Under CopyrightAdilova, LinaraLinaraAdilovaBöttinger, KonstantinKonstantinBöttingerDanos, VasiliosVasiliosDanosJacob, SvenSvenJacobLanger, FabianFabianLangerMarkert, ThoraThoraMarkertPoretschkin, MaximilianMaximilianPoretschkinRosenzweig, JuliaJuliaRosenzweigSchulze, Jan-PhilippJan-PhilippSchulzeSperl, PhilipPhilipSperl2023-06-192023-06-192022https://publica.fraunhofer.de/handle/publica/443025https://doi.org/10.24406/publica-150310.24406/publica-1503We present best practice guidelines for certification and verification of Neural Networks, as well as defense techniques against evasion, poisoning, backdoor, and privacy attacks. Moreover, we provide readers with a broad literature study of the aforementioned fields, enabling them to navigate these broad and fast-paced fields of research.enSecurity of AI-Systems: Fundamentalspaper