Scherrer, AlexanderAlexanderScherrerZimmermann, TobiasTobiasZimmermannRiedel, SinanSinanRiedelMousa, F.F.MousaWasswa-Musisi, I.I.Wasswa-MusisiZifrid, R.R.ZifridTillil, H.H.TillilUlrich, P.P.UlrichKosmidis, T.T.KosmidisReis, J.J.ReisOestreicher, G.G.OestreicherMöhler, M.M.MöhlerKalamaras, I.I.KalamarasVotis, K.K.VotisVenios, S.S.VeniosPlakia, M.M.PlakiaDiamantopoulos, S.S.Diamantopoulos2022-10-102022-10-102022https://publica.fraunhofer.de/handle/publica/42747610.1007/978-3-031-08341-9_322-s2.0-85133230888This publication presents a solution approach for digitally assisted planning and monitoring of supportive recommendations in cancer patients. This solution approach shall support patients in overcoming the after-effects of therapy effectively without extensive involvement of health professionals. Health professionals and patients are provided with a web application and a mobile application respectively, which use methods from mathematical decision support and artificial intelligence. This technological basis facilitates a closed-loop workflow for the cooperation of health professional and patient in oncological aftercare. The solution approach is illustrated for an exemplary case scenario of colorectal cancer.enArtificial intelligenceDecision SupportOncological aftercarePatient monitoringSupportive recommendation planningDigitally Assisted Planning and Monitoring of Supportive Recommendations in Cancer Patientsconference paper