Beck, MoritzMoritzBeckMaier, GeorgGeorgMaier2022-07-292022-07-292022https://publica.fraunhofer.de/handle/publica/41919410.1007/978-3-658-37751-9_4Dynamic Vision Sensoren (DVS) unterscheiden sich von herkömmlichen Kameras darin, dass nur die Intensitätsänderungen einzelner Pixel wahrgenommen und als asynchrone Events übertragen werden. Es entsteht kein gesamtes Intensitätsbild. Die Technologie verspricht unter anderem eine hohe zeitliche Auflösung, geringe Latenzzeiten und Datenraten. Während derartige Sensoren derzeit viel wissenschaftliche Aufmerksamkeit genießen, gibt es nur wenige Veröffentlichungen, die ihren Erfolg in der Praxis belegen. Ein Anwendungsbereich, der bisher kaum betrachtet wurde, aber aufgrund seiner besonderen Eigenschaften besonders für den Einsatz von DVS erscheint, ist die automatische Sichtprüfung. In dieser Arbeit werden bestehende Event-basierte Algorithmen evaluiert, auf das neue Anwendungsgebiet angepasst und erprobt. Darüber hinaus wird ein algorithmischer Ansatz präsentiert, der auf Basis von Events das optimale Zeitfenster für eine Objektklassifizierung bestimmt. Zur Evaluierung der Methoden werden zwei neue Datensätze generiert, die typische Szenarien der automatischen Sichtprüfung abdecken, wie beispielsweise die Klassifizierung von texturierten Objekten auf einem Förderband und im freien Fall. Die Ergebnisse zeigen, dass die Zeitfensteroptimierung die Korrektklassifizierungsrate bestehender Algorithmen deutlich erhöht. Darüber hinaus wird aufgezeigt, dass DVS aufgrund ihrer intrinsischen Eigenschaften neue Möglichkeiten im Bereich der automatischen Sichtprüfung bieten.deDynamic Vision-Sensoren zur Texturklassifikation in der automatischen Sichtprüfungconference paper