101 = 60%. These two criteria are complementary in
assessing classification results and cannot be analyzed independently. More balanced
completeness and correctness results could be obtained by using a different classification
threshold than 0.5.

GOADA GOESIM GOESIM

Completeness 88% (96%) 95% (92%) 89% (94%)

Correctness 60% (86%) 54% (80%) 59% (84%)

Table 6. Classification accuracy for faulty LMH's for the multivariate analysis

Results put between parentheses in Tables 5 and 6 provide the number of faults detected in
each LMH. This allows us to determine correctness and completeness in terms of faults,
instead of faulty LMH's. If we take the same example again, Correctness = 259/300 = 86%
and Completeness = 259/270 = 96%. Overall, the results appear to be substantially better
when considering faults. This shows that the models are more accurate for LMH's containing
a larger number of faults.

As expected and discussed above, the classification results are not fully satisfactory and
there is room for improvement. However, especially with respect to completeness, the results
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show that the defined design measures are useful indicators of fault-prone LMH's.
Furthermore, the design measures show to be excellent predictors of where most of the faults
will be detected. Criteria such as correctness and completeness are dependent on the choice of
a subjective classification threshold. However, as a measure of fit, they are more intuitive
than R2.

Another important point is that there is a difference between measuring the goodness of
fit of a model and assessing its predictive capability. In the latter case, one should define a
modeling set and test set. The modeling set is usually larger than the test set and is used to
build the model. It should be representative of the whole statistical population under study.
The test set is used to test the predictive accuracy of the model generated. In our study, we
were interested in the goodness of fit and we did not investigate the predictive capability of
the model per se. However, a satisfactory goodness of fit is required in order to realistically
expect a satisfactory predictive capability in future studies. Our goal was to validate our
measures according to the goals stated above, not to build and assess objectively predictive
models. Such a task is however a part of our future work and would require larger data sets
which are representative of the project population in our environment.

8 Conclusion

This paper has presented an empirical study on the definition and validation of measures for
high-level object-based designs. Our experimental goal was to evaluate the influence of some
attributes of the high-level object-based design on the fault-proneness of the produced
software in the context of Ada development at NASA/GFSC. Based on the experimental
goal, we have set experimental hypotheses from which we derived measures, which were
theoretically validated by means of a property-based approach and empirically validated on
three real-life software projects.

The study has shown that statistical models of good statistical significance can be built
based on high-level design information for systems designed based on abstract data types. In
particular, we have identified some early indicators for fault-prone software that may be
interpreted as cohesion and coupling measures. The stability of the impact of these measures
across projects allows us to draw optimistic conclusions about the use of such quality
indicators. In a given application domain, the impact of the defined high-level design
measures seems to be relatively stable across projects. When differences appear across
projects (especially in the multivariate models), they can be explained either by associations
between covariates or by differences in distributions across projects. Using early quality
indicators based on objective empirical evidence is therefore a realistic objective. Quality
indicators can be weighted according to their impact on fault-proneness in order to build
quality models and these weights will be representative, to some extent, across projects in the
given application domain.

However, there is no guarantee that this kind of indicators will behave similarly across
various application domains and development environments. Therefore, it is generally
prudent to precede the use of such indicators by a careful empirical analysis of local fault
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patterns in the studied environment and a thorough comparison across projects. As discussed
in the Introduction, we do not believe that universally valid quality measures and models can
be devised at this stage. Therefore, our approach to measure definition and validation can be
reused, but the measures and models themselves should be investigated and validated locally
in each studied environment.

Our future work will be four-fold:

- Analyze more systems.
- Assess, as objectively as possible, the predictive capability of models based on high-

level design measures.
- Further validate and refine the measures we defined in this paper. The variations across

environments and the study/comparison of different architectures is likely to give us
interesting insights.

- Consistent with our current objectives, we will address the issues related to building
measure-based empirical models earlier in the life cycle. In particular, the next stage of
this research will focus on defining and validating measures for formal specifications
[BM97].
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