Options
 2012 
 Journal Article 
Title
Significant on-resistance reduction of LDMOS devices by intermitted trench gates integration
Other Title
Wesentliche Verringerung des Driftwiderstands von LDMOS Bauelementen durch Einführung unterbrochener Grabenstrukturen
Wesentliche Verringerung des Ein-Widerstands in LDMOS Bauelementen durch Integration von Grabengates (lokal)
Abstract
A concept for the integration of intermitted trench gates into silicon lateral double-diffused metal-oxide-semiconductor (LDMOS) devices is proposed to achieve a significant reduction in on-resistance. The trench structure can be feasibly integrated into smart-power integrated circuit technology. Using 2-D technology computer aided design (TCAD) simulations, the achievable reduction in $R_{DS, {rm on}}$ from 145 $hbox{m}Omegacdot hbox{mm}{2}$ down to 94 $hbox{m}Omegacdothbox{mm}{2}$ for a 50 V LDMOS device and the negligible impact on the blocking characteristics were demonstrated. Additionally, the device parameters were analyzed with respect to static and dynamic power dissipation. Here, the benefits of trench gate integration became more apparent. Analyzing power losses during high-frequency operation revealed that the increased input capacitance resulting from the trench gate is acceptable for applications where high switching frequencies in the upper megahertz range are not required.
Open Access
File(s)
Rights
 Use according to copyright law 
Additional link
Language
 English 
Keyword(s)
- MOS integrated circuits 
- ICs 
- Power MOSFET 
- power semiconductor device 
- semiconductor device modeling 
- silicon devices 
- capacitance 
- integrated circuit 
- logic gates 
- power dissipation 
- standards 
- switches 
- topology 
- analyzing power 
- device parameters 
- high frequency operation 
- input capacitance 
- integrated circuit technology 
- LDMOS devices 
- metal oxide semiconductor 
- on-resistance 
- static and dynamic 
- technology computer aided design 
- trench gates