Kafle, BishalBishalKafleFreund, TimoTimoFreundSchön, JonasJonasSchönWerner, SabrinaSabrinaWernerLorenz, AndreasAndreasLorenzWolf, AndreasAndreasWolfSaint-Cast, PierrePierreSaint-CastClochard, LaurentLaurentClochardDuffy, EdwardEdwardDuffyHofmann, MarcMarcHofmannRentsch, JochenJochenRentsch2022-03-052022-03-052017https://publica.fraunhofer.de/handle/publica/24765710.1109/jphotov.2016.2626921In this paper, we study the impact of change in emitter diffusion profiles on the electrical characteristics of nanotextured surfaces formed by an inline plasma-less dry-chemical etching process. Our experimental results and process simulations suggest that a deeper highly doped region and a significantly higher inactive P concentration in the emitter plays a determining role in defining recombination, as well as the resistive losses in nanotextured surfaces. Low emitter saturation current densities on phosphorous-diffused surfaces are achievable after passivation with either SiNx (j0e,m in ≈ 81 fA/cm2) or AlOx/SiNx (j0e,m in ≈ 31 fA/cm2) if the emitter recombination channels are suppressed. Based upon macroscopic measurement of contact resistivity and microscopic analysis of the contact areas, we propose that the formation of numerous metal-semiconductor direct contact points on the peak and the plateaus of the nanostructures are mainly responsible for a low specific contact resistivity (rc,m in ≈ 1.2 mO · cm2) achievable in these surfaces.enPV Produktionstechnologie und QualitätssicherungPhotovoltaikSilicium-PhotovoltaikDotierung und DiffusionOberflächen: KonditionierungPassivierungLichteinfangKontaktierung und Strukturierungnanotexturesilicondiffusionscreen-printingOn the nature of emitter diffusion and screen-printing contact formation on nanostructured silicon surfacesjournal article