Pereira, RenataRenataPereiraBarros Esteves Lins, RodrigoRodrigoBarros Esteves LinsDe Souza Lima, Elton FariaElton FariaDe Souza Limado Carmo Aguiar Jordão Mainardi, MariaMariado Carmo Aguiar Jordão MainardiStamboroski, StephaniStephaniStamboroskiRischka, KlausKlausRischkaBaggio Aguiar, Flavio HenriqueFlavio HenriqueBaggio Aguiar2024-08-022024-08-022024-07-21https://publica.fraunhofer.de/handle/publica/47238410.3390/polym16142081Graphene is a promising biomaterial. However, its dispersion in aqueous medium is challenging. This study aimed to modify graphene nanoparticles with L-dopa to improve the properties of experimental dental adhesives. Adhesives were formulated with 0% (control), 0.25%, 0.5%, and 0.75% of graphene, modified or not. Particle modification and dispersion were microscopically assessed. Degree of conversion was tested by Fourier-transform infrared spectroscopy. Flexural strength and modulus of elasticity were evaluated by a 3-point flexural test. Bond strength was tested by shear. To test water sorption/solubility, samples were weighed during hydration and dehydration. Antibacterial activity was tested by Streptococcus mutans colony-forming units quantification. Cytotoxicity on fibroblasts was evaluated through a dentin barrier test. The modification of graphene improved the particle dispersion. Control presented the highest degree of conversion, flexural strength, and bond strength. In degree of conversion, 0.25% of groups were similar to control. In bond strength, groups of graphene modified by L-dopa were similar to Control. The modulus of elasticity was similar between groups. Cytotoxicity and water sorption/solubility decreased as particles increased. Compared to graphene, less graphene modified by L-dopa was needed to promote antibacterial activity. By modifying graphene with L-dopa, the properties of graphene and, therefore, the adhesives incorporated by it were enhanced.engrapheneL-DOPAdental adhesiveanti-bacterial agentsdental materialsProperties of a Dental Adhesive Containing Graphene and DOPA-Modified Graphenejournal article