Kuijper, ArjanBen Hmida, HelmiKaymak, YasinYasinKaymak2022-03-072022-03-072019https://publica.fraunhofer.de/handle/publica/282994Die in den letzten Jahren vorangetriebene Umsetzung der Vision Internet der Dinge(IoT) hat auch zu einem massiven Zuwachs von IoT-Geräten gesorgt. Dadurch hat im IoT-Umfeld der Aspekt Sicherheit immer mehr an Bedeutung gewonnen. Das Gewährleisten einer reibungslosen und sicheren Nutzung der IoT-Geräte würde auch das Fortsetzten der Vision IoT unterstützen. Eine Gegenmaßnahme Sicherheit zu gewährleisten wären Anomalie-Erkennungsalgorithmen. Diese Algorithmen sind in der Lage, die von den IoT-Geräten erzeugten Unmengen von Daten (Big Data) nach Fehlverhalten zu analysieren, um überhaupt die Möglichkeit anzubieten, Gegenmaßnahmen zu treffen. In dieser Arbeit wird ein Algorithmus vorgestellt, der die von IoT-Geräten erzeugten Daten nach Fehlverhalten untersuchen kann. Zudem wird dieser Algorithmus Teil der Entwicklungsumgebung ClickDigital.deDetectionInternet of things (IoT)AlgorithmsLead Topic: Smart CityResearch Line: Human computer interaction (HCI)006Künstliche Intelligenz Widget für ClickDigitalbachelor thesis