Grigorev, PetrPetrGrigorevFrérot, LucasLucasFrérotBirks, FraserFraserBirksGola, AdrienAdrienGolaGolebiowski, JacekJacekGolebiowskiGrießer, JanJanGrießerHörmann, Johannes L.Johannes L.HörmannKlemenz, AndreasAndreasKlemenzMoras, GianpietroGianpietroMorasNöhring, Wolfram G.Wolfram G.NöhringOldenstaedt, Jonas A.Jonas A.OldenstaedtPunit, PatelPatelPunitRocke, ThomasThomasRockeReichenbach, ThomasThomasReichenbachShenoy, LakshmiLakshmiShenoyWalter, MichaelMichaelWalterWengert, SimonSimonWengertKermode, James R.James R.KermodeZhang, LeiLeiZhangPastewka, LarsLarsPastewka2024-05-062024-05-062024https://publica.fraunhofer.de/handle/publica/46763410.21105/joss.05668Behaviour of materials is governed by physical phenomena that occur at an extreme range of length and time scales. Computational modelling requires multiscale approaches. Simulation techniques operating on the atomic scale serve as a foundation for such approaches, providing necessary parameters for upper-scale models. The physical models employed for atomic simulations can vary from electronic structure calculations to empirical force fields. However, construction, manipulation and analysis of atomic systems are independent of the given physical model but dependent on the specific application. matscipy implements such tools for applications in materials science, including fracture, plasticity, tribology and electrochemistry.enmatscipyPythoncalculatorsatomic-scale modellingatomic analysis toolsDDC::600 Technik, Medizin, angewandte Wissenschaften::620 Ingenieurwissenschaftenmatscipy: materials science at the atomic scale with Pythonjournal article