Mueller-Roemer, Johannes SebastianJohannes SebastianMueller-RoemerStork, AndréAndréStorkFellner, Dieter W.Dieter W.Fellner2022-03-142022-03-142019https://publica.fraunhofer.de/handle/publica/40552710.2312/vmv.20191324Large sparse matrices with compound entries, i.e., complex and quaternionic matrices as well as matrices with dense blocks, are a core component of many algorithms in geometry processing, physically based animation, and other areas of computer graphics. We generalize several matrix layouts and apply joint schedule and layout autotuning to improve the performance of the sparse matrix-vector product on massively parallel graphics processing units. Compared to schedule tuning without layout tuning, we achieve speedups of up to 5:5x. In comparison to cuSPARSE, we achieve speedups of up to 4:7x.enLead Topic: Digitized WorkResearch Line: (Interactive) simulation (SIM)general purpose computation on graphics processing unit (GPGPU)GPU computinglinear systemscode generation006Joint Schedule and Layout Autotuning for Sparse Matrices with Compound Entries on GPUsconference paper