Norouzi, Mohammad H.Mohammad H.NorouziSaint-Cast, PierrePierreSaint-CastLohmüller, ElmarElmarLohmüllerSteinhauser, BerndBerndSteinhauserBenick, JanJanBenickWerner, SabrinaSabrinaWernerBitnar, BerndBerndBitnarPalinginis, PhedonPhedonPalinginisNeuhaus, Dirk HolgerDirk HolgerNeuhausHofmann, MarcMarcHofmannWolf, AndreasAndreasWolf2022-03-052022-03-052017https://publica.fraunhofer.de/handle/publica/25105510.1016/j.egypro.2017.09.278We present the development of aluminum oxide (AlOx) and boron-doped silicon nitride (SiNx:B) layer stacks for application on the back side of monocrystalline p-type silicon wafers. Two deposition techniques are used for the deposition of the AlOx/SiNx:B layer stacks, atomic layer deposition and plasma-enhanced chemical vapor deposition. Both techniques enable excellent surface passivation with surface recombination velocities of 4 cm/s after firing. Also, heavy local doping with sheet resistances down to 20 O/sq is possible by laser processing. We call this concept the PassDop approach. For the laser processed area where the silicon surface is locally boron-doped and the AlOx/SiNx:B passivation layer stack is locally removed, a quite low dark saturation current density of about 900 fA/cm2 is determined. The PassDop approach can be a solution to realize passivated emitter and rear locally doped PERL solar cells by improving their rear side properties while maintaining industrial applicability.enPV Produktionstechnologie und QualitätssicherungPhotovoltaikSilicium-PhotovoltaikDotierung und DiffusionOberflächen: KonditionierungPassivierungLichteinfangpassivationdopingsolar cellcontactingDevelopment and characterization of multifunctional PassDop layers for local p+-laser dopingjournal article