• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Double-Mesoscopic Hole-Transport-Material-Free Perovskite Solar Cells: Overcoming Charge-Transport Limitation by Sputtered Ultrathin Al2O3 Isolating Layer
 
  • Details
  • Full
Options
2020
Journal Article
Title

Double-Mesoscopic Hole-Transport-Material-Free Perovskite Solar Cells: Overcoming Charge-Transport Limitation by Sputtered Ultrathin Al2O3 Isolating Layer

Abstract
The electrically insulating space layer takes a fundamental role in monolithic carbon-graphite based perovskite solar cells (PSCs) and it has been established to prevent the charge recombination of electrons at the mp-TiO2/carbon-graphite (CG) interface. Thick 1 mm printed layers are commonly used for this purpose in the established triple-mesoscopic structures to avoid ohmic shunts and to achieve a high open circuit voltage. In this work, we have developed a reproducible large-area procedure to replace this thick space layer with an ultra-thin dense 40 nm sputtered Al2O3 which acts as a highly electrically insulating layer preventing ohmic shunts. Herewith, transport limitations related so far to the hole diffusion path length inside the thick mesoporous space layer have been omitted by concept. This will pave the way toward the development of next generation double-mesoscopic carbon-graphite-based PSCs with highest efficiencies. Scanning electron microscope, energy dispersive X-ray analysis, and atomic force microscopy measurements show the presence of a fully oxidized sputtered Al2O3 layer forming a pseudo-porous covering of the underlying mesoporous layer. The thickness has been finely tuned to achieve both electrical isolation and optimal infiltration of the perovskite solution allowing full percolation and crystallization. Photo voltage decay, light-dependent, and time-dependent photoluminescence measurements showed that the optimal 40 nm thick Al2O3 not only prevents ohmic shunts but also efficiently reduces the charge recombination at the mp-TiO2/CG interface and, at the same time, allows efficient hole diffusion through the perovskite crystals embedded in its pseudo-pores. Thus, a stable VOC of 1 V using CH3NH3PbI3 perovskite has been achieved under full sun AM 1.5 G with a stabilized device performance of 12.1%.
Author(s)
Mathiazhagan, Gayathri
Fraunhofer-Institut für Solare Energiesysteme ISE  
Wagner, Lukas  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Bogati, Shankar  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Yasaroglu Ünal, Kübra
Institut de Physique et de Chimie des Matériaux de Strasbourg
Bogachuk, Dmitry  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Kroyer, Thomas  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Mastroianni, Simone
Fraunhofer-Institut für Solare Energiesysteme ISE  
Hinsch, Andreas  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Journal
ACS applied nano materials  
Project(s)
APOLO  
PROPER
Funder
European Commission EC  
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Open Access
File(s)
Download (1.56 MB)
DOI
10.1021/acsanm.9b02563
10.24406/publica-r-261436
Additional link
Landing Page
Language
English
Fraunhofer-Institut für Solare Energiesysteme ISE  
Keyword(s)
  • Photovoltaik

  • Neuartige Photovoltaik-Technologien

  • Farbstoff- und Perowskitsolarzellen

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024