CC BY-NC-ND 4.0Fabarius, Jonathan ThomasJonathan ThomasFabariusPietzka, CarstenCarstenPietzkaPangotra, DhananjaiDhananjaiPangotraWriedt, BenjaminBenjaminWriedtVieira Dessoy Maciel, LucianaLucianaVieira Dessoy MacielSagstetter, CarinaCarinaSagstetterSpeck, MelanieMelanieSpeckZiogas, AthanassiosAthanassiosZiogasBaumgarten, NilsNilsBaumgartenKost, Hans-JoachimHans-JoachimKostLöb, PatrickPatrickLöbPatzsch, KatjaKatjaPatzschBernau, Catherine RoseCatherine RoseBernauBöringer, SarahSarahBöringerPico, DavideDavidePicoLieske, AntjeAntjeLieskeVater, MarcusMarcusVaterWendler, UlrichUlrichWendlerRoth, ArneArneRoth2024-04-152024-04-152024-03https://publica.fraunhofer.de/handle/publica/466052https://doi.org/10.24406/publica-293810.1002/cite.20240000210.24406/publica-2938Production processes based on CO2 as raw material offer high scalability and sustainability. Here, a novel process cascade is introduced, combining the advantages of electrochemical CO2 conversion with the synthetic potential of industrial biotechnology: CO2 is electrocatalytically reduced to formic acid as substrate for the metabolically engineered bacterium Methylorubrum extorquens that produces l-lysine as precursor of the polymer building block 1,5-diaminopentane (cadaverine). Cadaverine is purified through targeted downstream processing and finally used in a polycondensation process to produce polyamide materials.enCadaverineC1 fermentationContinuous polycondensationElectrocatalytic CO2 reductionustainable polymersProcess Cascade for the Production of Green Polymers from CO2 and Electric Energyjournal article