CC BY 4.0Wang, HanHanWangPerez Mejia, Eduardo JoseEduardo JosePerez MejiaRömer, FlorianFlorianRömer2023-08-292023-08-292023https://publica.fraunhofer.de/handle/publica/448882https://doi.org/10.24406/publica-181410.5162/SMSI2023/A2.410.24406/publica-1814In this work we employ model-based deep learning to optimally select the sensing locations of single channel synthetic aperture measurements in ultrasound nondestructive testing. We use the Fisher in formation as an optimization target to obtain task-agnostic selection matrices. We then link this result to prior findings on the behavior of the Fisher information matrix.enchannel selectiondeep learningsignal recoveryultrasound NDTDDC::600 Technik, Medizin, angewandte WissenschaftenDeep Learning-Assisted Optimal Sensor Placement in Ultrasound NDTconference paper