Berger, ArminArminBergerBashir, Ali HamzaAli HamzaBashirBerghaus, DavidDavidBerghausMowmita, Afsan NaziaAfsan NaziaMowmitaGrigull, LorenzLorenzGrigullFendrich, LaraLaraFendrichHögl, HenrietteHenrietteHöglErnst, GundulaGundulaErnstSchmidt, RalfRalfSchmidtBascom, DavidDavidBascomLagones, Tom AnglimTom AnglimLagonesDeußer, TobiasTobiasDeußerBell Felix de Oliveira, ThiagoThiagoBell Felix de OliveiraLübbering, MaxMaxLübberingSifa, RafetRafetSifa2025-04-142025-04-252025-04-142024https://publica.fraunhofer.de/handle/publica/48659910.1109/BigData62323.2024.109101132-s2.0-105000217140We present RepLLaMA, a neural ranking model for optimizing patient matching in rare disease communities. Using data from Unrare.me consisting of over two thousand profiles and over ten thousand ratings, our bi-encoder architecture maps profiles to 4096-dimensional vectors, enabling efficient similarity computations. The system processes unstructured symptom descriptions and structured responses, incorporating expert-guided LLM enhancements. Results show Top-10 Recall of 49.36% (±2.03), surpassing baselines while maintaining generalization. The implementation provides a scalable solution for rare disease patient matching, addressing computational complexity challenges.enfalseLarge Language ModelsRare DiseasesRecommender SystemsText EmbeddingsText MatchingOptimizing Rare Disease Patient Matching with Large Language Modelsconference paper