Wymeersch, H.H.WymeerschPenna, F.F.PennaSavic, V.V.Savic2022-03-042022-03-042012https://publica.fraunhofer.de/handle/publica/22883310.1109/TWC.2012.021412.111509In this paper, we propose a new inference algorithm, suitable for distributed processing over wireless networks. The algorithm, called uniformly reweighted belief propagation (URW-BP), combines the local nature of belief propagation with the improved performance of tree-reweighted belief propagation (TRW-BP) in graphs with cycles. It reduces the degrees of freedom in the latter algorithm to a single scalar variable, the uniform edge appearance probability . We provide a variational interpretation of URW-BP, give insights into good choices of , develop an extension to higher-order potentials, and complement our work with numerical performance results on three inference problems in wireless communication systems: spectrum sensing in cognitive radio, cooperative positioning, and decoding of a low-density parity-check (LDPC) code.en621384Uniformly reweighted belief propagation for estimation and detection in wireless networksjournal article