Er-Raji, OussamaOussamaEr-RajiMahmoud, Mohamed Abdelaziz AbdelnabyMohamed Abdelaziz AbdelnabyMahmoudFischer, OliverOliverFischerRamadan, Alexandra J.Alexandra J.RamadanBogachuk, DmitryDmitryBogachukReinholdt, AlexanderAlexanderReinholdtSchmitt, AngelikaAngelikaSchmittKore, Bhushan P.Bhushan P.KoreGries, Thomas WilliamThomas WilliamGriesMusiienko, ArtemArtemMusiienkoSchultz-Wittmann, OliverOliverSchultz-WittmannBivour, MartinMartinBivourHermle, MartinMartinHermleSchubert, Martin C.Martin C.SchubertBorchert, Anna JulianeAnna JulianeBorchertGlunz, Stefan W.Stefan W.GlunzSchulze, Patricia S.C.Patricia S.C.Schulze2024-10-082024-10-082024https://publica.fraunhofer.de/handle/publica/47700410.1016/j.joule.2024.06.018Fully textured perovskite silicon tandem solar cells are promising for future low-cost photovoltaic deployment. However, the fill factor and open-circuit voltage of these devices are currently limited by the high density of defects at grain boundaries and at interfaces with charge transport layers. To address this, we devise a strategy to simultaneously enhance perovskite crystallization and passivate the perovskite/C60 interface. By incorporating urea (CO(NH2)2) as an additive in the solution step of the hybrid evaporation/spin-coating perovskite deposition method, the crystallization kinetics are accelerated, leading to the formation of the desired photoactive phase at room temperature. With that, perovskite films with large grain sizes (>1 μm) and improved optoelectronic quality are formed at low annealing temperatures (100°C). Concurrently, remnant urea molecules are expelled at the perovskite surface, which locally displaces the C60 layer, thus reducing interfacial non-radiative recombination losses. With this strategy, the resulting tandem solar cells achieve 30.0% power conversion efficiency.encrystallizationhybrid routeLewis baseperovskite silicon tandem solar cellsphotovoltaicssurface passivationDDC::500 Naturwissenschaften und Mathematik::530 PhysikDDC::500 Naturwissenschaften und Mathematik::540 ChemieTailoring perovskite crystallization and interfacial passivation in efficient, fully textured perovskite silicon tandem solar cellsjournal article